C CHOLAR
OMMONS University of South Florida

UNIVERSITY OF

SOUTH FLORIDA Scholar Commons
Graduate Theses and Dissertations Graduate School
3-29-2007

Maximizing Manipulation Capabilities of Persons
with Disabilities Using a Smart 9-Degree-of-
Freedom Wheelchair-Mounted Robotic Arm
System

Redwan M. Alqasemi
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
& Dart of the American Studies Commons

Scholar Commons Citation

Alqasemi, Redwan M., "Maximizing Manipulation Capabilities of Persons with Disabilities Using a Smart 9-Degree-of-Freedom
Wheelchair-Mounted Robotic Arm System" (2007). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/599

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

www.manharaa.com

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Maximizing Manipulation Capabilities of Persons with Disabilities Using a

Smart 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm System

by

Redwan M. Algasemi

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Mechanical Engineering
College of Engineering
University of South Florida

Major Professor: Rajiv Dubey, Ph.D.
Shuh-Jing Ying, Ph.D.
Craig Lusk, Ph.D.
Wilfrido Moreno, Ph.D.
Kandethody Ramachandran, Ph.D.

Date of Approval:
March 29, 2007

Keywords: dof, adl, control, robot, rehabilitation, mobility, redundancy

© Copyright 2007, Redwan M. Algasemi

www.manharaa.com

Note to Reader

The original of this document contains color that is necessary for understanding

the data. The original dissertation is on a file with the USF library in Tampa, Florida.

www.manharaa.com

Dedication

To my wife, Ola, for her unconditional love and support in every possible way
and for the sacrifices she made of her own needs and comfort for mine. To my children,
Hiba, Lama, Rama, Ryan and Dana, who gave me that wonderful feeling that I see and
feel every day when I came back from a long day in the office. Without them, I can’t
have any color, taste or joy in my life that charges me for success. Thank you for
enduring my absence for countless days and nights.

To my loving mother and father, who gave me all the support and encouragement
I needed to continue my education. I will never forget the sleepless nights you had for my
comfort, and the prayers you made for my success.

To my advisor, Dr. Dubey, who was like my older brother, giving me the advice
when I need it and helping me in any way he can above and beyond his duties. Your
inspiration helped me achieve this work. You are truly a great professor and role model.

To my brothers and sisters who never spared any opportunity to help me when I
needed their help. To my relatives and friends who gave me the comfort and confidence
whenever I needed them.

Above all, to God, who showered me with his countless blessings and guided me
to the right path and made me succeed throughout the way with all the obstacles I faced,

thank you God.

www.manaraa.com

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Rajiv Dubey for giving
me the precious opportunity to work with him and for sharing his knowledge and
experience with me in both teaching and research. His guidance and immense patience
throughout the course of my research are greatly appreciated. I would also like to thank
the members of my committee Dr. Shuh-Jing Ying, Dr. Craig Lusk, Dr. Wilfrido Moreno
and Dr. Kandethody Ramachandran for their valuable comments to this research.

I would like to gratefully acknowledge the important contribution and support of
the Florida Department of Education, the Division of Vocational Rehabilitation, and the
Center for Rehabilitation Engineering and Technology at the University of South Florida,
especially Mr. Stephen Sundarrao, who provided a great help in conducting experiments
and tests with people with disabilities. Many thanks go to the members of the
Rehabilitation Robotics group, including Eduardo Veras, Edward McCaffrey, Kevin
Edwards, Mayur Palankar, Sebastian Mahler and Steven Colbert who added some
important contributions to this research.

Special thanks and appreciation go to Dr. Emanuel Donchin and Dr. Yael Arbel
of the Department of Psychology at USF for lending their BCI-2000 hardware and
support to integrate the BCI system into this research. I would also like to express my
gratitude to Vilma Fitzhenry, Susan Britten, Shirley Tervort, Wes Frusher, Robert Smith,

Thomas Gage, and James Christopher for their support in paper work and machining.

www.manaraa.com

Table of Contents

List of Tables
List of Figures
Abstract

Chapter 1: Introduction
1.1. Motivation
1.2. Dissertation Objectives
1.3. Dissertation Outline

Chapter 2: Background

2.1. History of Rehabilitation Robotics

2.2. Rehabilitation Robotics Classification
2.2.1. Workstation Robotic Arms
2.2.2. Wheelchair-Mounted Robotic Arms
2.2.3. Mobile / Assistant Robots
2.2.4. Robots in Therapy
2.2.5. Smart Wheelchairs / Walkers

2.3. Commercial Wheelchair-Mounted Robotic Arms
2.3.1. The Manus
2.3.2. The Raptor

2.4. Robot Control
2.4.1. Redundant Robot Control
2.4.2. Mobile Robot Control

Chapter 3: Control Theory of Redundant Manipulators

3.1. Introduction

3.2. Terminology

3.3. Redundant Manipulators Problem Formulation
3.3.1. Frames of References
3.3.2. Denavit-Hartenberg Parameters

3.4. Forward Kinematics Equations
3.4.1. Link Transformation Matrices
3.4.2. Velocity Propagation and the Jacobian

vil

viil

xvi

B W ==

41
41
42
42
43
44
46
46
48

www.manaraa.com

3.5. Inverse Kinematic Equations 51

3.5.1. Closed Form Solutions 51

3.5.2. Manipulability Ellipsoid 53

3.5.3. Numerical Solutions 54

3.5.4. Redundancy Resolution 55

3.5.5. Optimization Criteria 56

3.6. Summary 57
Chapter 4: Mobility Control Theory 59
4.1. Introduction 59
4.2. Terminology 60
4.3. Mobility Problem Formulation 60
4.3.1. Frame Assignment 61

4.3.2. Wheelchair’s Important Dimensions 62

4.4. Homogeneous Transformation Relations 64
4.4.1. Driving Wheels’ Motion and the Turning Angle 64

4.4.2. The Radius of Curvature 66

4.4.3. Point-to-Point Transformation of the Wheelchair 69

4.4.4. Transformation to the Robotic Arm’s Base 72

4.5. Wheelchair Velocities 72
4.5.1. Wheelchair Velocity Mapping to the Robotic Arm Base 73

4.5.2. Mapping the Driving Wheels’ Velocities to the Wheelchair 75

4.6. Wheelchair’s General Jacobian 77
4.7. Trajectory Options 78
4.8. Operator’s Safety Issues 79
4.9. Summary 80
Chapter 5: Control and Optimization of the Combined Mobility and Manipulation 81
5.1. Introduction 81
5.2. Terminology 82
5.3. WMRA Assembly and Problem Definition 82
5.4. Kinematics of the Combined WMRA System 83
5.5. Jacobian Augmentation and Resolved Rate Equations Generation 84
5.6. Jacobian Changes Based on the Control Frame 88
5.6.1. Ground-Based Control 88

5.6.2. Wheelchair-Based Control 88

5.6.3. End-Effector Based Control (Piloting Option) 89

5.7. Jacobian Inversion Methods and Singularities 89
5.7.1. Inverting Using Pseudo Inverse 90

5.7.2. Inverting Using Singularity-Robust Inverse 90

5.8. Optimization Methods with the Combined Jacobian 91
5.8.1. Criteria Functions and Minimizing Euclidean Norm of Errors 92

5.8.2. Weighted Least Norm Solution 94

5.8.3. Joint Limit Avoidance 95

5.8.4. Obstacle Avoidance 99

i

www.manaraa.com

5.8.5. Safety Conditions 99
5.8.6. Unintended Motion Effect Based on the Optimization Criteria 100

5.9. Optional Combinations for the Resolved Rate Solution 101
5.10. State Variable Options in the Control Algorithm 103
5.10.1. Seven Robotic Arm Joints, Left wheel and Right Wheel
Variables 104
5.10.2. Seven Robotic Arm Joints, Forward and Rotational Motion
of the Wheelchair 105
5.11. Trajectory Generation 109
5.11.1. Generator of a Linear Trajectory 109
5.11.2. Generator of a Polynomial Trajectory 113
5.11.3. Generator of a Polynomial Trajectory with Parabolic Blending
Factor 115
5.12. Control Reference Frames 116
5.12.1. Ground Reference Frame 117
5.12.2. Wheelchair Reference Frame 118
5.12.3. End-Effector Reference Frame 119
5.13. Summary 120
Chapter 6: User Interface Options 121
6.1. Introduction 121
6.2. User Interface Clinical Testing 121
6.2.1. Representative ADL Tasks Used for the Clinical Study 122
6.2.2. The Tested User Interfaces 124
6.2.3. Population of the Chosen Users with Disabilities 125
6.2.4. Clinical Test Results on User Interfaces 126
6.3. The New WMRA User Interfaces Used 128
6.3.1. Six-Axis, Twelve-Way SpaceBall 128
6.3.2. Computer Keyboard and Mouse 129
6.3.3. Touch Screen on a Tablet PC 130
6.4. The Brain-Computer Interface (BCI) Using P300 EEG Brain Signals 131
6.4.1. The P300 EEG Signal 131
6.4.2. The Use of the BCI 132
6.4.3. The BCI-2000 Interface to the New 9-DoF WMRA System 133
6.4.4. Testing of the BCI-2000 with the WMRA Control 134
6.5. Expandability of User Interfaces 135
6.5.1. Omni Phantom Haptic Device 136
6.5.2. Sip n’ Puff Device 137
6.5.3. Head and Foot Switches 138
6.6. Summary 138
Chapter 7: Testing in Simulation 139
7.1. Introduction 139
7.2. User Options to Control the WMRA System 139

il

www.manaraa.com

7.3. Changing the Physical Dimensions and Constraints of the WMRA

System 142
7.4. Programming Language Packages Used 142
7.4.1. Programs in C++ Programming Language 144
7.4.2. Matlab Programming Environment 144
7.4.3. Simulation with Virtual Reality Toolbox 147
7.4.4. Graphical User Interface (GUI) Program 149
7.5. Comments on Interfacing Different Programs Together 150
7.6. Summary 151
Chapter 8: Simulation Results 153
8.1. Introduction 153
8.2. Simulation Cases Tested 153
8.3. Results and Discussion of the First Five Cases 155
8.3.1. WMRA Configurations in the Final Pose of the Simulation 158
8.3.2. Displacements of the Joint Space Variables 161
8.3.3. Velocities of the Joint Space Variables 167
8.3.4. Singularities and the Manipulability Measure 169
8.4. Results and Discussion of the Second Two Cases 172
8.5. More Simulation for Optimization Methods and Criterion Function

Effects 178

8.6. Simulation of the Eight Implemented Optimization Control Methods for
the Case of an Unreachable Goal 184
8.7. Summary 194
Chapter 9: Experimental Testbed and Field Tests 195
9.1. Introduction 195
9.2. The New 7-DoF Robotic Arm Design and Development 195
9.2.1. Design Goals 196
9.2.1.1. Weight 196
9.2.1.2. Mount Type 196
9.2.1.3. Stiftness 197
9.2.1.4. Payload 197
9.2.1.5. Reconfigurability 198
9.2.1.6. Power Supply and Consumption 198
9.2.1.7. Cost Constraint 198
9.2.1.8. User Interface 199
9.2.1.9. Degrees of Freedom 199
9.2.1.10. Actuation and Transmission Systems 199
9.2.1.11. DC Motors as Actuators 200
9.2.2. Kinematic Arrangements and Component Selection 200
9.2.2.1. Gearhead Selection 202
9.2.2.2. Motor Selection 203
9.2.2.3. Material Selection 204
9.2.2.4. Joint Design 204

v

www.manaraa.com

9.2.2.5. Wrist Design 204

9.2.3. Final Design Testing and Specifications 205

9.3. The New 2-Claw Ergonomic Gripper Design and Development 208
9.3.1. Paddle Ergonomic Design 209

9.3.2. Actuation Mechanism 211

9.3.3. Component Selection 212

9.3.4. Final Design and Testing 216

9.4. Modification of a Standard Power Wheelchair 219
9.5. Controller Hardware 220
9.5.1. Controller Boards 222

9.5.2. Communication and Wiring 223

9.5.3. Safety Measures 224

9.6. Experimental Testing 225
9.7. Summary 228
Chapter 10: Conclusions and Recommendations 230
10.1. Overview 230
10.2. General Discussion 231
10.3. Recommendations 234
Chapter 11: Future Work 237
11.1. Introduction 237
11.2. Quick Attach-Detach Mechanism 237
11.3. A Single Compact Controller 238
11.4. A Sensory Suite 239
11.5. Real-Time Control 239
11.6. Bluetooth Wireless Technology for Remote Wireless Teleoperation 240
11.7. Sensor Assist Functions (SAFs) 240
11.8. Pre-Set ADL Tasks 241
References 243
Appendices 249
Appendix A. Hardware Components 250
A.1. Robotic Arm Gear Motors with Encoders 250

A.2. Harmonic Drive Gearheads 252

A.3. Wheelchair Selected Encoders 264

A.4. Wheelchair Selected Friction Wheels 267

A.5. Gripper’s Actuation Motor 268

A.6. Gripper’s Planetary Gearhead 269

A.7. Gripper’s Optical Encoder 270

A.8. Gripper’s Spur Gears 272

A.9. Gripper’s Slip Clutch 273

A.10. PIC Servo SC Motion Controller Board 280

A.11. SSA-485 Smart Serial Adapter 283

\%

www.manaraa.com

Appendix B. Matlab Programs and Functions
B.1. VRML File of the Virtual Reality Control Code
B.2. Matlab Functions Listed Alphabetically
B.3. Matlab Main Script and GUI Main File
Appendix C. C++ Programs and DLL Library
C.1. DLL Library Functions
C.2. DLL Library Documentation

About the Author

Vi

292
292
297
349
401
401
403

End Page

www.manharaa.com

List of Tables

Table 3.1: ~ The D-H Parameters of the New 7-DoF Robotic Arm Built at 46
USF.

Table 9.1: HD Systems Gearhead Selections for Each Joint. 202

Table 9.2: Arm Deflections vs. Applied Load. 206

Table 9.3: Power Usage. 206

Table 9.4: Summary of the Robotic Arm Specifications. 208

vii

www.manharaa.com

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:

Figure 2.16:

Figure 2.17:

List of Figures

Puma 250 Arm.
Handy-1.

RAID Workstation.
Robot Assistive Device.
ProVAR System.
Weston Arm.

Asimov Arm.

FRIEND Robotic System.

MoVAR.
MoVAID.
TAURO Robotic System.

MIT Manus System.

Mouth Opening and Closing Device.

iBOT (Left) and Segway (Right) Devices.

Manus Arm.

Raptor Arm.

10

11

11

13

14

15

16

16

17

18

19

20

21

22

Redundancy Resolution without (Left) and with (Right) Obstacle

Avoidance.

viii

24

www.manharaa.com

Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:
Figure 2.25:
Figure 2.26:
Figure 2.27:
Figure 2.28:

Figure 2.29:

Figure 2.30:

Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 4.1:

Figure 4.2:

The Robot Visual Servoing Application Using the QP Controller.
Reference Frames Used for the Manipulation LIRMM.
Cooperative Control System Setup.

Mobile Manipulator Model.

Wheeled Mobile Manipulator with Two Arms.

Nomad XR4000 with the Puma560 Mounted on Top.
Mobile Manipulator.

Mobile Manipulator H2BIS.

LAAS Mobile Manipulator.

Mobile Manipulator.

Interaction Control of the Mobile Manipulator.

Trajectory Tracking for a Planar 2-DoF Robot on a Differential
Mobile Base.

Animation of the Motion of the End-Effector and the Platform Front
Point.

Joint-Link Kinematic Parameters.
Solid Works Model of the New 7-DoF Robotic Arm Built at USF.

Frame Assignments and Dimensions of the New 7-DoF Robotic
Arm.

Velocity Vectors of Neighboring Links.

Manipulability Ellipsoid for a 7-DoF Manipulator in a 6-DoF
Euclidean Space.

Wheelchair Coordinate Frames and Dimensions of Interest.

Traveled Distance of a Turning Wheel.

X

www.manaraa.com

26

27

28

29

30

32

33

33

35

36

38

39

40

43

45

45

49

54

62

64

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:

Figure 4.13:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:

Figure 5.6:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:

Figure 6.5:

Traveled Distance with Turning Angle.

Radius of Curvature in Case 1.

Radius of Curvature in Case 2.

Radius of Curvature in Case 3.

Radius of Curvature in Case 4.

Point-to-Point Transformation of Frames.

The Case When “Ls” is Zero.

The Case When “L,” is Zero.

The Case When the Left Wheel is Stationary.

The Case When the Right Wheel is Stationary.

The Three Sub-Motions in Motion Planning of the Wheelchair.
WMRA Coordinate Frames.

Four Joint Limit Boundary Conditions.

Linear Trajectory Generation.

Polynomial Function of 3™ Order for Variable Ramp with Time.

Polynomial Function of 3™ Order for Blended Variable Ramp with
Time.

Polynomial Trajectory Generation.
Four Different ADL Tasks.
Four-Way Joystick for Manus.
Eight-Button Keypad for Manus.
Eight-Way Joystick for Raptor.

Clinical Testing of the Keypad by a Power Wheelchair User.

www.manaraa.com

65

67

67

68

69

70

73

74

76

76

79

&3

98

112

114

116

117

123

124

124

125

126

Figure 6.6:
Figure 6.7:
Figure 6.8:

Figure 6.9:

Figure 6.10:
Figure 6.11:
Figure 6.12:
Figure 6.13:
Figure 6.14:
Figure 6.15:

Figure 6.16:

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:

Figure 8.5:

Figure 8.6:

Clinical Testing of the Joystick by a Power Wheelchair User.
Twelve-Way SpaceBall.

A Keyboard and a Mouse.

A 12-Inch Touch Screen of a Tablet PC.

GUI Screen Used for the Touch Screen.

Basic Design and Operation of the BCI System.

The Non-Invasive BCI Device.

Basic Design and Operation of the BCI System.

The Phantom Omni Device from SensAble Technologies.
The Sip and Puff Input Device.

Head and Foot Switches.

Program Flowchart.

A Sample Command Prompts for Autonomous Operation Mode.

Simulation Window of the WMRA System in Wire Frame.

A Sample of the Virtual Reality Simulation Window.

The Graphical User Interface (GUI) Screen with the Defaults.
The Initial Pose of the WMRA in Simulation.

Position of the WMRA During Simulation.

Orientation of the WMRA During Simulation.

Destination Pose for Case I, When W=[1,1,1,1,1,1,1, 1, 1].

Destination Pose Case II, When W =10, 10, 10, 10, 10, 10, 10, 1,

1].

Destination Pose Case III, When W =[1,1, 1,1, 1, 1, 1, 100, 100].

xi

www.manaraa.com

127

129

129

130

130

131

133

134

136

137

138

143

146

147

148

150

156

157

157

159

159

160

Figure 8.7:
Figure 8.8:

Figure 8.9:

Figure 8.10:

Figure 8.11:

Figure 8.12:

Figure 8.13:

Figure 8.14:

Figure 8.15:

Figure 8.16:

Figure 8.17:
Figure 8.18:

Figure 8.19:

Figure 8.20:
Figure 8.21:

Figure 8.22:

Figure 8.23:

Figure 8.24:

Destination Pose Case IV, When W=[1,1,1,1,1, 1,1, 100, 1].
Destination Pose Case V, When W=[1,1,1,1,1, 1,1, 1, 100].
Arms’ Joint Motion for Case I, When W=[1,1,1,1,1,1,1, 1, 1].

Arms’ Joint Motion for Case II, When W =[10, 10, 10, 10, 10, 10,
10, 1, 1].

Arms’ Joint Motion for Case III, When W=[1,1,1, 1,1, 1, 1, 100,
100].

Arms’ Joint Motion for Case IV, When W=[1,1,1,1,1, 1, 1, 100,
1].

Arms’ Joint Motion for Case V, When W=1[1,1,1,1,1,1, 1,1,
100].

Wheels’ Motion for Case I, When W=1[1,1,1,1,1,1,1, 1, 1].

Wheels’ Motion for Case II, When W =[10, 10, 10, 10, 10, 10, 10,
1, 1].

Wheels’ Motion for Case III, When W=11,1,1,1, 1, 1, 1, 100,
100].

Wheels’ Motion for Case IV, When W =[1,1,1,1,1, 1, 1, 100, 1].
Wheels’ Motion for Case V, When W=11,1,1,1,1,1, 1, 1, 100].

Arms’ Joint Velocities for Case I, When W=[1,1,1,1,1,1, 1, 1,
1].

Wheels’ Velocities for Case I, When W=[1,1,1,1,1,1, 1,1, 1].
Manipulability Index for Case [, When W=1[1,1,1,1,1,1,1, 1, 1].

Manipulability Index for Case II, When W =[10, 10, 10, 10, 10, 10,
10, 1, 1].

Manipulability Index for Case III, When W=[1,1,1,1,1, 1,1,
100, 100].

Manipulability Index for Case IV, When W=[1,1,1, 1,1, 1, 1,
100, 1].

xii

www.manaraa.com

160

161

162

162

163

163

164

165

165

166

166

167

168

168

169

170

170

171

Figure 8.25:

Figure 8.26:

Figure 8.27:

Figure 8.28:

Figure 8.29:

Figure 8.30:

Figure 8.31:

Figure 8.32:
Figure 8.33:
Figure 8.34:
Figure 8.35:
Figure 8.36:
Figure 8.37:
Figure 8.38:
Figure 8.39:
Figure 8.40:
Figure 8.41:
Figure 8.42:

Figure 8.43:

Manipulability Index for Case V, When W=[1,1,1,1,1,1,1, 1,

100].

171

Arm Base Position When the Weights Were Equal, W =[1, 1, 1, 1,

L1,1,1,1]

173

Arm Base Orientation When the Weights Were Equal, W =11, 1, 1,

I,1,1,1,1,1].

174

Arm Base Position for Case A, When W=[1,1,1,1,1, 1, 1, 50,

501.

175

Arm Base Orientation for Case A, When W=[1,1,1,1, 1, 1, 1, 50,

50].

175

Arm Base Position for Case B, When W=1[1,1,1,1,1,1,1,50,1]. 177

Arm Base Orientation for Case B, When W=[1,1,1,1,1, 1, 1, 50,

1].

Wheels’ Motion Distances for Case 1.
Joint Angular Displacements for Case I.
Wheels’ Motion Distances for Case I1.
Joint Angular Displacements for Case II.
Wheels’ Motion Distances for Case III.
Joint Angular Displacements for Case III.
Wheels’ Motion Distances for Case IV.
Joint Angular Displacements for Case IV.
Manipulability Measure Case I (PI).

Joint Angular Displacements for Case I (PI).

Manipulability Measure Case II (PI-JL).

Joint Angular Displacements for Case II (PI-JL).

xiil

177

179

179

180

181

181

182

183

183

186

186

187

187

www.manaraa.com

Figure 8.44:
Figure 8.45:
Figure 8.46:
Figure 8.47:
Figure 8.48:
Figure 8.49:
Figure 8.50:
Figure 8.51:
Figure 8.52:
Figure 8.53:
Figure 8.54:
Figure 8.55:
Figure 9.1:

Figure 9.2:

Figure 9.3:

Figure 9.4:

Figure 9.5:

Figure 9.6:

Figure 9.7:
Figure 9.8:
Figure 9.9:

Figure 9.10:

Manipulability Measure Case 111 (WPI). 188
Joint Angular Displacements for Case III (WPI). 188
Manipulability Measure Case IV (WPI-JL). 189
Joint Angular Displacements for Case IV (WPI-JL). 189
Manipulability Measure Case V (SRI). 190
Joint Angular Displacements for Case V (SRI). 190
Manipulability Measure Case VI (SRI-JL). 191
Joint Angular Displacements for Case VI (SRI-JL). 191
Manipulability Measure Case VII (WSRI). 192
Joint Angular Displacements for Case VII (WSRI). 192
Manipulability Measure Case VIII (WSRI-JL). 193
Joint Angular Displacements for Case VIII (WSRI-JL). 193
Complete SolidWorks Model of the WMRA. 201
Kinematic Diagram with Link Frame Assignments. 201
Harmonic Drive Gearhead. 203
Pittman Servo Brush Motors with Gearbox and Encoder. 203
Wrist Design: 3-Roll Wrist (Left), Orthogonal Wrist (Right). 205
WMRA SolidWorks Models and the Corresponding Positions of the

Built Device. 207
The New Gripper’s Ergonomic Surfaces. 209
The Gripper Design in Application Reference. 210
Extended Interior Surface Added to the Gripper. 211
The Selected Coreless Gearhead Servo Motor. 213

X1V

www.manaraa.com

Figure 9.11:
Figure 9.12:
Figure 9.13:
Figure 9.14:
Figure 9.15:
Figure 9.16:

Figure 9.17:

Figure 9.18:
Figure 9.19:

Figure 9.20:

Figure 9.21:

Figure 9.22:

Figure 9.23:
Figure 9.24:

Figure 9.25:

Figure 9.26:

Figure 9.27:

Figure 9.28:

The Selected Slip Clutch.

The Assembled Actuation Mechanism.

The New Gripper and the Actuation Mechanism Drawing.
The New Gripper and the Actuation Mechanism.

The New Gripper When Holding a Spherical Object.

The New Gripper When Holding a Tapered Cup.

The Gripper When Opening a Door with a Lever Handle (Left) and
a Knop Handle (Right).

The New Gripper When Handling Small Objects.
The New Gripper When Handling Large and Heavy Objects.

A Circuit Designed to Convert Digital PWM Duty-Cycle Control
Signal to Analogue Signal.

The Designed Controller Box Installed on the Modified Wheelchair.

The Quick-Release Mechanism that Mounts the Robotic Arm on the
Wheelchair.

JRKERR PIC Servo SC Controller Boards.
Control System Circuitry.

Serial Port Connection of the Joint Motors (Left) and the Gripper
(Right).

Wheelchair Encoders and Control Communications.

A Person with Guillain-Barre Syndrome Driving the New WMRA
System.

A Human Subject Testing of the BCI-2000 Interface with the
WMRA System.

XV

www.manaraa.com

214

214

215

215

217

217

218

218

219

220

221

222

223

224

225

226

227

228

Maximizing Manipulation Capabilities of Persons with Disabilities Using a Smart 9-
Degree-of-Freedom Wheelchair-Mounted Robotic Arm System

Redwan M. Algasemi

ABSTRACT

Physical and cognitive disabilities make it difficult or impossible to perform
simple personal or job-related tasks. The primary objective of this research and
development effort is to assist persons with physical disabilities to perform activities of
daily living (ADL) using a smart 9-degrees-of-freedom (DOF) modular wheelchair-
mounted robotic arm system (WMRA).

The combination of the wheelchair’s 2-DoF mobility control and the robotic
arm’s 7-DoF manipulation control in a single control mechanism allows people with
disabilities to do many activities of daily living (ADL) tasks that are otherwise hard or
impossible to accomplish. Different optimization methods for redundancy resolution are
explored and modified to fit the new system with combined mobility and manipulation
control and to accomplish singularity and obstacle avoidance as well as other
optimization criteria to be implemented on the new system. The resulting control
algorithm of the system is tested in simulation using C++ and Matlab codes to resolve
any issues that might occur during the testing on the physical system. Implementation of
the combined control is done on the newly designed robotic arm mounted on a modified
power wheelchair and with a custom designed gripper.

XVi

www.manaraa.com

The user interface is designed to be modular to accommodate any user preference,
including a haptic device with force sensing capability, a spaceball, a joystick, a keypad,
a touch screen, head/foot switches, sip and puff devices, and the BCI 2000 that reads the
electromagnetic pulses coming out of certain areas of the brain and converting them to
control signals after conditioning.

Different sensors (such as a camera, proximity sensors, a laser range finder, a
force/torque sensor) can be mounted on the WMRA system for feedback and intelligent
control. The user should be able to control the WMRA system autonomously or using
teleoperation. Wireless Bluetooth technology is used for remote teleoperation in case the
user is not on the wheelchair. Pre-set activities of daily living tasks are programmed for

easy and semi-autonomous execution.

xvil

www.manharaa.com

Chapter 1:

Introduction

1.1. Motivation

According to the latest data from the US Census Bureau Census Brief of 1997 [1],
one of every five Americans had difficulty performing functional activities (about 53
million), half of them were considered to have severe disabilities (over 26 million).
Robotic aides used in these applications vary from advanced limb orthosis to robotic
arms [2]. Persons that can benefit from these devices are those with severe physical
disabilities (such as cerebral palsy resulting in loss of sensation or loss of ability to
control movement), acquired disabilities (such as spinal cord injury, multiple sclerosis
and stroke), and mobility disabilities (such as osteoporosis and arthritis due to chronic
disorders) that result in a limited or no upper extremity mobility which limit their ability
to manipulate objects. These devices increase self-sufficiency, and reduce dependence on
caregivers. In the case of spinal cord injury or dysfunction these aids are most appropriate
for individuals with spinal deficiencies ranging from cervical spine vertebrae 3 through
cervical spine vertebrae 5. Individuals with neuromuscular deficiencies, such as muscular
sclerosis, or other motor dysfunctions due to accidents, disease, aging, or genetic

predispositions, can benefit from these robotic devices as well.

www.manaraa.com

A wheelchair mounted robotic arm (WMRA) can enhance the manipulation
capabilities of individuals with disabilities that are using power wheelchairs, and reduce
dependence on human aides. Individuals that require mobility assist devices such as a
power wheelchair can benefit from various robotic devices because the power wheelchair
provides a platform with which to mount the device as well as a power supply, using the
wheelchair’s batteries. There have been several attempts in the past to create
commercially-viable wheelchair mounted robotic arms. Currently there are only two
commercially available WMRAs available, the Manus (Exact Dynamics, Inc.,
Netherlands) and the Raptor (Applied Resources, Inc, NJ USA).

Unfortunately, most WMRAs have had limited commercial success due to poor
usability and low payload. It is often difficult to accomplish many of the Activities of
Daily Living (ADL) tasks with the WMRASs currently on the market due to its physical
and control limitations and its control independence of the wheelchair’s control system.
This project attempts to surpass available commercial WMRA devices by offering an
intelligent system that combines the mobility of the wheelchair and the manipulation of a
newly designed arm in an effort to improve performance, usability, control and reduce
mental load on the user while maintaining cost competitiveness.

The two commercially available WMRAs lack the integration of the robotic arm
controller with the wheelchair controller, and that leads to an increased mental load on
the user. Combining the control of both the power wheelchair and the robotic arm would
decrease this mental burden on the user and improve the combined system usability.

It is desired to fulfill the need of such integrated systems to be used for many

ADL tasks such as opening a spring-loaded door autonomously and go through it,

2

www.manaraa.com

interactively exchange objects with a companion on the move, avoid obstacles by going
around them while maneuvering objects, conveniently handle food and beverage between
the fridge, Microwave oven, stove, etc. without the need to switch between the
wheelchair controller and the robotic arm controller, and avoid singularities in a small
working environment, such as an office, where wheelchair motion can be slightly utilized
to maneuver objects while avoiding singularities (similar to a person sitting on an office
chair and handling objects around him by moving his/her arm while slightly moving the

chair to get closer to an object that is otherwise unreachable).

1.2. Dissertation Objectives

1- The main objective of this work is to develop and optimize a control system that
combines the manipulation of the newly designed 7-DoF robotic arm and the mobility
of a modified 2-DoF wheelchair in a smart 9-DoF control algorithm.

2- Redundancy resolution is to be optimally solved to avoid singularities, joint limits,
obstacles and to allow larger wheelchair or manipulator motion depending on the user
proximity to the goal.

3- This WMRA is to utilize an optimized controller that is expandable to control both
WMRA and the power wheelchair.

4- A complex and flexible simulation program is to be developed to simulate the 9-DoF
WMRA in Virtual Reality.

5- A 7-DoF Robotic arm is to be developed and integrated to a modified power

wheelchair to include PC based control and sensory feedback.

www.manaraa.com

6- High-level control of the 9-DoF WMRA system is to be designed to combine the
WMRA'’s 7 DoF and the wheelchair’s mobility in the new redundant 9-DoF system.
7- Redundancy is to be used and optimized to improve manipulation capabilities for

activities of daily living (ADLs) and avoid singularities.

o0
1

The new system is to be capable of executing complex pre-set tasks autonomously as

well as in teleoperation mode.

9- The user interface in the WMRA system’s teleoperation mode should be capable of
using a force-reflecting haptic interface, a keypad, a Spaceball, a touch screen, a BCI
2000 brain-wave sensor device or other user interface devices that can be used as
modular user interfaces with different capabilities to fit the individual user needs.

10- Higher level control algorithms are to be developed to interface the sensory data and
the user input for an easy control of the system.

11-The system should be capable of future modification to use Bluetooth wireless

technology for remote teleoperation so that the user can also perform some ADL

tasks while not seated on the wheelchair.

12- A sensory suite can be in the control algorithm for feedback purposes.

1.3. Dissertation Outline

This dissertation will give a background in chapter 2 on previous work done in the
field of mobile robots and redundant manipulators as well as assistive devices that can be
used by individuals with disabilities. Chapter 3 will focus the redundant manipulator
control theories and methods, and chapter 4 will discuss the control theory of differential

drives that produce non-holonomic motion. In chapter 5, the combination of both the

4

www.manaraa.com

redundant manipulator control and the differential drive non-holonomic mobility control
theory will be discussed. Mathematical relationships and augmentation of the Jacobian to
combine the mobility and manipulation will also be generated in this chapter along with
the optimization methods used for this application. Chapter 6 will show the different user
interfaces used for this application and some clinical studies conducted with human
subjects. Chapter 7 will show the application of combined manipulation and mobility
control using simulation, and the results of the simulation will be shown and discussed in
chapter 8. Testbed design for experimental application of the control theory on physical
WMRA system will be described in chapter 9 along with the experimental results.
Chapter 10 concludes the dissertation with summary and discussion with
recommendations, and chapter 11 will discuss future work that can be conducted on the

WMRA system.

www.manaraa.com

Chapter 2:

Background

2.1. History of Rehabilitation Robotics

The development of robots started in the 1960’s with manipulators which were
used for manufacturing purposes [3]. Planetary rovers and vision embedded systems took
the attention of researchers in the early 1970’s and were developed along side with the
industrial manipulators. Starting in the past decade, researchers have focused on artificial
intelligence in robotics in order to widen the use of robots and make them more
intelligent in their applications. One such use is in the area of rehabilitation, where people
with disabilities can take control of some of their daily needs without the need for human
assistance. A key problem in robotic arms that are mounted on a mobile platform is the
combination of the manipulation and mobility of these systems while they move in space,
especially when redundancy is introduced. There have been various attempts over the
years to create robotic assistants for individuals with various levels of disabilities. For
over 30 years, research has progressed in this field with only partial commercial success.

One of the first attempts at rehabilitation robotics included the Rancho “Golden”
arm [4] designed in 1969 at Rancho Los Amigos Hospital in Downy, California. The arm
was an electrically-driven 6 Degree Of Freedom (DOF) robotic arm which mounted to a

powered wheelchair and was controlled at the joint level by an array of tongue-operated

www.manaraa.com

switches. Discussions on the topic of the controllability of the arm commented on both
successes and failures of the design. The successes of the project can be attributed to the
important role that proprioceptive feedback plays in the control of a persons own
extremities [5]. These pioneering research projects provided a framework for future

development.

2.2. Rehabilitation Robotics Classification

Assistive robotics can be grouped into one of five categories: Workstation robots
which operate in stationary and well-structured environments, wheelchair-mounted
robotic arms which operate on power wheelchairs to assist in activities of daily living,
mobile assistive robots which travel about the room and have a manipulator arm,
therapeutical robots which are used for different kinds of therapy, and smart wheelchairs

and walkers.

2.2.1. Workstation Robotic Arms

The very first rehabilitation robotics applications focused on using commercially-
available industrial manipulators and modifying them for rehabilitation applications. An
example of these manipulators is the PUMA 250 shown in figure 2.1. A factor which
limits the use of industrial robotic arms in rehabilitation is the basic difference in
operational requirements. Industrial arms are designed to work at high speed in an
environment where there are no humans. This reason alone would limit their use for

reasons of safety of the operator. For applications in a human-intensive workspace,

www.manaraa.com

assistive robotic arms need to be mechanically limited to low velocities and accelerations

for the safety of the operator and the human subjects around these devices.

Figure 2.1: Puma 250 Arm.

The Robotic Aid Project [6] was an attempt to create a system for users with
quadriplegia. The project was an integration of a PUMA 250 industrial manipulator arm,
microprocessor, multi-line monochrome display and speech synthesis and recognition
systems. Limitations with the speech-recognition systems and computational power of
the day restricted the success of the program. The processing ability of the contemporary
computers did not allow for real-time inverse kinematics of the arm. This limited the arm
to merely replaying preprogrammed actions. Individual joints of the arm could be
manipulated but coordinated real-time multi-joint maneuvers were impossible.

As more application-specific robotic arms and computers with increased
computational power became available, arms with controllers could now be mounted
onto mobile platforms. At first these systems were simply rolling bases which then

increased in complexity and degrees of freedom to include powered mobile robots.

www.manaraa.com

Handy-1 [7] is a robotic arm mounted to a non-powered wheeled base to assist in
very specific activities of daily living (ADL). Handy-1 was developed in 1988 to provide
persons with severe disabilities assistance at mealtimes. Since its initial introduction the
unit has expanded capabilities and is now capable of providing assistance in a broader
number of activities of daily living (ADL). Handy-1 is capable of assisting individuals
with personal hygiene, eating and drinking, and the application of make-up. During user
trials, women specifically asked if the unit would be capable of applying cosmetic
products. Shortly after the trial, the design was upgraded with a new tray and gripper
accessory. Each ADL task has a specific tray to accomplish its goal. Handy-1 is shown in

figure 2.2 and is based on a 5 DOF lightly modified industrial manipulator.

e

<l =T I -ﬁl’_
..-:'-'3 o -'

Figure 2.20: Handy-1.

In the feeding mode the operator controls the robot through an interface that uses
lights which move across the available food trays, and a button that selects the item
desired. Once the button is pressed, the robot scoops up the selected food and brings it to
a predetermined place near the operator’s mouth. Once the user has consumed the food,
the operator presses the button again and the robot returns to the food selection mode.

This process is repeated until the operator is finished. An advancement of the technology

9

www.manaraa.com

of Handy-1 is being explored with the Robotic Aid to Independent Living [8] (RAIL)
project. RAIL improves upon the Handy-1 design by incorporating a new controller for
better manipulator control, a 3D simulation tool for modeling virtual scenarios and
attachment of sensors to assist set up and position error determination.

The RAID workstation [9] shown in figure 2.3 was designed to be a workstation
assistive robot system. It is comprised of a 6 DOF robotic arm mounted onto a linear
track in a well-controlled environment. In the figure the manipulator can be seen near the

top of the shelf in the center of the cabinet.

=

P 1

IS ,ﬁ=nﬂib.gt I—II

=l
%\

Figure 2.3: RAID Workstation.

The RAID system provides benefits that are enhanced by the formal structure
provided by a workstation environment. This organization allows the manipulator arm to
repeatedly move and acquire items needed by the operator using preprogrammed
functions and routines. At this time the RAID system is currently under evaluation in
Europe.

The Robotic Assistive Device [10], shown in figure 2.4, is a robotic arm
developed by the Neil Squire Foundation in Vancouver, Canada. The RAD is a 6 DOF

workspace mountable manipulator that uses a serial port computer interface. The

10

www.manaraa.com

manipulator is controlled through a graphical user interface (GUI) utilizing icons to
symbolize predefined tasks. The system consist of several modules which when
combined create an arm with a cylindrical reach of approximately 55” and a height of
110”. The arm can be mounted on various surfaces and has good repeatability at 0.12”
and relatively large payload capacity of 9.5 Ibs. Most rehabilitation specific manipulators

have maximum payloads of 5 pounds or less.

Figure 2.4: Robot Assistive Device.

The ProVAR [11] shown in figure 2.5 is a system based on a Puma 260 robotic

arm designed to operate in a vocational environment.

power =
amps controller " s == |gcu

for [for robot robot interface =2
robot computer

stop |
switch
Internet

Figure 2.5: ProVAR System.
11

trackball keyboard

www.manaraa.com

The ProVAR system uses a web-based virtual environment to model the
functionality of the manipulator. In this way the operator can examine potential arm
movements for a given task, and if the simulation is successful, the action can be
initiated. In this way, the actions of the arm and its interactions within its workspace can
be seen before any action is taken. The primary goals for ProVAR are more functionality
per dollar, easier operator control, and higher system reliability compared with the

previous generation of vocational assistive robots.

2.2.2. Wheelchair-Mounted Robotic Arms

Wheelchair mounted robotic arms (WMRASs) combine the idea of a workstation
and a mobile robot, which mounts a manipulator arm onto a power wheelchair. In the
past, industrial manipulators have been too large and heavy to be mounted onto a power
wheelchair. An industrial manipulator mounted onto the wheelchair would have
excessively hindered the operator’s ability to maneuver the chair through doors and
hallways. Several design considerations must be met before deciding on where, on a
power wheelchair, to mount a robotic arm. The foremost design consideration is the
safety of the operator [12]. The mount must be sturdy and rigid and not compromise the
structural integrity or the functionality of the chair in any way. Next the robotic arm
must be mounted in such a way that it has a minimum footprint outside the footprint of
the chair itself. There are several possible mounting locations for a WMRA [13]. The

mount may be in the front, side or rear of the wheelchair.

12

www.manaraa.com

Helping Hand system [14] is a SDOF robotic arm that can be mounted to the side
of a power wheelchair. The Helping Hand operates by joint control and is manipulated by
using switches to control individual joints.

The Weston robotic arm [15], shown in figure 2.6, utilizes a vertical actuator
mounted to a wheelchair with the main rotary joints (shoulder, elbow, and wrist)
constrained to move in the horizontal plane. This is the continuation of the trolley
mounted Wessex robot arm research. A prismatic joint moves in a linear sliding motion

along a track.

Figure 2.6: Weston Arm.

Another arm WMRA is the Asimov [16], which is a modular manipulator
designed with the motors and controls distributed throughout the arm. A computer
rendering of the Asimov is shown in figure 2.7. The modularity of the design allows for
multiple mounting locations on a wheelchair or stationary application with various
workspace geometries. The concept of a modular manipulator has several benefits. This
provides the opportunity for one manipulator that can be used in either a mobile or

13

www.manharaa.com

workstation environment. Different link geometries can be explored to create the
optimum design for any given application. Asimov models have been shown with all
three possible mounting positions: front, side and rear. Without physical models to test
the efficacy of the design, it is unknown how well the design would integrate into real-

world applications.

Figure 2.7: Asimov Arm.

The FRIEND [17] robotic system is a Manus arm mounted onto a wheelchair and
integrated with stereo vision, dedicated computer control, and specialized software.
Besides programming with a keypad or joystick, the FRIEND system, shown in figure
2.8, is capable of being programmed via a haptic interface glove. The haptic glove allows
the operator / programmer to feel what the robot feels through feedback to the user. A
Haptic glove is put on and the action, such as pouring a glass, is completed and stored
into the computer for future use. The action can then be replayed at a later time as a pre-
defined user function. The operator may also control the arm through verbal commands

using an integrated voice recognition system.

14

www.manharaa.com

Figure 2.8: FRIEND Robotic System.

2.2.3. Mobile / Assistant Robots

Mobile systems are capable of assisting individuals with disabilities. These
systems include a mobile base, various sensors and a manipulator arm. An early version
of one such system is the Mobile Vocational Assistant Robot (MoVAR) [18]. This
system, shown in figure 2.9, utilizes an omni-directional mobile platform mounting a
PUMA-250 robotic arm as well as several sensors including a remote viewing camera,
force and gripper proximity sensors.

MoVAID [18] is an advanced version of the MoVAR system, designed
specifically for home use. MoVAID improves upon the previous model by applying the
lessons learned in laboratory testing to assist in common tasks around the home such as
cleaning and food preparation. MoVAID incorporates a variety of sensing devices both
mounted to the manipulator and the base. In figure 2.10, MoVAID can be seen along with

the various sensors that are located on the manipulator arm. Sensors mounted to the first

15

www.manharaa.com

link of the arm include a pair of cameras used for stereo vision and a laser localization

system used in task execution.

Figure 2.9: MoVAR.

The MoVAID system uses active beacons positioned within the room that provide
reference data to determine its location and orientation. In addition to position detection,

the unit also has ultrasonic range detectors and an active bumper that disables the device

should an impact occur.

Figure 2.10: MoVAID.

16

www.manharaa.com

The robotic arm used by MoVAID has 8 DOF and a three-fingered gripper with
two degrees of freedom. The gripper was originally designed as a prosthetic device
specifically to have excellent dexterity. The increased agility provided by the gripper
over more traditional end-effectors allows MoVAID to be very effective in the
unstructured home environment.

Another design is the TAURO [19] that is an integrated robotic system using off-
the-shelf components such as a power wheelchair, Manus manipulator, ultrasonic
sensors, camera and computers. TAURO is a mobile service robot being developed for
inspection, stocktaking and documentation tasks in indoor environments. The TAURO
system integrates the movement of the wheelchair and the operation of the manipulator.
In this way if the goal is out of reach of the manipulator, the wheelchair will move on a
path toward the goal until the manipulator can reach its goal. This coordinated control is a
significant advance in the use of WMRAs. Although not specifically designed for
rehabilitation robotics tasks, it would be readily adaptable to the task. The TAURO

system can be seen in figure 2.11.

Figure 2.11: TAURO Robotic System.

17

www.manharaa.com

2.2.4. Robots in Therapy

Assistive robotics can enhance the capability of people with disabilities by
assisting them to do different activities of daily living. On the other hand, therapeutical
robots can exercise the user’s muscles to keep it alive or to increase its ability to function
with time. One of these systems is the MIT Manus [20] shown in figure 2.12, which uses
impedance control to move, guide or perturb the hand motion of the user in training. It

records the position, velocity and applied forces during therapy sessions for analysis.

Figure 2.12: MIT Manus System.

Another therapeutical robot is the mouth-opening and closing devices conducted
by Takanobu et al in 2001 [21] that is used in training as shown if figure 2.13. This
robotic device uses 6 linear actuators to manipulate the U-shaped end effector. Each joint

carries displacement and velocity sensors for feedback.

18

www.manharaa.com

Figure 2.13: Mouth Opening and Closing Device.

2.2.5. Smart Wheelchairs / Walkers

The iBOT and Segway mobility systems [22] are unique gyro-balanced mobility
devices that have been designed to operate on four wheels or two wheels, stabilizing the
user by automatically adjusting and balancing. The iBOT offers five operating functions:
a remote function that allows the user to detach the joystick, and via cable wire
connection, drive the empty iBOT into the back of a vehicle for easy transporting. The
stair climbing function allows the user to climb up and down stairs with or without
assistance. The wheel function that allows it to climb curbs as high as 4 inches and travel
over grass, gravel, sand and other forms of uneven terrain. The standard function is
similar to standard power chairs. The balance function allows the user to reach high

places independently in a similar manner to the Segway. Figure 2.14 shows both the

iBOT and the Segway.

19

www.manharaa.com

Figure 2.14: iBOT (Left) and Segway (Right) Devices.

2.3. Commercial Wheelchair-Mounted Robotic Arms
Currently there are two production wheelchair mounted robotic arms (WMRAS):
the Manus, manufactured by Exact Dynamics, and the Raptor, manufactured by Applied

Resources.

2.3.1. The Manus

The Manus manipulator [23] arm (or as recently been called ARM for Assistive
Robotic Manipulator) is a fully deterministic manipulator. A fully deterministic arm can
be programmed in a manner comparable to industrial robotic manipulators. The Manus
has been under development since the mid 1980’s and entered into production in the early

1990’s. A picture of the Manus mounted onto a Permobil Max90 wheelchair is shown in

figure 2.15.

20

www.manharaa.com

Figure 2.15: Manus Arm.

This arm utilizes a front mounting location to the left of the operator’s left knee,
which allows for good manipulation of objects that are above the plane of the wheelchair
seat, and most importantly the operator’s face and lap. Manus carries 6 revolute joints
with encoders, a 1-DoF gripper and a vertical lift. The Manus manipulator is controlled
by a joystick and a keypad, and can perform a single-joint control or coordinated control

of multiple joints.

2.3.2. The Raptor

Another production WMRA is the Raptor [24], which mounts the robotic arm to
the right side of the wheelchair. This manipulator carries 4 revolute joints plus a planar
gripper and can be seen mounted to a power wheelchair in figure 2.16. The arm is
directly controlled by the user by either a joystick or 10-button controller. Because the
Raptor does not have encoders to provide feedback to the controller, the manipulator
cannot be pre-programmed in the fashion of industrial robots, and can not have Cartesian

control.
21

www.manaraa.com

Figure 2.16: Raptor Arm.

The Raptor is a side-mounted arm that is partially hidden underneath the chair.
When the arm is not in use, the Raptor arm can be stowed relatively inconspicuously.
Robotic arms with joint control require higher levels of concentration and eye-hand

coordination from the operator than Cartesian control systems.

2.4. Robot Control
The controller design of the robotic device is as important as the design of the
robotic device itself. Many researchers have explored different ways of controlling the

robotic devices both in simulation and in physical systems.

2.4.1. Redundant Robot Control
When controlling a robotic device, it is essential to compare the work space

capability of the robot and the task space required in operation. In general, a minimum of

22

www.manaraa.com

6 degrees-of-freedom are required in a robot in order to accomplish a total manipulation
control of objects in the workspace. In the case of planar workspace, a minimum of 3
joints are required in a robot to achieve full manipulation of that workspace. When the
number of joints exceeds the number of controlled coordinates in the workspace,
redundancy is introduced, and the conventional inverse kinematics for a close-form
solution is no longer applicable. Redundancy resolution and optimization have been the
subject of many researchers, where the use of the extra joints is employed to execute
additional tasks and optimize the motion based on certain performance criteria.

Chang [25] has proposed a closed-form solution formula for inverse kinematics of
redundant manipulators using Lagrange multiplier. He proposed an additional set of
equations to resolve the redundancy at the inverse kinematic level in such a way that a
given criteria function may be minimized or maximized. The additional equations were
set in a similar way to the homogeneous solution term of the resolved rate method which
uses the null space to resolve the redundancy. He used the manipulability index as the
criteria function, but any criteria function can be used as long as the function can be
reduced to an expression in terms of joint variables only.

Khadem et al [26] used a global optimization scheme to avoid round obstacles
using the resolved rate method. Their simulation of a three-revolute-joint planar robotic
arm has shown good performance in following a path while the specified robot link was
avoiding a specified obstacle throughout the simulation. Figure 2.17 shows the simulation

mechanism with and without the obstacle avoidance optimization criteria.

23

www.manaraa.com

T T T 17 111 trr1

T T T T 71 11 171TT

| SN W N SN SN U N IS U N S U N | [N TN N SN WU SN S U U N SN N S T —

Figure 2.17: Redundancy Resolution without (Left) and with (Right) Obstacle Avoidance.

Chan et al [27] have proposed a new method to resolve the redundancy and
optimize for joint limit avoidance. They used a symmetric positive definite weight matrix
that carries different weights for each individual joint of the redundant robot to be
included in the least-norm solution they were using to control the 7-DoF robotic arm. The
weighted-least norm solution was implemented, and showed a good combination between
reaching the goal with the specified trajectory accurately and avoiding the joint limits of
the robotic arm. McGhee et al [28] used the weight matrix to avoid joint limits,
singularities, and obstacles using the probability-based weighting of the performance
criteria.

Beiner et al [29] have improved the velocity norms and the kinetic energy of their
planar 3-DoF robotic crane with hydraulic actuators by using an improved Pseudo inverse
solution control scheme. They used the initial manipulator configuration as an
optimization parameter, and were able to reduce the actuator velocities obtained by a
pseudoinverse solution and simultaneously avoid the actuators limits.

Zergeroglu et al [30] have designed a model-based nonlinear controller that was

able to achieve exponential link position and subtask tracking. Their control strategy used

24

www.manaraa.com

the pseudoinverse of the manipulator Jacobian and did not require the computation of the
positional inverse kinematics. Their control strategy did not place any restriction on the
self-motion of the manipulator, and hence, the extra DoF were available for their
manipulability maximization, obstacle avoidance, and joint limits subtasks.

Kwon et al [31] have introduced a new method to optimize and resolve
redundancy considering joint-limit constraint functions. Their Dual QCQP method used
the quadratic inequality constraints to approximate linear inequality constraints which
represent joint position, velocity and torque bounds. Using their method, they were able
to reduce the size of the problem by reducing the number of constraints and variables.
They formulated the quadratic objective function and then converted the problem into
two problems by eliminating linear equality constraints and by applying the duality
theory. This method was used in their simulation of a 4-joint planar robotic arm, and they
were able to cut the computation time to about a tenth of that when the problem was not
reduced.

Ellekilde et al [32] have introduced a new scheme for controlling robots in visual
servoing applications. They employed quadratic optimization techniques to solve the
inverse kinematics problem and explicitly handle both joint position, velocity and
acceleration limits by incorporating these as constraints in the optimization process.
Contrary to other techniques that use the redundant degrees of freedom to avoid joint
limits, in their method, they incorporated the dynamic properties of the manipulator
directly into the control system to use redundancy to avoid joint velocity and acceleration
limits. They used the joint position limits, velocity limits and acceleration limits by

converting them into the velocity domain and choosing the best case of these limits (that

25

www.manaraa.com

satisfies all of them) at every time step to be used for the optimization function. Figure
2.18 shows the application of their method in the example of the RoboCatcher visual
servoing application using the QP controller. The robot was trying to track the car which
moves in a circle in the playing area. The QP control system was robust with respect to

singularities which enables the robot to track the car as “good as possible” even if it is out

-

Figure 2.18: The Robot Visual Servoing Application Using the QP Controller.

of reach.

2.4.2. Mobile Robot Control

In the past decade, mobile manipulators that combine the manipulation of a
manipulator and the mobility of a mobile platform have been paid much attention by
many researchers. Most of the works for the mobile manipulators have reported on the

coordination of the mobile platform and the manipulator and the obstacle avoidance in

26

www.manharaa.com

their environments. Recently, the importance of human-robot coexistent systems which
perform cooperative works with humans and provide convenience such as house cleaning
and washing has been raised.

Perrier et al [33] have proposed a method to determine a feasible path between
two fixed configurations for a mobile manipulator whose vehicle is non-holonomic. For
this purpose, they wrote the global displacement of the system in a symbolic way, using
two representation tools: homogeneous matrices and dual quaternions. The corresponding
joint parameters are computed to make the desired displacement coincide with the
computed symbolic displacement. Figure 2.19 shows the frames of reference used in their

robotic simulation.

‘ I M,

Desired

Me End-Effector
End-Effector Reference Frame
Relerence Frame
N

S
4

Mb + é'—‘
Arm Base
L Reference Frame
F M

Waeld Wehicle
Refercnce Frame Reference Frams

Figure 2.19: Reference Frames Used for the Manipulation LIRMM.

The simulation results about motion generation of a mobile manipulator with a
non-holonomic vehicle and a six Degree-of-Freedom (DoF) arm using a global method
was shown. They represented the non-holonomy of the vehicle as a constrained
displacement. The method tries to make the global feasible displacement of the system
correspond to the desired one. Two kinds of displacement representations were used:
homogeneous matrices and dual quaternions. Trajectories obtained with the two
representations were given. Both representations allowed them to compute feasible

trajectories, although different.
27

www.manaraa.com

At Chuo University in Japan [34], researchers have proposed a simple method for
carrying a large object by cooperation of multiple mobile manipulators with position
controllers. Manipulators on mobile platforms are used as free joint mechanisms by
locking some joints and making the rest of the joints free. These free joints play the role
of mechanical compliance in order to avoid excessive inner forces due to the mutual
positioning errors. They found that compliance is needed for cooperation among position-
controlled robots, and three feedback control laws for platforms moving on uneven
ground are studied and they looked at their control performance. As shown in figure 2.20,
they proposed the control laws to be used for a prototype cooperative system consisting

of three moving tables driven by ball screws.

joint mechanism C
free joint inclinometer

computer (tilting angle) Robot 1
PC9821XVI3 (joint angle) {moving table)

AD converter

DA converter

counter

(table pos.) Robot 3

Figure 2.20: Cooperative Control System Setup.

When multiple robots hold single object at the same time, geometrical constraints
by closed loop structures are imposed on each robot. Thus compliance is needed for each
robot to avoid excessive inner forces caused by the mutual positioning errors.

Huang et al [35] have developed a small-sized platform as shown in figure 2.21.
The problem they faced is the fact that for a small scale platforms, the mobile

manipulator may fall down when moving at high speed or executing tasks in the presence

28

www.manaraa.com

of disturbances. Therefore, it is necessary to consider both stabilization and manipulation
simultaneously while coordinating vehicle motion and manipulator motion. They propose
a method for coordinating vehicle motion planning considering manipulator task
constraints, and manipulator motion planning considering platform stability. Specifically,
first, the optimal problem of vehicle motion is formulated, considering vehicle dynamics,

manipulator workspace and system stability.

S
(X5 ¥ 5020)

lo mi (xz:)'z-zz)

7'
m Y!

L) |H2
X' X Y52y [v

-, Y

X

1 @ X-axis rotation
£ Y-axis rotation
e Z-axis rotation

Figure 2.21: Mobile Manipulator Model.

They derived the manipulator motion considering stability compensation and
manipulator configuration. Then, simulation is conducted to demonstrate effectiveness of
their method. These researchers tried to derive coordinated motion so that the mobile
manipulator can move stably and follow a given desired end-point trajectory (path,
velocity) at an optimal configuration. They derived the redundant manipulator motion,
considering stability compensation and manipulator configuration, and provided

simulation results. When considering the compatibility of stabilization and manipulation,
29

www.manaraa.com

it is first necessary to maintain system stability. Then, based on the assurance of system
stability, the mobile manipulator should execute tasks with an optimal configuration.

The researchers in Noval Postgraduate School, and Tokai University [36] have
presented a unified approach to the task space analysis of a wheeled mobile manipulator
interacting with the environment as shown in figure 2.22. The system considered is a
double- articulated manipulators atop a wheeled mobile platform handling a common

object.

Figure 2.22: Wheeled Mobile Manipulator with Two Arms.

They derived the task space ellipsoid, both kinematic and dynamic, for a wheeled
mobile manipulator which takes into account manipulation and locomotion. The ellipsoid
is able to visualize how the manipulator and the platform can contribute to a task
execution by integrating the mobility of the platform with the manipulability of the arms

as one unified measure. This measure can be useful not only for the task space analysis of

30

www.manaraa.com

a single mobile manipulator, but also for the coordination of multiple-arms mobile robots
or mobile manipulators.

Separating manipulation from mobility makes control and planning problems
easier, but it will be much more effective and efficient if the manipulator can execute a
given task while the platform is moving. These researchers have proposed a coordination
algorithm of mobile manipulators which utilizes manipulability measure of the arm. They
treated both locomotion and manipulation in the same framework from the view-point of
task space. Contribution of the manipulator and platform is represented by the task space
ellipsoid at the end effecter point or at the center of the object to be handled. The
ellipsoid not only displays how a given task is contributed by the arm and the platform,
but also the shape of the ellipsoid, kinematic or dynamic, naturally reflects constraint
equations to which the platform is subjected. They also derived the motion equations of
the two-arm mobile manipulator and the object separately. Motion equations of the
mobile manipulator which itself consists of multiple subsystems are obtained by adding
dynamic interaction terms to pre-existing motion equations to get the global equations of
motion for the whole system.

Royal Institute of Technology researchers [37] have proposed a platform-
independent control approach for mobile manipulation and coordinated trajectory
following. Given a path for the gripper to follow, another path is planned for the base in
such a way that it is feasible with respect to manipulability. The base and the end-effector
then follow their respective reference trajectories according to error-feedback control
algorithms, while the base is placed in such a way that the end-effector trajectory always

is within reach for the manipulator. The experimental platform that they have used for

31

www.manaraa.com

this is a Nomadic XR4000 base platform together with a Puma560 manipulator arm, as

shown in figure 2.23.

Figure 2.23: Nomad XR4000 with the Puma560 Mounted on Top.

Given a path for the gripper to follow, the idea is to plan another path for the base,
online, in such a way that the end-effector trajectory always lies in the dextrous
workspace. These two paths are then tracked using a virtual vehicle approach, where the
motions of the reference points on the desired base and gripper paths are governed by
their own dynamics, containing both position error feedback as well as coordination
terms.

Researchers in Kyushu University [38] have studied the planning method of a
trajectory of a mobile manipulator such as shown in figure 2.24. They derived the
dynamics of the mobile manipulator considering it as the combined system of the
manipulator and the mobile platform. The planning problem is formulated as an optimal
control problem. To solve the problem, they used the concept of the order of priority. A
gradient-based iterative algorithm which synthesizes the gradient function in a
hierarchical manner based on the order of priority is used. The simulation results of the 2-
link planar non-holonomic mobile manipulator are given to show the effectiveness of

their algorithm. A mobile manipulator composed of a manipulator and a mobile platform
32

www.manaraa.com

has a much larger workspace than a fixed-base manipulator due to the mobility provided
by the platform. The trajectory planning problem of the non-holonomic mobile

manipulator dynamics has been taken into consideration.

Figure 2.24: Mobile Manipulator.

Researchers in LAAS-CNRS in France [39] have extended the standard definition
of manipulability to the case of a nonholonomic mobile manipulator built from an n joint
robotic arm and a nonholonomic mobile platform as shown in figure 2.25. The effects of
mounting the arm on a nonholonomic platform are shown through the analysis of the

manipulability.

Figure 2.25: Mobile Manipulator H2BIS.

33

www.manaraa.com

Applications of criteria inherited from manipulability considerations are given to
justify design and to generate the controls of their system. Their study was motivated by
the generation of the mobile manipulator velocities to execute a given operational path.
The inversion of the direct instantaneous kinematic model of the mobile manipulator
allowed them to solve the problem and to take into account some additional criteria. As a
usual criterion, they considered the manipulability measure, which is very useful to
characterize the instantaneous kinematics of a given system. These researchers showed
how the notion of manipulability can be extended in that case to represent the possible
operational motions in a given configuration of the system. Some simulations gave an
idea of the effects of the platform on the shape of manipulability ellipsoids, with an
obvious dependence on nonholonomy.

Those same researchers [40] have also proposed a generic scheme to solve the
kinematic control problem of wheeled mobile manipulators when the operational motion
is imposed. They generalized the Additional Task Method to solve the control problem of
these redundant nonholonomic systems. They integrated any number of additional user-
defined constraints to the operational task and proposed a generic approach to control a
large class of mobile manipulators as well as other methods to express the additional
tasks corresponding to real experimental constraints. Thus the control designer can use
purposely redundancy, particularly to avoid obstacles. They illustrated the Additional
Task Method by a collision free simulation. This simulation is done in a 3D environment
and uses an efficient collision detector. Figure 2.26 represents the mobile manipulator of

LAAS.

34

www.manaraa.com

(a) collision (b) collision avoidance

Figure 2.26: LAAS Mobile Manipulator.

Figure 2.26 (a) represents the collision in motion of the mobile manipulator
without taking into account the additional collision avoidance constraint. Figure 2.26 (b)
shows the achievement of the motion with the use of the proposed method.

Researchers at Okayama University [41] have conducted research to realize the
motion planning for an intelligent mobile manipulator shown in figure 2.27. To plan a
mobile manipulator’s motion, it is popular that the base robot motion is regarded as
manipulator’s extra joints, and the whole system is considered as a redundant
manipulator. In this case, the locomotion controller is a part of the manipulator controller.
However it is difficult to implement both controllers as one controller in the
implementation because of the difference of actuators character. In this research they
have focused on a path planning algorithm for a mobile base with keeping manipulability
at the tip of the mounted manipulator. In this case, the locomotion controller is
independent from the manipulator controller and a cooperative motion is realized by the

communication between both controllers.

35

www.manaraa.com

Figure 2.27: Mobile Manipulator.

One of their general approaches is to consider the locomotion as extra joints of the
manipulator. Manipulability was defined as a valuation of difficulty of manipulator’s
operation. The goal of these researchers is to draw large objects on a wall by a mobile
manipulator based on the above approach. Figure 2.27 shows an overview of the mobile
manipulator considered for their research task. To realize the above task, one of the
biggest problems is that an accumulated error of estimated base robot’s position affects
position accuracy at the end effector. Therefore, the manipulator should have the
capability to adjust its pose when the base robot detects positioning errors. The motion
planning approach is reasonable enough to cope with above conditions because
manipulability is considered. Each pose of the manipulator is calculated by inverse

kinematics at each layer. To verify the result, they have executed the program in the

36

www.manharaa.com

motion simulator. The end effector traces the desired slope segment while the mobile
base moves.

Seraji [42] has simulated the motion control of a mobile 2-link planar manipulator
mounted on a non-holonomic mobile platform. He combined the Jacobian of the mobile
manipulator with that of the robotic arm. To resolve the redundancy, he added two
additional variables to the task space, the platform angle, and the elbow angle between
the forearm and the wrist. Accordingly, he augmented the Jacobian to include these two
variables’ Jacobian in his control equations. This kind of redundancy resolution increases
the need for trajectory planning for these extra task wvariables and makes it
computationally expensive.

Chung et al [43] have approached the control problem of non-holonomic mobile
manipulators in special workspace by decomposing the mobile manipulator into two
subsystems, the mobile platform and the manipulator. According to their redundancy
resolution scheme, the manipulator was commanded to follow the desired trajectory
given in task space and the platform was responsible for positioning the manipulator at a
specified point in the workspace to avoid singular configurations of the manipulator. To
coordinate the two separate motions together, they developed an interaction control
algorithm, as shown in figure 2.28, in which two nonlinear controllers were designed for
the subsystems, based on the redundancy resolution scheme. The interaction controller
consisted of a robust adaptive controller for the manipulator and an input-output
linearizing controller for the mobile platform. Their simulation results demonstrated a

good performance of the interaction controller based on their trajectory-following task.

37

www.manaraa.com

Subsystem 1

+ Mobile
- Controller 1 Platform

Redundancy —
Resolution
Scheme

Subsystem [1

Controller II = Manipulator

— e — — —

Figure 2.28: Interaction Control of the Mobile Manipulator.

Gardner et al [44] and Bayle et al [45] presented a systematic unified kinematic
analysis for manipulator arms mounted on mobile platforms. They extended the
definition of manipulability by scaling joint velocities by their maximum values. To find
the best possible mounting location of the mobile platform, they simulated a mobile
manipulator with differential drive that carries a variable placement of the arm base on
the mobile platform. They were able to illustrate the manipulability measure based on the
manipulator mounting position on the overall mobility of the system.

Xu et al [46] have proposed a new strategy to deal with the mobility and
manipulation combination problem in a mobile manipulator that has redundant DoF. In
their control, they decomposed the position and orientation of the end-effector into two
parts. The position and orientation of the sub-vectors of the manipulator projected on the

global z-axis was defined, then the mobile base and the manipulator were moved along
38

www.manaraa.com

the main direction of the desired path and the sub-vectors on axes x-axis and y-axis in the
world frame. The simulation results showed that the small working ranges of the joints of
the manipulator have seriously limited the application.

Luca et al [47] have tested the extension of conventional redundancy resolution
methods to include non-holonomic mobile platforms at the base of the redundant arm
using an augmented Jacobian. They have used the singularity analysis and redundancy
resolution methods available for standard manipulators to compare the reduced gradient
method and the projected gradient method. Their simulation has shown the superior
optimization performance of the reduced gradient over the projected gradient method.
The desired tasks for the robotic system were executed by the combined motion of all the
configuration variables. Figure 2.29 shows the simulation of their implementation using
the reduced gradient method on a 4-DoF planar system following a circular path while

keeping the end-effector pointing to certain direction.

Figure 2.29: Trajectory Tracking for a Planar 2-DoF Robot on a Differential Mobile Base.
39

www.manaraa.com

Papadopoulos et al [48] have tested their control algorithm on mobile

manipulators mounted on differential-drive platforms as well as car-like platform. Both

system platforms were equipped with a two link manipulator. The differential kinematics

for the two mobile systems were written so as to map platform and end-effector velocities

to the driven wheel velocities, without violation of the non-holonomic constraints. This

allowed specification of trajectories for both the platform and the end-effector and

computation of actuator commands. Orthogonal complements and the Lagrangian

methodology were used to obtain the reduced equations of motion for the differentially-

driven system. Figure 2.30 shows the desired path of the end effector and that of the front

point on the platform along with the actual trajectory-following simulation.

0.5

y (m)

end-effector
desired path

front point
desired
path

05 1 15 2
x (m)

25

0.5

Figure 2.30: Animation of the Motion of the End-Effector and the Platform Front Point.

Based on these equations, a model-based controller was designed to eliminate

tracking errors. The controller was applied successfully to a simple crack-sealing

example, and showed accurate simulation.

www.manaraa.com

Chapter 3:

Control Theory of Redundant Manipulators

3.1. Introduction

Control issues in simple robotic systems can be resolved easily when we try to
control Cartesian coordinates using a robotic system that has the same number of joints as
these coordinates to be controlled. For instance, a robotic arm with two revolute joints
can be used to control the x-axis and y-axis coordinates of the end-effector in a planar
workspace using simple mathematical relations that relate the joint motion to the end-
effectors’ motion. Trying to control a third variable, such as the angle of approach in a
planar workspace will be difficult and some times impossible if we use the same 2-DoF.
This is because the manipulator carries less DoF than the workspace. On the contrary,
when we try to control the two variables mentioned above using a manipulator with three
or more joints, then we will face control problems since the solution to the equations of
motion carries an infinite number of solutions. This is because the manipulator carries
more DoF than the workspace.

In this chapter, we will look at different ways to control a robotic arm that carries
more DoF than the workspace, and we will provide different solution choices that can be

chosen from these infinitely many solutions.

41

www.manaraa.com

3.2. Terminology

When talking about the degrees of freedom (DoF), Craig [49] defines it as the
number of independent position variables which would have to be specified in order to
locate all parts of the mechanism. For example, a 4-bar mechanism has a single DoF even
though there are three moving members of the mechanism. In a typical manipulator, the
number of DoF is the same as the number of joints since it is an open kinematic chain.
Degrees of redundancy, on the other hand, are referred to when the number of joints is
greater than the dimension of the manipulation variable [50].

The end-effector, or sometimes referred to as the “gripper” defined as the free end
of the chain of links that make the manipulator [49]. A work space is referred to as the
space of which the manipulator’s end-effector can reach, or as Craig [49] defines it, it is

the existence or non-existence of a kinematic solution of a given manipulator.

3.3. Redundant Manipulators Problem Formulation

Redundant manipulators can be of any size and shape that use revolute or
prismatic joints among others, but in this chapter, we will limit our research on a seven
DoF redundant robotic arm that has a full six DoF Cartesian workspace. By definition,
this robotic arm has one degree of redundancy. The six controlled Cartesian variables in
this case are the three positions in the x, y and z coordinates, and the three orientations or
angles about the x, y and z axes. To be compatible with the test bed and the simulation
that we will discuss in details in the coming chapters, a complete description of the

manipulator’s physical characteristics will be discussed.

42

www.manaraa.com

3.3.1. Frames of References
The first step in studying the kinematics of any robotic manipulator is to assign
coordinate frames of references according to one of the known conventions and generate
the kinematic parameters based on the selected convention. The most widely used
convention is the standard convention used by Paul [51], but in our case, we will use the
modified convention by Craig [49]. The results will still be the same, but it is only a
matter of preference. Referring to figure 3.1, frames of each link should be attached in the
following manner:
1- Assign the Z; axis pointing along the i joint axis. If that link has no joints,
such as the ground or the end-effector, any direction is permitted.
2- Assign the X; axis pointing along the Z;-Zi;; common perpendicular. If the
axes intersect, then X; can be normal to the plane containing Z;-Zi:; axes.

3- Assign the Y; axis according to the right-hand coordinate system.

Axisi — |

Figure 3.1: Joint-Link Kinematic Parameters.

43

www.manaraa.com

3.3.2. Denavit-Hartenberg Parameters

There are four parameters that fully describe the kinematic relations between
every neighboring joints and links in a manipulator, as shown in figure 3.1. These four
parameters are:

1- Two neighboring joint relations:

a. The link length (parameter a).
b. The link twist angle (parameter o).

2- Two neighboring link relations:

a. The link offset (parameter d).
b. The joint angle (parameter 0).

These kinematic parameters are called the Denavit-Hartenberg parameters, or for
short, D-H parameters. Gathering these parameters for all coordinate frames in a table
allows a better view of the kinematic characteristics of the robotic arm. Assigning the
frames as shown in the above steps will allow us to define the neighboring joint-link
parameters as follows:

1- The value of “a;” is defined as the distance from Z; to Z;;; measured along X;.

2- The value of “a;” is defined as the angle from Z; to Z;;; measured about X;.

3- The value of “d;” is defined as the distance from X;.; to X; measured along Z;.

4- The value of “0;” is defined as the angle from X ; to X; measured about Z;.

The robotic arm at hand consists of seven revolute joints of which the rotation
axes of every two immediate joints intersect. Figure 3.2 shows a Solid Works drawing of

the new robotic manipulator that was designed and built at the University of South

44

www.manaraa.com

Florida from the ground up [52]. For that manipulator, frame assignment for each link is

shown in figure 3.3, and the D-H parameters are pointed out.

Figure 3.2: Solid Works Model of the New 7-DoF Robotic Arm Built at USF.

. A d3 . ds @ .
All X axes out of page wl‘l ‘\aj N:ﬁ
' 24 264
| = = |-
Y4 7
& o = 5 5,6 l
\' 3 r 7w
N2 + H]
[P E
L e 01 zs
"YS | d2

Figure 3.3: Frame Assignments and Dimensions of the New 7-DoF Robotic Arm.

Note that the rotational axes of the last three joints intersect at one point, this
setup gives a mechanical advantage to the wrist both in calculations and in manipulation.
The D-H parameters of the above manipulator are shown in table 3.1. Note that the value
assigned to dg is zero since Xs and X are at the same axis line and the distance between

them is zero. More details on this particular joint design will be discussed in a later

chapter.

o HLEN ZI‘JI_EISI

45

www.manharaa.com

Table 3.1: The D-H Parameters of the New 7-DoF Robotic Arm Built at USF.

; ai-1 ai-1 di 01
(degrees) (mm) (mm) (degrees)
1 -90 0 110 01
2 90 0 146 02
3 -90 0 549 03
4 90 0 130 04
5 -90 0 241 05
6 90 0 0 06
7 -90 0 179 07

3.4. Forward Kinematics Equations

The aim of the forward kinematics is to solve the transformation equations for the

end-effectors’ Cartesian position and orientation or velocities when the joint angles and

velocities are given. Even though this kind of control is not practical if used for task

execution, but it is a step that has to be done before thinking of doing the inverse

kinematic control.

3.4.1. Link Transformation Matrices

Homogeneous transformation matrices that transform the motion from one

coordinate frame reference to the other can be easily obtained from the D-H parameters

using the conventional equations [49] that relate every two consecutive frames to each

other as follows:

46

www.manaraa.com

co. - 50, 0 a,
i s0.-ca,, cb -ca,_, -sa_, —-sa,, -d,
'T = (3.1)
s -sa,, cb -sa,, ca,, ca,,-d,
0 0 0 1

Where “s” is sine, and “c” is cosine of the angle. Applying the above formula to

all seven reference coordinate frames gives the following homogeneous transformations:

[co,
0
—50,
0

T =

co,
0
—50,
0

c0,
0

— 50,
0

[co,
0
—s6,
0

—-50,
0
—c0,

—-s6,
0
—-cb,
0

o o = o o o =~ O o o = O

S o = O

—_ o N o

S o

- O

— o X o

- o XN o

c0,
0

50,
0

)T =

c0,
0

50,
0

cO;
0

50,
0

—-56,
0

0 0
-1 —d,
0o 0 |
0 1

0 0
-1 -d,
0o 0 |
0 1

0 0

-1 0

0 0 , and
0 1

(3.2)

These homogeneous transformations describe the kinematic behavior of the

robotic system at any instance of time. For instance, to find where frame 4 lies based on

frame 3 when joint 4 is at certain angle, substituting that angle in the specified

transformation matrix gives the position and orientation of frame 4 based on frame 3. The

first 3x3 rows and columns of the homogeneous transform describes frame 4’s unit

47

www.manaraa.com

vectors projection on frame 3, and the first three rows of the last column of the
homogeneous transform describes the position of frame 4’s center based on frame 3.
Propagating these matrices from one frame to the other gives us the forward kinematics
of the robotic arm that describes the end-effectors’ frame based on the base frame as
follows:

T =T - -3 -iT -iT - T - 5T (3.3)

From this point on, we will use these transformation matrices as noted above. The
rotation matrices and the frame’s center coordinates extracted from these homogeneous

transformation matrices will also be used as follows:

. IR ip
v {0 6 0 ‘1} (3.4)

Where “R” is the 3x3 rotation matrix representation of the transform, and “P” is

the vector containing the X, Y and Z coordinates of the origin of the frame.

3.4.2. Velocity Propagation and the Jacobian

Forces and velocities acting on the joints are crucial for the control of robotic
manipulators. When a manipulator is controlled by sending a torque value to its joint
motors, precise knowledge of the acting torques and forces on each joint is needed. The
same is true when velocities are used to control the manipulators, each joints’ velocity
need to be determined so that the task can be executed as desired by the operator. Figure
3.4 shows the linear (v) and angular (o) velocity vectors acting on neighboring links.
These velocities are related together by the physical dimensions of the link that holds

these two neighboring joints, and these dimensions are the same ones we obtained in the

48

www.manaraa.com

previous sub-heading in the form of homogeneous transformation. The angular velocity

of link “i+1” with respect to frame “i+1” can be defined as:
"o =""R'w +6, "7, (3.5
Where “@” is the joint angular velocity, and “Z” is the projection of the Z-axis on
its own frame of reference. This Z is usually [0, 0, 1]". Similarly, the linear velocity of
the origin of frame “i+1” with respect to frame “i+1” can be defined as:
My ="IR(v,+ @, x'P,) (3.6)
Propagating these velocities throughout the joints will result in a full description

of all velocities acting on every joint at any moment of time when the joint angles are

provided.

i+1
vi+1

N>

i+

(1) 4

Figure 3.4: Velocity Vectors of Neighboring Links.

49

www.manaraa.com

The same way we found the velocities at each joint, we can derive these relations

in general using the Jacobian. The end-effectors’

Cartesian coordinates are direct

functions of the joint angles along the manipulator as follows:

X=F(@.,0,,0,,0,,0,,6,.,0,)

(3.7

Where X is the 6x1 vector contains the 3 position and 3 orientation dimensions of

the end-effector with respect to the base frame. To convert the dimentions into velocities,

we can partial differentiate each of the Cartesian variables with respect to each of the

joint angles. That gives:

ox = o —— 00, + o 00, +--+ 9 00,
00, 00, 00,
5y—af256? afz ——=00, +---+ o> 09,
00, 00,
x = 8f3 00, + s 00, +---+ s o9,
006, 00, 00,
5 5 5 (3.8)
sa=Jis9 1 Pis9 Vi
06, 00, 5
op = ds ——-06, + s ——=080, +---+ s o0,
00, 00, 00,
oy = U §0+af" 00, +---+ U 00,
06, 00, 00,
Or these can be re-written as:
é?(—a—Fé'H (3.9
00

Note that we only have six equations, which are the Cartesian positions and

orientations, and seven unknowns, which are the seven joint angles. This gives us an

over-defined system, and we will talk about this in more details later in the chapter.

Dividing both sides of (3.9) by the time increment (dt) gives the velocities as:

50

www.manaraa.com

X O _ v Ty~ vy (3.10)
& 00 o 00

Where “J(0)” is the Jacobian matrix that relates the joint angular velocities to the
end-effectors’ Cartesian velocities based on the base frame. At any time step, knowing
the joint velocities and joint angles allows us to translate directly to the end-effector’s
Cartesian velocities using the Jacobian. This Jacobian can also be used to relate the acting

forces and moments at each joint to the end-effectors’ acting forces and moments.

3.5. Inverse Kinematic Equations

The aim of the inverse kinematics is to solve the transformation equations for the
joint angles or velocities when the end-effectors’ Cartesian position and orientation or
velocities are given. Most industrial robotic manipulators implement this kind of control
for its practical use. In order to read the joint angles while the robot is running and supply
it to the controller, encoders are necessary to be mounted at each joint for joint feedback.
The solution of such equations can vary from a close-form solution to different numerical
solutions depending on the size of the joint domain as compared to the size of the task

domain.

3.5.1. Closed Form Solutions

A close form solution is an exact solution to the set of equations that relates the
joint rates to the Cartesian velocities. This is possible when the number of joints in the
manipulator is equal to the number of Cartesian variables to be controlled in the task
space. In that case, the transformation matrix in the left-hand side of (3.3) is given, and

we need to find the joint angles included in the right-hand side of that equation. This can
51

www.manaraa.com

be done easily for simple robotic systems. For instance, it can be easy to find the joint
angles of a two-link planar robotic manipulator when the X and Y coordinates of the tip
of the arm are given by solving the two equations for the two unknowns. Doing so for
more complex manipulator can result in very lengthy equations that will require extensive
calculations and can be time consuming, which might be costly in terms of real-time
control.

Another way of finding a close-form solution is by using the Jacobian given in
equation (3.10). Inverting the Jacobian when it exists can directly give the joint rates if
the Cartesian velocities and the current joint angles are given as follows:

0=J"(OW (3.11)

A solution does not exist when the Jacobian is not at full rank, or when
redundancy is introduced since the Jacobian in that case will not be a square matrix.
When the number of joints exceeds the number of controlled coordinates in the
workspace, the conventional inverse kinematics for a close-form solution is no longer
applicable. Redundancy resolution and optimization schemes have been the subject of
many researchers, where the use of the extra joints is employed to serve additional task
executions and optimize the motion based on certain criterion.

Some researchers have altered these equations by adding more constraints based
on certain criterion so that the number of equations matches the number of joint variables
as Chang [25] did. He proposed a closed-form solution formula for inverse kinematics of
redundant manipulators using Lagrange multiplier by proposing an additional set of
equations to resolve the redundancy at the inverse kinematic level in such a way that a

given criterion function may be minimized or maximized. The additional equations were

52

www.manaraa.com

set in a similar way to the homogeneous solution term of the resolved rate method which
uses the null space to resolve the redundancy. Although he used the manipulability index
[53] as the criterion function, but any criterion function can be used as long as the

function can be reduced to an expression in terms of joint variables only.

3.5.2. Manipulability Ellipsoid

For a Cartesian coordinate solution of the end-effector to exist, it is important to
stay away from singular configurations of the robotic arm. A good way to ensure that a
singular configuration in not reached is to find the determinant of the Jacobian matrix and
make sure it is as far away from zero as possible. The closer the determinant to zero, the
higher the joint velocities required to produce the desired Cartesian motion.

In the case where the Jacobian is not at full rank due to the fact that the matrix is
not square, a different measure is required to ensure a smooth motion of the arm with no
singularities along the way. Yoshikawa [53] have proposed a method that measures the
manipulability measure for any manipulator with any size Jacobian. Consider the set of
end-effectors’ velocities X that are accomplishable by the set of joint velocities such that

the Euclidean norm satisfies:

6] =ar +42 +a3 +d5+a2+gi+4; < 1 (3.12)
This set is an ellipsoid in the 6-dimentional Euclidean space shown in figure 3.5.
The end-effector can move at high speed along the direction of the major axis of the
ellipsoid, and only at low speed along the minor axis of the ellipsoid. Also, the larger the

ellipsoid is, the faster the end-effector can move. A representative measure of how the

53

www.manaraa.com

manipulator is able to move at a certain configuration is the volume of the ellipsoid at

that particular configuration, and that can be represented by a scalar value as follows:

w=1/det(J(6)-J(6)") (3.13)
Where “w” is the manipulability measure at the configuration specified by the set
of joint angles “0”. This measure represents how far the manipulator is from singularities,
the larger this measure is, the farther away from singularity the manipulator is. When this

measure reaches zero, a manipulator is said to be at a singular configuration.

Figure 3.5: Manipulability Ellipsoid for a 7-DoF Manipulator in a 6-DoF Euclidean Space.

3.5.3. Numerical Solutions

Numerical solutions, such as Gauss’ elimination method, are less computationally
expensive than the inverse solutions of the Jacobian [54]. These solutions can be
implemented using the Jacobian to follow the user’s directional motion commands or to

follow the desired trajectory. In the case of redundancy, the Jacobian is not a square

54

www.manaraa.com

matrix any more, and that makes it un-invertible and not at full rank. Since the Jacobian
is the key relation that relates the Cartesian space and the joint space variables, it is
important to use different methods to invert this kind of non-square matrix. One of the
most used methods in redundant manipulator controls is the Pseudo inverse, which can be
used for numerical solutions as follows:

J=J"J-JN! (3.14}

To use the above equation, it is required that the rank of the jacobian matrix “J” is
equal to the number of rows of that matrix. Redundancy can then be resolved using
Pseudo inverse of the Jacobian to obtain a numerical solution of the joint angle rates

using the following equation:
0=J)V (3.15)
This is one of the numerical solutions adopted in the earlier versions of the control
system of the arm, which minimizes the Euclidean norm of errors as the optimization
criterion. Other numerical solutions and optimization methods will be discussed later in

this chapter and in chapter 5.

3.5.4. Redundancy Resolution

One of the first problems that needs to be taken care of in robotic manipulators is
the singularity problem, which is the case when a solution does not exist at certain parts
of the trajectory due to an odd configuration of the arm. Even with redundant
manipulators, singular configurations may be reached along the process of following
certain pre-specified trajectories. As mentioned earlier, manipulability measure is used as

a factor to measure how far the current configuration is from singularity. In the case when
55

www.manaraa.com

we have a redundant manipulator, achieving the same point in the work space can be
done in an infinitely many configurations of the arm. Choosing one of these
configurations can be done using different optimization criteria to be satisfied in case
multiple solutions exist. When the trajectory is satisfied, and there exists a null space that
can be used to select one of the infinite solutions that satisfy the trajectory, and at the
same time satisfy a chosen criterion function, a valid configuration is selected that is
solved based on both original requirement and the criteria constraints. One of these
criterion functions or restrictions can be the maximization of the manipulability measure
since it is crucial to the task execution.

Optimizing the solution can be achieved by adding an additional term to equation
(3.15) that carries a sub-task to be considered in case more than one solution to the basic
task exists. This secondary task term is added as follows:

O=J"0)V+U,-J (6)-JO) f (3.16)

Where “f” is a 7x1 vector representing the secondary task, “J™ is a 7x6 inversion
of the Jacobian matrix, and I is the identity matrix of size 7. The choice of the criterion
function can range from a scalar quantity, such as the manipulability measure, or can be a

set of functions, such as joint limit avoidance conditions.

3.5.5. Optimization Criteria

As mentioned earlier, optimization can take the form of a scalar or a set of
equations to be considered in the optimization process. When an exact solution does not
exist, equation (3.16) covers all the least square solutions that minimize the Euclidean

norm of errors while maintaining minimum joint velocity norms as follows:

56

www.manaraa.com

Fulfil (minHV —J(O)- 9”) while maintaining (minuéu) (3.17)

At many instances, the main objective function to follow a certain trajectory does
not require the use of all available joints of the manipulator, For instance, rotating the
wrist around the end-effector’s rotation axis requires only the last joint (joint 7) to move.
This leaves all 6 other joints available for optimization, and at that moment, the arm
would have six degrees of redundancy. The null space in this case containing the other
six joints can be used to optimize for more than one criterion. Some of these criteria are:

1- Maximizing the manipulability measure.

2- Minimizing the joint velocities.

3- Minimizing the energy.

4- Avoiding obstacles.

5- Avoiding joint limits.

6- Pointing at certain point while moving along a required trajectory.

Some of the above criteria can be used together in a priority-based level that will
realize the higher priority criterion while the main task is being executed, and then go on
to the lower priority tasks if null space still exists until all joints are being used or all

criteria have been realized.

3.6. Summary

In this chapter, a mathematical model of a 7-DoF redundant robot is described.
The arm consists of seven revolute joints with intersecting axes of rotation between every
two neighboring joints. The problem was formulated by assigning coordinate frames to

each one of the links according the modified convention of frame assignments. The D-H
57

www.manaraa.com

parameters of the system were generated to calculate the relations between every two
consecutive joints and links. The forward kinematic equations were generated, and the
total homogeneous transformation matrix of the robotic arm was created. The velocity
relations between the links were propagated to find the end-effectors’ Cartesian velocity
relations to the joint velocities, and these relations lead to the Jacobian matrix that relates
the work space and the joint space together. Inverse kinematic equations were generated
to find the joint positions or velocities in case the required Cartesian coordinates are
given. Different methods of doing the inverse kinematics were discussed, and the

optimized redundancy resolution scheme used in the control was shown.

58

www.manharaa.com

Chapter 4:

Mobility Control Theory

4.1. Introduction

“Mobile Manipulator” is a widespread term that refers to robots that combine
capabilities of locomotion and manipulation. When these systems are devoted to indoor
tasks, they are often equipped with powered wheels. The arrangement of the wheels and
their actuation device determine the holonomic or non-holonomic nature of this
locomotion system. Some wheeled mobile manipulators built from an omni-directional
platform are holonomic, and many of them are non-holonomic. The tasks assigned to
these systems are often translated in terms of end-effectors’ motion. Although this
concept is well known for robotic arms, it is quite different in the case of non-holonomic
systems [50, 54]. A distinction between the two types of motion is that the holonomic
motion can sufficiently move in any direction of its workspace, whereas the non-
holonomic motion can not move in arbitrary directions of its workspace.

In this chapter, we will deal with the non-holonomic motion, which is the
opposite problem of redundancy discussed in chapter three. Different control methods
will be discussed, and the chosen motion planning strategy will be derived so that the lost

degree-of-freedom can be compensated by using trajectory planning.

59

www.manaraa.com

4.2. Terminology

Holonomic motion refers to the relationship between the controllable and total
number of degrees of freedom of a given platform. If the controllable DoF is greater than
or equal to the total DoF in the workspace, then the platform is said to be holonomic [55].
If the controllable DoF is less than the total DoF in the workspace, then the platform is
said to be non-holonomic [56]. Examples of non-holonomic platforms are cars, power
wheelchairs and other mobile platforms that can, at any given moment, move in two
dimensions out of the three planar dimensions (i.e. motion along the X-axis, Y-axis and
rotation about the Z axis). In contrast, holonomic platforms are platforms that can move
at any moment of time in all three planar dimensions, such as platforms that are equipped
with three power omni-directional wheels.

Three different variables are available for the planar motion of the mobile
platform moving on the ground, two positional variables along the X-axis and Y-axis,
and one rotational variable about the Z-axis. The power wheelchair used in this work is a

non-holonomic wheelchair that can move along the X-axis and rotate about the Z-axis.

4.3. Mobility Problem Formulation

The wheelchair used in this work is an “Action Ranger X Storm Series” power
wheelchair. This wheelchair accomplishes its non-holonomic motion using a differential
drive that carries two independently-driven wheels in the back of the power wheelchair.
The front of the wheelchair has two passive castors that are placed to support the

wheelchair’s motion. This makes the wheelchair a 2-DoF system that moves in plane

60

www.manaraa.com

[48]. A full description of the wheelchair and its important dimensions will be discussed

in this section.

4.3.1. Frame Assignment

Three important points of interest were assigned on and around this wheelchair,
and coordinate frames were assigned on these three points. These three frames are the
wheelchair’s coordinate frame assigned at the center of the driving wheels’ axle, the
ground frame assigned at an arbitrary location on the ground floor, and another frame
called frame “A” assigned at the point where the 7-DoF robotic arm will be mounted.
Figure 4.1 shows two-dimensional top and side views of the Solid Works™ model of the
wheelchair with the key dimensions and the frame assignments. Note that these three
frames are independent and the frame assignment rules discussed in chapter 3 do not
apply. For simplicity, the orientation of the wheelchair’s frame and the “A” frame were
assigned such that the rotation matrix between the two is identity.

Throughout the development of the equations in this section and in the subsequent
sections, these assigned frames will be used to define the relationships between the
ground, the wheelchair, the arm base and the end-effector (gripper). The assignment of
the ground frame is arbitrary because it doesn’t change any of the kinematics of the
WMRA system. The wheels’ axle frame is assigned because of its importance in the
generation of equations between the ground and the arm base. The arm base coordinate
frame is assigned to link the end of the wheelchair kinematics to the robotic arm
kinematics as it is mounted on the wheelchair. The end-effector’s frame is the frame that

will carry on the assigned tasks in the Cartesian space.

61

www.manaraa.com

L]
N -
Y Wheelchair Ground
Coordinate ! Coordinate Coordinate
Frame z e — | Frame Frame

A

L2

Figure 4.1: Wheelchair Coordinate Frames and Dimensions of Interest.

4.3.2. Wheelchair’s Important Dimensions

There are five important dimensions that will be used in the derivation of
coordinate relations in the next section. These dimensions are shown in figure 4.1, and
they represent the physical dimensions of the wheelchair as well as the coordinate frame

distances. These dimensions can be described as follows:

62

www.manharaa.com

1- The distance between the centers of the two driving wheels along the
differential drive axle. This distance is noted as “L1” and its value is 560 mm.

2- The offset distance from the center of the differential drive to the center of
frame “A” along the wheelchair’s X-axis. This distance is noted as “L2” and
its value is 440 mm.

3- The offset distance from the center of the differential drive to the center of
frame “A” along the wheelchair’s Y-axis. This distance is noted as “L3” and
its value is 230 mm.

4- The offset distance from the center of the differential drive to the center of
frame “A” along the wheelchair’s Z-axis. This distance is noted as “L4” and
its value is 182 mm.

5- The offset distance from the center of the differential drive to the center of the
ground frame along the wheelchair’s Z-axis, which is the same as the
wheelchair’s driving wheels’ radius. This distance is noted as “L5” and its
value is 168 mm.

An important note to mention at this point is that the transformation between the
wheelchair’s coordinate frame and the “A” coordinate frame is constant since both
frames were attached to the power wheelchair independently from its wheels’ motion. On
the other hand, the transformation between the ground frame and the wheelchair’s frame
depends on three variables, the distance along the X-axis and Y-axis and the orientation
of the wheelchair about the Z-axis, denoted by “®”. These variables represent the

mobility of the wheelchair on the planar ground surface.

63

www.manaraa.com

4.4. Homogeneous Transformation Relations

The homogeneous transformations between the coordinate frames assigned to the
wheelchair, the ground and the robotic arm base depend on the motion of the two
differentially-driven wheels. The details of generating these relations will be discussed

thoroughly in this section.

4.4.1. Driving Wheels’ Motion and the Turning Angle

In the application of mobile robots, wheel slippage can be considered when the
wheels’ characteristics are constant, but in our application, we will assume that slip is
compensated by the user. The classical way of obtaining the distance travelled from an
initial position to the final position of a wheel that is turning with angle “0” as shown in
figure 4.2 can be written as:

d=L,-0 (4.1)

Where “d” is the travelled distance, and “Ls” is the wheel’s radius. This is the

case when the wheel moves in a straight motion with no turning.

—>

d

I
N

Figure 4.2: Traveled Distance of a Turning Wheel.

In our case, the wheelchair is equipped with two wheels, and the above motion is
a special case that commands the wheelchair to move in a straight forward fashion. In

general, each independent wheel moves independently at its own velocity, and a turning
64

www.manaraa.com

angle is introduced. To approach the formulation of the turning angle, let’s assume that

the left wheel is stationary and the right wheel is turning as shown in figure 4.3.

Left /]

Wheel W
[

Figure 4.3: Traveled Distance with Turning Angle.

L1

The curved blue line in the figure is the actual traveled distance of the right wheel
when the left wheel is stationary. The angle of rotation in this case is:

d L
4 _ L, 42
¢ L L 7 “2)

Where “L;* is the wheelbase width and “6,” is the right wheel turning angle. In
the case when the left wheel is moving while the right wheel is stationary, the turning
angle would be the same as in (4.2) with a negative sign. When both wheels are turning at
different amplitude, the turning angle would be directly related to the difference between

the two angles as follows:

65

www.manaraa.com

LS . -
p=7 0 -6) (43

Where “0,” is the rotation angle of the left wheel. The above relation is not
enough to describe consecutive motion steps that will be implemented in the Virtual
Reality simulation and in the implementation of the physical system. We need to relate
the previous step to the current step at any moment of time to relate all steps together. If
we have the turning angle from the previous step, we can assume that that angle was the
starting angle, and that the coming step will carry the translation through next turning

angle increment. This can be realized as follows:
LS
p=py+76,-0) (4.4)
1

Where “¢,” is the resultant turning angle from all previous steps added together.

This gives us a continuous angle tracking throughout the motion of the power wheelchair

even when the turning angle was fluctuating.

4.4.2. The Radius of Curvature
The turning angle is not the only factor needed in this non-holonomic motion of

€99
T

the platform. The radius of curvature is also needed [61], and it is critical to the
calculations of the transformation matrices. Four cases are to be considered for the radius
of curvature. These cases are as follows:

I- When r>0:

As shown in figure 4.4, this case happens when the left wheel is turning less

than the right wheel. In this case, the radius of curvature is defined as:

66

www.manaraa.com

0
=L,-—+ 4.5

¢ H Right Wheel H
Left Wheel
r L

Figure 4.4: Radius of Curvature in Case 1.
2- When —L, <r<0:
As shown in figure 4.5, this case happens when the left wheel is turning in the
opposite direction of the right wheel. In this case, the radius of curvature is
negative since the left wheel is moving in the negative direction. The radius of

curvature in this case is defined as:

0
=L,-—+ 4.6

Right Wheel

Il ‘
Il L

%xﬂ Wheel

Figure 4.5: Radius of Curvature in Case 2.

=

67

www.manharaa.com

3- When r<-L;:
As shown in figure 4.6, this case happens when the right wheel is turning less
than the left wheel. In this case, the radius of curvature will be negative since
the turning angle of the wheelchair is in the negative direction. The radius of

curvature in this case is defined as:

r =L, -%—Ll 4.7)

H Right Wheel H o

H Left Wheel H
Ly r-1;

Figure 4.6: Radius of Curvature in Case 3.

4- When r = too

As shown in figure 4.7, this case happens when the left wheel is turning in the
same direction and amplitude as that of the right wheel. In this case, the radius of
curvature will be infinity since there is no turning angle involved in this kind of motion.

The above four cases cover all motion possibilities the wheelchair is capable of.
At this point, we have all the necessary information to generate the transformation

matrices along all the points of interest that were pointed out earlier in the chapter.

68

www.manharaa.com

Right Wheel

Left Wheel

Figure 4.7: Radius of Curvature in Case 4.

4.4.3. Point-to-Point Transformation of the Wheelchair

To transform the wheelchair’s coordinate frame during motion, we assume that
the initial position and orientation of the frame is known, and we need to find the new
position and orientation for the next time step. Let the initial coordinate frame of the
wheelchair be “W,” and the next coordinate frame after moving one step is “W,” as
shown in figure 4.8. Lets also define point “O” as the point where the extension of the
two Y-axes intersect on plane XY.

Knowing the transformation between “W,” and “W,” gives us the perspective that
we were looking for when the wheelchair is in motion. To accomplish this

transformation, three sub-transformations are to be performed:
. 113 2 Ll . 17a%]
1- Transformation along “Y,” by the amount of » + > to reach point “O”.
2- Rotation about ”Zo” by the amount of “ ¢, ” to reach the orientation of “W,;”.
: « bR} Ll . 113 ER)
3- Transformation along “Y,” by the amount of —7» — ?to reach point “W;”.

These three transformations define coordinate frame “W;” based on coordinate
frame “Wy”, which is:

69

www.manaraa.com

Wi
Y
by o
© J Yo Wo Ls
r
L1

Figure 4.8: Point-to-Point Transformation of Frames.

L L
VVVVﬂT=Dy(r+71)'Rz(¢1)'Dy(—r—7l), or

o 54 0 S¢1-(r+%) _

nr=|Sg g 0 (1—C¢1)-(r+%) 438
0 0 1 0
0 0 0 1 |

If we assume that the initial coordinate frame of the wheelchair “W;,” was a result

of previous transformation from the ground origin “G” as illustrated in figure 4.1, the

70

www.manharaa.com

resulting homogeneous transformation from the ground frame “G” to the wheelchair’s

initial frame “W,” can be expressed as:

C¢o - S¢o 0 POx
S C 0 P
WE;T _ P, P, 0y (4.9)
¢ 0 0 1 L,
0 0 0 1

Multiplying (4.8) and (4.9) together results in the relation between the ground

coordinate frame “G” and the final coordinate frame of the wheelchair “W;”as follows:

Gq_ G W,
wl=y Ty T, or

I _ % 9 S,
Clgy+0) —Sg+d) 0 S(2+¢o) (r+ 2) 412 + B,
G _ ared ¢1 L, . S¢1
nl =| S +8) Ch+d) 0 —C+g+70)-(r+) 4, /2) +5, | (410
1 L,
- O 1 -

In the case when the wheelchair is moving in a straight line as described in the
previous sub-heading in “case 47, the relation in (4.8) can be simplified to a pure

translation as follows:

1 0 0 L6,
T = 0 10 0 4.11)
" 001 0

000 1

Following the same procedure above, a simpler solution can be reached for this
special case that relates the ground coordinate frame to the wheelchair’s coordinate

frame.

71

www.manaraa.com

4.4.4. Transformation to the Robotic Arm’s Base

So far, we have found the homogeneous transformation matrix that relates the
ground coordinate frame to the wheelchair’s coordinate frame. For the purpose of the
robotic arm to be mounted on the wheelchair, one more transformation is required
between the wheelchair’s coordinate frame and the robotic arm base coordinate frame
where it attaches to the wheelchair. This transformation will be constant since the arm
base and the wheelchair are both attached together in a rigid mounting bracket at point

“A” as shown in figure 4.1. This constant transformation is basically a translation as

follows:
1 0 0 L,
010 L
T = ’ (4.12)
00 1 L,
00 0 1

Post multiplying (4.10) by (4.12) gives the transformation needed to describe the
robotic arm base at any moment based on the ground frame. This resultant matrix is
required to be evaluated at every time step to know the current position and orientation of

the wheelchair and arm base referenced to the world coordinate frame.

4.5. Wheelchair Velocities

In wheelchair motion, velocities are mapped from the wheels’ motion to the
robotic arm base motion so that the results can be ready when the robotic arm is put
together with the wheelchair. In this subsection, the velocity relations will be generated
and the Jacobian matrix will be derived. Depending on the location of the robotic arm

base on the wheelchair, three cases will be studied to make the general form that we were

72

www.manaraa.com

looking for in the Jacobian. When the wheelchair is moving in a straight line, the velocity
component at any point on the wheelchair is the same. But in the case of rotation,
velocity components throughout the different points on the wheelchair will be different
[44]. We will take the case of pure rotation to derive the velocity relations, and then we
will add the component that is coming from the straight line motion to the velocities

gathered from the rotation.

4.5.1. Wheelchair Velocity Mapping to the Robotic Arm Base

The relation between the wheelchair’s coordinate frame and the robotic arm base
frame can be found in three cases as follows:

1- Case I: When the Robotic Arm’s Offset is in the X-Direction:

In this case, the length “L3” is set to zero as shown in figure 4.9, and the robotic
arm is installed directly in front of the wheelchair along the line that divides the
wheelchair into two symmetrical halves. Wheelchair motion in this context produces
three relative motions at point “A”, two linear motions along X-axis and Y-axis, as well

as a rotational motion about Z-axis. These three components are:

Y
A

Lz \

Figure 4.9: The Case When “L;” is Zero.

73

www.manaraa.com

XA :_Lz '¢W 'S¢W
Y,=L,-§,-C, (4.13)
¢;A =¢W

2- Case II: When the Robotic Arm’s Offset is in the Y-Direction:

In this case, the length “L,” is set to zero as shown in figure 4.10, and the robotic
arm is installed directly in on the wheelchair’s axle along the line of rotation of the two
driving wheels. Wheelchair motion in this context also produces three relative motions at
point “A”, two linear motions along X-axis and Y-axis, as well as a rotational motion

about Z-axis. These three components are:

XA =_L3'¢W 'C¢W

Y,=-L, ¢, -S¢, (4.14)
¢A =¢W

Y

A

SN
L,
()
» X
\%

Figure 4.10: The Case When “L,” is Zero.

74

www.manharaa.com

3- Case III: When the Robotic Arm’s Offset is in Both Directions:

This case combines the above two cases with a general understanding of the used
arm location on the wheelchair. In this case, both offsets are accounted for and
algebraically added together with their signs. Wheelchair motion in this context also
produces three relative motions at point “A”, two linear motions along X-axis and Y-axis,
as well as a rotational motion about Z-axis. Adding the component of linear motion of the
wheelchair produces the general motion formula that relates the wheelchair frame

velocities to the arm bas frame velocities as follows:

XA :XW —L,-S¢y '¢W —L,-Cg¢y, '¢W
Y, =Y, +L,-Cd, ¢ ~L, S¢ -4, (4.15)
¢A=¢W

4.5.2. Mapping the Driving Wheels’ Velocities to the Wheelchair
The relation between the wheelchair’s coordinate frame and the two driving
wheels can be found by studying two cases, one case is when the left wheel is stationary
while the right wheel is rotating as shown in figure 4.11, and the other case is when the
right wheel is stationary and the left wheel is moving as shown in figure 4.12.
Algebraically adding the two terms together gives the general relationship

between the wheels’ motion and the wheelchair frame’s motion as follows:

. L . L .
Xy :_5'C¢W -0, +_5'C¢W -0,
2 2
. L . L .
YW=—25 -S¢W-¢9,+—25~S¢W-9, (4.16)
. L. . L. .
= 0, +—-0
¢W Ll l Ll r

75

www.manaraa.com

L,/2

v

<

Left wheel, not moving
(0]

> X
Wheelchair’s frame Center
Right wheel, moving \j

Figure 4.11: The Case When the Left Wheel is Stationary.

Y

4
Left wheel, moving

A

L,/2

v

=

Wheelchair’s
frame center

Figure 4.12: The Case When the Right Wheel is Stationary.

» X
o}
Right wheel, not moving

Equation (4.16) carries a full mapping between the velocities of the wheels and

the wheelchair velocities, while equation (4.15) carries a full mapping between the

velocities of the arm base and the wheelchair velocities.

76

www.manharaa.com

4.6. Wheelchair’s General Jacobian
To simplify the velocity relations and find the Jacobian, let us rewrite equation

(4.15) in the form of a matrix as follows:

X, | [1 0 —(L,-Sp+L,-Co)| | X,
Y, |=|0 1 L,-Cép-L,-Sp |-|Y, |=V, =Ty, Vs (4.17)
4, [0 0 1 By

Where “Jwa” is the Jacobian that relates the wheelchair’s Cartesian velocities to

the arm base Cartesian velocities. Also, equation (4.16), can be rewritten in a matrix form

as follows:
X, , C¢ C¢ p
Y, |==2-| S¢ S |-| . |=V, =T, 0, (4.18)
: 2 2 2|19
Py -= =
L Ll Ll_

Where “Junw” is the Jacobian that relates the wheelchair’s motion and the driving
wheels” motion. To obtain the general Jacobian that relates the wheels’ velocities to the

arm base frame velocities, a dot product of the two Jacobians can be performed as

follows:
Vy=Jy, Ty 0,=>V,=J,,6,,0r (4.19)
_)) _
. Cop+—-(L,-Sp+L;-Cp) Cp——-(L,-Sp+L,-C9)
X, L, L,)
. Ly 2 2 6,
Vo |2 | 88— (Lo Ch-Lio54) Spr (L Co—L-59) |- ! |(420)
¢A 1 2 1 2 r
L L L i
77

www.manaraa.com

The above equation will be used with the numerical methods to produce the
motion commanded by the user in Cartesian coordinates after calculating the wheels’

velocities required to realize the commanded motion.

4.7. Trajectory Options

As discussed earlier in this chapter, non-holonomic constraints on mobile
platforms restrict the system’s ability to control all DoF in the workspace. The above
equations give the user the choice to control two out of three variables in the planar
Cartesian coordinates. To make sense of the two chosen variables, it is more important to
select the two position variables of the wheelchair rather than the orientation and one of
the two positions. This way, the wheelchair is free to move in the plane in both direction,
but without proper orientation.

Adding trajectory planning to the motion can compensate for the lack of control
variables by dividing the motion into sub-motions to realize two of the three commanded
variables at every sub-motion. Suppose that the wheelchair is commanded to move the
arm’s base reference frame from “Ty” position to “T;” position, where “T” is the
homogeneous transformation matrix of that position, the motion can be planned in three
steps to realize the X-direction motion, Y-direction motion and the Z-direction
orientation. The following steps can be programmed to execute these three motions:

I- From the initial point of the arm base at “T,”, find the corresponding

wheelchair’s frame transformation matrix at that pose using equation 4.12.
2- From the destination point of the arm base at “T,”, find the corresponding

wheelchair’s frame transformation matrix at that pose using equation 4.12.

78

www.manaraa.com

3- Draw a line between the two new frame transformations of the wheelchair’s
frame, and find the angle of that line using the transformation resultant
between the two.

4- Command the wheelchair to rotate to the angle of the new line with no
translation.

5- Command the wheelchair to move in a straight line from the initial position to
the final position of the wheelchair, ignoring the orientation.

6- Command the wheelchair to rotate from the angle of the new line to the angle
of the final position.

The above steps with the three sub-motions produced as shown in figure 4.13 will

make the user capable of controlling all three DoF in the workspace of the wheelchair’s
planar motion. Simulation testing of this method has been done and was successful to

move to any position and orientation on the ground plane.

Figure 4.13: The Three Sub-Motions in Motion Planning of the Wheelchair.

4.8. Operator’s Safety Issues
In the simulation process of the wheelchair motion, two separate concerns were

noticed and can be summarized as follows:
79

www.manaraa.com

1- In the case of directional motion with no rotation, the wheelchair might end up
in an odd angle that might be useless to the user if he/she is using this kind of
control in the autonomous motion of the actual wheelchair.

2- In the case when a trajectory is planned and a motion is divided into three sub-
motions, it was noticed that when the wheelchair is in the first or second
rotational motion, the front of the wheelchair may run into close-by objects
such as a wall or a human in the close proximity of the wheelchair. It would
also be dangerous if a drop in the ground elevation is nearby, such as a stair
step down. Since this process is done autonomously, sensory information is

important to be added for the safety of the operator.

4.9. Summary

In this chapter, the wheelchair’s motion was analyzed and the points of interest in
the wheelchair relations were pointed out. Coordinate frames were assigned to these
points of interest and transformations between the assigned frames were generated.
Velocity propagation from one coordinate frame to the other were conducted to find the
corresponding points of interests’ velocities based on the differentially driven wheel’s
velocities according to the non-holonomic motion rules. The system’s Jacobian was
generated to relate the robotic arm base frame Cartesian velocities to the wheels’
velocities. After that, trajectory planning was shown to compensate for lack of full
coordinate control in the workspace of the wheelchair. Safety issues were addressed in

the wheelchair control methods and suggestions were given to address them.

80

www.manaraa.com

Chapter 5:

Control and Optimization of the Combined Mobility and Manipulation

5.1. Introduction

In the previous two chapters, mathematical models of the 7-DoF robotic arm and
the 2-DoF power wheelchair have been derived. The homogeneous transformation
relationships between different key points on both of them were developed, and the
relative velocities were calculated. The Jacobians of both systems were developed and
numerical solution schemes to calculate the inverse kinematics of each of them were
derived. It is often helpful to use robotic devices to help people with disabilities to do
their activities of daily living without the need for an assistant. The idea of mobile robotic
manipulators is something that can help the user, especially if the user is confined to a
wheelchair. Having two independent controls for the wheelchair and the arm significantly
limits the use of the arm in terms of controllability and the executable tasks.

In this chapter, we will combine the two systems together in an effort to produce a
3-degree of redundancy, 9-DoF system with a single control structure that can be used to
control the combined wheelchair-mounted robotic arm (WMRA) system. This gives the
WMRA system much more flexibility and it can be controlled autonomously or using

teleoperation with the two sub-systems cooperating together in the control scheme.

81

www.manaraa.com

5.2. Terminology

In the combination of mobility and manipulation, several interpretations can be
done to accomplish cooperated motion in the Cartesian space. In this work, the term
“combined mobility and manipulation” is used to indicate that the combination is done
from the lowest control level and mathematical models up to the advanced control
algorithms to integrate both units into a single system. In this context, a single Jacobian
of both sub-systems that combines the characteristics of mobility and manipulation will

be derived.

5.3. WMRA Assembly and Problem Definition

In a previous work, mounting locations of the robotic arm on a power wheelchair
were studied to determine the effect of the mounting location on the manipulability
measure [57]. In this work, the selected mounting location provided the best location to
execute tasks related to activities of daily living (ADL). Figure 5.1 shows the WMRA
system with the frame assignments at each one of the points of interest. The reference
frame of the ground was assumed to be stationary, and all other frames of the WMRA
system are related to it.

The aim of this chapter is to combine the seven joints of the robotic arm and the
two joints (wheels) of the wheelchair into a single vector, and generate the corresponding
individual transformations to obtain the general homogeneous transformation that relates
the ground frame to the end-effector’s frame. Velocities will also be propagated through
both sub-systems to find the total Jacobian that represents the velocity mapping from the

nine joint variables to the six Cartesian space variables.

82

www.manaraa.com

Z Ground

Z Wheelcahir

Pozitive
Wheel
Rotation

Z Ground

Figure 5.1: WMRA Coordinate Frames.

5.4. Kinematics of the Combined WMRA System

The total homogeneous transformation matrix of the WMRA system will be used
later in the implementation of this theory, and defining it appropriately insures accuracy
of the results. In our application, we will define it one way now, and then we will
redefine it later in this chapter when we have other options and choices of variables to

control. For the time being, let’s define the joint space of the robotic arm as:
a
94 :[‘91 0, 0, 0, 05 0 ‘97] (5.1

83

www.manharaa.com

Let’s also define the joint space of the wheelchair (wheels’ rotation angles) as:

dc = [‘91 0,]T (5.2)

The combination of the two joint spaces can also be defined as:

q{f]ﬂz[@ 0, 0, 6, 6. 6, 0, 6 0T (5.3)
C

Where 0; through 6, are the robotic joint angles from the arm base to the wrist
respectively, 0; and 6, are the rotation angles of the left and right wheels respectively.
Since we defined the transformation between the robotic arm base frame and the end-
effector’s frame in equation (3.3), and the transformation between the ground frame and
the wheelchair’s frame in equation (4.10), as well as the constant transformation between
the wheelchair’s frame and the arm base frame in (4.12), we can use these equations to

find the total transformation matrix as follows:
°r =yr-"r-Sr -r - - - T ST (5.4)
Matrix 7T represents the 4X4 homogeneous transformation between the ground

and the end-effector’s frame in terms of the WMRA joint space. At any moment of time,
for a given the joint space vector in (5.3), substituting joint values in (5.4) gives a clear
description of the position and orientation of the end-effector. This calculation is
important when we compare the target position in the workspace to the current location

of the end-effector.

5.5. Jacobian Augmentation and Resolved Rate Equations Generation
The velocity relation developed in chapter 4 leads to the Jacobian of the non-

holonomic wheelchair that relates the wheels’ velocities to the three Cartesian velocities
84

www.manaraa.com

in the planar motion of the wheelchair as described in equation (4.20). It is important to
modify this equation to include all six Cartesian velocities in space so that we can
combine the motion of the arm with the motion of the wheelchair. To find the new

Jacobian of the wheelchair, let’s define the task space vector of the wheelchair as:

=) =Xe Yo Ze ac feorcl (5:5)

This vector represents the task space vector at the robotic arm base frame (A), and
can be found by modifying (4.20) to include all Cartesian velocities as follows:

il =Je Ty e (5.6)

Where “Jw* is the wheelchair’s planar Jacobian:

c¢+L3-(L2-S¢+L3~C¢) c¢—L3-(L2-S¢+L3~C¢)
Jy = S¢—L3-<L2-C¢—L3-S¢> S¢+L3-<L2-C¢—L3-S¢) 5.7)
2 2
Ll Ll

and “J¢” is defined to map the Jacobian from the three Cartesian coordinates to

six Cartesian coordinates as follows:

T

100000
J.=[0 100 0 0 (5.8)
0000 01

Equation (5.6) relates the wheels’ velocity vector to the Cartesian task space at the
robotic arm base. Since the task will not be performed by the arm base, we need to map
the motion to the end-effector’s frame. Let’s define the task space vector at the end-

effector’s frame (E) as:

r=f@na)=[X Y Z a B yI (5.9)
85

www.manaraa.com

Differentiating (5.9) with respect to time gives:

.o . o .
r:l.q/‘_'_l.qc (5.10)
oq, 94

Note that the Jacobian in equation (5.6) relates the wheels’ velocity vector to the
Cartesian task space at the robotic arm base frame, and what we need is the equivalent
relationship defined at the end-effector’s frame. This will be done to the wheelchair’s
motion by introducing a new Jacobian that relates the wheelchair’s motion at the arm
base frame to the end-effector’s frame motion. This Jacobian will depend only on the first
two and last Cartesian coordinates of the end-effector based on the arm base frame as
follows:

5, o] PSP ECH)
ieo=| 2 P,-Co—P,-Sp |il=Jg7 (5.11)
[o] 1,

Where Py, and Py, are the x-y coordinates of the end-effector based on the arm

base frame, and @ is the angle of the arm base frame, which is the same as the angle of

the wheelchair based on the ground frame. Substituting (5.6) into (5.11) gives:
e =JgJe -y 4e (5.12)
Now the Jacobians are augmented separately and ready for combination.
Substituting the rates of change by the Jacobians found earlier for the arm and the
Jacobains for the wheelchair into equation (5.10) gives:
F=J,q,+JeJo"Jy 4 (5.13)
Putting (5.13) in a matrix form results in the following:

F=[J, JG'JC-JW]FA} Jor i=J-g (5.14)

qdc

86

www.manaraa.com

Equation (5.14) combines the two Jacobians together to combine the mobility of
the wheelchair and the manipulation of the arm. It is important to mention here that care
must be taken in implementing this method in simulation or in the actual WMRA system.
The combined Jacobian is related to joint angle rates, while the wheelchair is effectively
performing linear motion that results from the two driving wheels. Combination of the
Jacobian in this context requires three processes to be done before and after evaluating
equation (5.14), these processes must be followed, or the solution will not converge, and
the system will be out of control. The three processes should be done in the following
sequence:

1- Before using the Jacobian, convert the linear velocities at the left and right

wheels into angular velocities using the equations:
D, D

0, =—L and , =—=. 5.15
1 LS r LS ()

2- Use the Jacobian with the new angles of the left and right wheels.
3- After using the Jacobian, convert the angular velocities of the left and right
wheels into linear velocities using the equations:
D,=6,-Ly,and D, =0, - L. (5.16)
The reason we are converting the angular into linear velocities is to avoid
oscillation of the system when evaluating the sines and cosines of the wheels’ angles
when they complete a full rotation. Having the angular velocity values converted into
linear velocities eliminates the oscillation in the system when the mobility and

manipulation are combined, and produce smooth and compatible motion with the task

87

www.manaraa.com

trajectory. Running these equations in simulation showed satisfactory results, this will be

discussed later.

5.6. Jacobian Changes Based on the Control Frame

It is always noticed in mobile robotic applications that the user may need to
control the end-effector based on its own frame rather than the ground frame or the
wheelchair frame. In this application, we considered all three possibilities to be included
for user convenience. These possibilities require a slight modification to the Jacobian of
both the wheelchair and the robotic arm. Note that so far, we defined the robotic arm’s
Jacobian based on its base frame, and the wheelchair’s Jacobian based on the ground

frame. These definitions will be changed based on the controlled frame.

5.6.1. Ground-Based Control
This is best used in autonomous control mode, where the trajectory to the target is
always defined based on the ground frame. The Jacobian of the wheelchair in this case

stays the same, and the Jacobian of the robotic arm becomes:

R 0
[JA]new = |: 00 GR:|) [JA]ariginal (517)
0

5.6.2. Wheelchair-Based Control
This is best used in teleoperation control mode, when the user is controlling the
wheelchair most of the time. The Jacobian of the robotic arm in this case stays the same,

and the Jacobian of the wheelchair becomes:

88

www.manaraa.com

“R"™ 0
[JG ' JC : JW]new = 0 GRT ’ [JG : JC : JW]gi‘iginal (5' 1 8)
0

5.6.3. End-Effector Based Control (Piloting Option)

This is best used in teleoperation control mode, when the user is controlling the
end-effector most of the time to perform ADL tasks. This mode is called the pilot mode
since the end-effector is compared to a flying object with its own frame-based control.

The Jacobian of the robotic arm in this case will be changed as follows:

‘R0
[JA]new = |:7 0 ORTi| ' [JA]original (519)
7

And the Jacobian of the wheelchair will be changed as follows:

R" 0

0 $R'

[JG'JC.JW]new:|: :|'[JG'JC.JW]original (5.20)

5.7. Jacobian Inversion Methods and Singularities

At this point, we produced a Jacobian that combines both the mobility of the
power wheelchair and the manipulation of the 7-DoF arm. To make effective use of the
arm and execute Cartesian space tasks, an inversion of the Jacobian is necessary. Often
times singular configurations that produce high joint rates and lead to instability occur
while trying to execute a given task. Inverting the Jacobian while trying to avoid
singularities would give reasonably effective results. Two methods of Jacobian inversions
were done for the combined system, one of them uses Pseudo inverse, and the other uses

Singularity-Robust inverse.

89

www.manaraa.com

5.7.1. Inverting Using Pseudo Inverse

Numerical solutions were implemented using the Jacobian to follow the user’s
directional motion commands or to follow the desired trajectory. Redundancy can be
resolved using Pseudo inverse of the Jacobian [54], and singularity is avoided by
maximizing the manipulability measure [53] discussed earlier in chapter 3. When the
Jacobian matrix is of rank 6, which is the number of rows in the 6X9 combined Jacobian
matrix that we have, Pseudo inverse can be written as:

J=J(J-JN! (5.21)

When this inverse was implemented in simulation, it showed good results when
the manipulability measure was far from zero. Since this method carries a guaranteed
valid solution only at a singular configuration and not around it, the results can carry high

joint velocities when singularity is approached.

5.7.2. Inverting Using Singularity-Robust Inverse

Another inversion method was tried with the new combined WMRA system since
singularity needs to be addressed. A method that starts to change the arm configuration as
it approaches singularities was tested with the new system, that method is called the
Singularity-Robust (S-R) inverse of the Jacobian [50]. Using this method allowed the use
of redundancy resolution schemes for different subtasks, while singularities are taken
care of at the Jacobian inversion level. The S-R inverse of the Jacobian used to carry out

the inverse kinematics can be written as:

J=J" (I +k- 1) (5.22)

90

www.manaraa.com

where I is a 6x6 identity matrix, and k is a scale factor. It has been known that
this method reduces the joint velocities near singularities, but compromises the accuracy
of the solution by increasing the joint velocities error. Choosing the scale factor k is
critical, if it is too high, the error will be too high and the system might destabilize, and if
it is too small, the joint rates will go too high, and the system might destabilize. Since the
point in using this factor is to give approximate solution near and at singularities, an
adaptive scale factor is updated at every time step to put the proper factor as needed. This

factor can be defined as:

k, >"(1—1)2 for w<w,
Wo
0 for w2w,

k=
(5.23)

Where wy is the manipulability measure at the start of the boundary chosen when
singularity is approached, and ko is the scale factor at singularity. The optimum values of

wo and ko for our system were found by simulation to be 0.034 and 13x10” respectively.

5.8. Optimization Methods with the Combined Jacobian

One of the most beneficial advantages of redundancy in robotic manipulators is
the fact that its motion can be optimized in many different ways. A human arm, for
instance, is a redundant system because it has 7 degrees of freedom (3 in the shoulder, 1
in the elbow and 3 in the wrist) and there are only 6 physical degrees of freedom in the
task of placing the hand in any position and orientation in space (X, y, z, roll, pitch and
yaw). If a human arm had only 6 joints, the arm will be stationary if the wrist is fixed, but
since the human arm carries 7" joint, we were able to still move our arm while fixing the

wrist at a fixed point.
91

www.manaraa.com

Now that the singularity is taken care of using the S-R Inverse of the Jacobian, we
can use the joint redundancy to optimize for a secondary task or to set motion preference
weights on the joint domain while following the Cartesian trajectory. Three methods of

optimization will be discussed and tried for this system.

5.8.1. Criteria Functions and Minimizing Euclidean Norm of Errors

Redundancy can be resolved using any of the two inverses discussed above to
obtain a numerical solution of the joint angle rates. If we have the desired task space
variables, and we need to obtain the desired joint space variables, we can use the simplest

form of the resolved rate methods using the following equation:
[ﬂ —J i, (5.24)
qC d

This solution minimizes the norm of the joint velocities and the Euclidean norm
of end-effector velocity errors, which is the difference between the commanded Cartesian
space variables and the actual Cartesian space variables achieved. Adding more tasks to
the optimization process can be done by adding additional terms to include another

optimization function as follows:
[C,’A} =T i (L =T) (5.25)
qC d

Where “¢,” is a 9x1 vector representing the secondary task, “J™ is the modified

6x9 Jacobian matrix, and Iy is the identity matrix of size 9. The choice of the criterion
function can range from a scalar quantity, such as the manipulability measure “w”, or can

be a set of functions, such as joint limit avoidance conditions. The secondary task can

92

www.manaraa.com

either be the desired trajectory in the case of pre-set task execution, or it can be a criterion
function such that:
g, =aV, H(q) (5.26)
Where H(q) is the optimization criterion y = H(q). The existence of the mobile
platform means that “¢,” may not exist for non holonomic constraint such as that of the

wheelchair. To go around this limitation [47] proposed the following: Differentiate the

optimization criterion function “H” with respect to time as follows:

L oH . oH .

y=H(@)=—"q4,+—qc or, (5.27)
oq 0q.
I 01[¢

y= VZH{ } F“} (5.28)
0 Jyll4c

In this case, the value of “g, ” that improves the objective function can be

defined as:
. I 0 .
qy =*a T qu(Q) =4, (5.29)
0 J,

And that velocity vector can be used for optimization. This gives a good
representation of the arm joints’ velocities and the wheels’ velocities of the wheelchair.
The null space may contain more variables than what is required for the secondary task.
In this case, another secondary task can be used to optimize for more than one criterion.
The sign in (5.29) was taken as positive in case the optimization function needs to be
maximized, and negative in case it needs to be minimized depending on the function and

its requirement in the control algorithm.

93

www.manaraa.com

5.8.2. Weighted Least Norm Solution

Weighted Least Norm solution can also be used as proposed by [27] to resolve the
system redundancy. In order to put a motion preference of one joint rather than the other
(such as the wheelchair wheels and the arm joints), a weighted norm of the joint velocity

vector can be defined as:

lgl, =" W -q (5.30)

Where “W” is a 9X9 symmetric and positive definite weighting matrix. For
simplicity, the weight matrix can be a diagonal matrix that represents the motion
preference of each joint of the system. For the purpose of analysis, the following

transformations are introduced:
Jy,=J-W " and ¢, =W "? -4 (5.31)
Using (5.31), we can rewrite (5.14) and (5.30) respectively as:

r=Jy,-q,, and (5.32)

dly =y -dn (5.33)

In this case, the Least Norm solution of (5.32) is:

Gy =Jy T (5.34)

Using the second part of (5.31), joint velocities can be redefined as:

S

Gy =W 24, (5.35)

Using Pseudo inverse, it can be shown that the Weighted Least Norm solution is
calculated as follows:

Gy =W (T) (5.36)

94

www.manaraa.com

The above method has been used in simulation of the 9-DoF WMRA system with

the nine state variables “¢,” that represent the seven joint velocities of the arm and the

two wheels’ velocities of the power wheelchair. It was found that latter two state
variables are of limited use since they tend to unnecessarily rotate the wheelchair back
and forth during a long forward motion due to their equal weights. Changing the weights
of these two variables will only result in a preference of one’s motion over the other.

More on this will be discussed later in the chapter.

5.8.3. Joint Limit Avoidance

The criterion function used for optimization can be defined based on the physical
joint limits of the WMRA system, and minimizing that function results in limiting the
joint motion to its limit. A mathematical representation of joint limits in robotic
manipulators has been a topic of many researchers. One of these representations were

proposed [27] as follows:

H(q) — il . (Qi,max - qi,min)2 (5 37)
i=1 4 (qi,max - qi,surrent) ' (qi,current - qi,min)

This criterion function becomes “1” when the current joint angle is in the middle
of its range, and it becomes “infinity” when the joint reaches either of its limits. When
used in (5.29) the function can be minimized by choosing the negative sign for it so that
the null space is used to choose the minimum value of the function that satisfies the main
objective function.

Using this optimization function in (5.36) can be accomplished through the

weight matrix used for optimization. Rather than choosing arbitrary weight values for

95

www.manaraa.com

each individual joint based on the user preference, an additional value can be added to

represent the optimization criterion function as follows:

L+ 0H(q) 0 0
a‘]l
O0H(q)
W= 0 "t 0 (5.38)
0 0 W, + 0H(q)
i oq,

(1344
1

Where “w;,“ is the user-defined weight preference to joint “i”, and the second

term in each element is the gradient projection of the criterion function defined as:

aH(q) — (qi,max - qi,min)2 ’ (2 ’ qi,current - qi,max - Qi,min)
aqi 4 ’ (qi,max - qi,curremf)z ’ (qi,current - qi,min)2

(5.39)

When any particular joint is in the middle of the joint range, (5.39) becomes zero,
for that joint, and the only weight left is the user defined weight. On the other hand, when
any particular joint is at its limit, (5.39) becomes “infinity”, which means that the joint
will carry an infinite weight that makes it impossible to move any further. When the user
prefers to move robotic arm with minimal wheelchair motion, heavy weight can be
assigned by the user to the two wheelchair state variables. When any of the robotic arm
joints gets close to its limit and its weight approaches infinity, the wheelchair’s weight
will be much less than that of the joint, and hence it will be more free to move than the
joint that is close to its limit.

It is important to note two different deficiencies that may lead to unintended
operation or joint lock when using this method. The first deficiency is that the joint is

penalized with higher weight whether it is approaching its limit or getting away from it.

96

www.manaraa.com

This may cause the robotic arm to use the null space inefficiently by preferring to move a
joint with heavy weight going towards its limit rather than moving a joint with heavier
weight that is moving away from its limit. This problem can be eliminated if two
conditions were imposed on the criterion function as shown in figure 5.2. These
conditions are as follows:

1- When the joint limit is being approached from outside the limit and moving
towards the limit (i.e. the weight difference between two consecutive steps is
positive and the current joint limit is not exceeded) then give the weight as
calculated by (5.38).

2- When the joint limit is being approached from outside the limit and moving
away from the limit (i.e. the weight difference between two consecutive steps
is negative and the current joint limit is not exceeded) then give the weight as
“Wiu“.

The second deficiency is that the precise joint limit that takes the weight to
infinity may never be reached, instead, the numerical solution with its relatively coarse
step size may jump from a joint value close to the joint limit before it is reached to a joint
value close to the joint limit after it is reached. This will result in a heavy weight that will
slowly get lower as the joint gets away from the set limit towards its actual limit. If the
previous two conditions were applied alone, a dangerous motion can happen by giving
the weight as the user chosen weight only since the joint is getting away from its limit
from inside that limit. This can either break the joint or lock it when it reaches its actual
physical limit with the hard stop. To overcome this deficiency, two more conditions need
to be imposed on the system:

97

www.manaraa.com

3- When the joint limit is being approached from inside the limit and moving
away from the limit (i.e. the weight difference between two consecutive steps
is negative and the current joint limit is exceeded) then give the weight as
infinity since no further motion inside should be allowed.

4- When the joint limit is being approached from inside the limit and moving
towards the limit (i.e. the weight difference between two consecutive steps is
positive and the current joint limit is exceeded) then give the weight as “w; "
since the joint is actually getting away from its limit.

Imposing the above four conditions on the weight matrix to perform on the

optimization criterion gave the control mechanism much better results in terms of joint

limit avoidance and user-preferred motion of each individual variable in the joint space.

Joint Angle

(Fadians)
—_— -—
Condition 1 Clondition 4
—_— o
Condition 2 Condition 3

Toint Lirnit }\

Inzide the Jomt Lamits | Outside the Jeint Litnits

time
(zeconds)

Figure 5.2: Four Joint Limit Boundary Conditions.

98

www.manaraa.com

5.8.4. Obstacle Avoidance

The same criterion function can also be used to optimize the control algorithm
based on obstacle avoidance. An important mathematical representation of the obstacles
around the WMRA system is necessary to formulate these criteria functions. For the
immediate objects around the WMRA system, there are three complex shapes that need
to be avoided. These shapes are the wheelchair, the human user and the robotic arm itself.
Modelling these shapes mathematically can be challenging since they are not fixed
shapes. In this case, sensory suite can be used to recognize the obstacle and avoid it as the

WMRA moves in its workspace.

5.8.5. Safety Conditions

In order to create a comprehensive representation of the physical environment
within the WMRA and in its immediate surroundings, several safety conditions should be
imposed to avoid joint limits both in position and velocities, and to avoid the arm from
hitting the human user or the wheelchair or itself. These conditions were put in place as
follows:

1- Stop the joint if it reaches its maximum or minimum limit:
if Qi 2 qi,max OR qi < Qi,min then q.i,cammanded = 0 (540)

2- Slow down the joint if it reaches its velocity limit (which is also useful in case

the WMRA reached singularity and went out of control):

I:f |q1| 2 ‘qi,max then qi,commanded = Sign(qi,cornmanded) ’ qi,max (541)

99

www.manaraa.com

3- Slowly reverse all joint velocities in case any robotic arm joint frame
approaches collision with the ground, the wheelchair’s side, the wheelchair’s
wheels, the wheelchair’s human driver’s shoulder, his/her lap, his/her legs,
and the wheelchair’s battery pack.

4- Slowly reverse all joint velocities in case the robotic arm’s upper arm
approaches collision with its forearm.

Considering the above four conditions in the control algorithm ensures the safety
of the human operator as well as the WMRA system from physical damage. Condition
number “3” above has been expanded into “16” sub-conditions that address the physical
relations between the reachable space of each joint frame and the physical presence of

obstacles in that particular reachable space.

5.8.6. Unintended Motion Effect Based on the Optimization Criteria

It is important to the user when operating the WMRA system in teleoperation
mode to have total control with predictable motion. When equation (5.25) is used with
“qo=07, the optimization will be based on the minimization of the Euclidean norm of
errors. Observing that equation shows that the commanded joint velocities will be “zeros”
if the user does not command the Cartesian variables of the end-effector to move.

b

Depending on the chosen criterion function of “q,” and its dependency on different
variables in both the Cartesian space and the joint space, it is possible for the WMRA to
move even when the user does not command it to move.

In the case of joint limit avoidance, the criteron function in (5.37) depends only

on the joint variables. That makes the second term in (5.25) non-zero even when the user

100

www.manaraa.com

commands the WMRA system not to move by setting the first term to “zero” (or by not
touching the controller interface to send 7=0). The logical interpretation of that equation
means that the user will see the WMRA in motion as soon as the system is powered up if
any of the joints is not in the middle of its operational range. This motion will drive the
arm to its joint mid-range angles and then stop. The reaction caused by such optimization
can be dangerous on the user and the surrounding subjects if it is used the way it is.

On the other hand, looking at equation (5.36) when using the Weighted Least
Norm solution, when the commanded Cartesian velocity vector 7=0, the commanded
joint velocity vector will be “zero” no matter what the weight function is. This ensures
that the optimization will not take effect unless the user started to command the arm to
move in its workspace. Even though both solutions were integrated in the control
algorithm of the WMRA, care must be taken when using the first solution since it can

result in unpredictable motion.

5.9. Optional Combinations for the Resolved Rate Solution

Each of the optimization schemes mentioned earlier can be used for different
purposes, and other schemes might be added to resolve redundancy. To make the control
algorithm flexible in terms of optimization, all methods were implemented in the high-
level control so that the user can choose his/her preference. Two things are needed for
redundancy resolution, the first is finding the inverse of the Jacobian, and the second is
implementing the optimization function to find the joint rates. The following eight

combinations were programmed for redundancy resolution options:

101

www.manaraa.com

I- Pseudo inverse solution (PI): This selection evaluates the inverse of the
Jacobian using Pseudo inverse to find joint rates for the next time step when
given the current Cartesian coordinates of the end-effector.

2- S-R inverse solution (SRI): This selection evaluates the inverse of the Jacobian
using the Singularity-Robust inverse to find joint rates for the next time step
when given the current Cartesian coordinates of the end-effector.

3- Weighted Pseudo inverse solution (WPI): This selection evaluates the inverse
of the Jacobian using Pseudo inverse, and then applies the weighted least
norm solution to find joint rates for the next time step when given the current
Cartesian coordinates of the end-effector.

4- Weighted S-R inverse solution (WSRI): This selection evaluates the inverse of
the Jacobian using the Singularity-Robust inverse, and then applies the
weighted least norm solution to find joint rates for the next time step when
given the current Cartesian coordinates of the end-effector.

5- Pseudo inverse with gradient projection solution (PI-GP): This selection
evaluates the inverse of the Jacobian using Pseudo inverse and adds the
projection of the null space with the optimization criterion function to find
joint rates for the next time step when given the current Cartesian coordinates
of the end-effector.

6- S-R inverse with gradient projection solution (SRI-GP): This selection
evaluates the inverse of the Jacobian using the Singularity-Robust inverse and

adds the projection of the null space with the optimization criterion function to

102

www.manaraa.com

find joint rates for the next time step when given the current Cartesian
coordinates of the end-effector.

7- Weighted Pseudo inverse with criterion function optimization solution (WPI-
CF): This selection evaluates the inverse of the Jacobian using Pseudo inverse,
and then applies the weighted least norm solution with the criterion
optimization function included in the weight matrix to find joint rates for the
next time step when given the current Cartesian coordinates of the end-
effector.

8- Weighted S-R inverse with criterion function optimization solution (WSR-CF):
This selection evaluates the inverse of the Jacobian using the Singularity-
Robust inverse, and then applies the weighted least norm solution with the
criterion optimization function included in the weight matrix to find joint rates
for the next time step when given the current Cartesian coordinates of the end-
effector.

In the event that other optimization criteria or Jacobian inversion methods were

added to the control algorithm, more choices can be added to the program, and the user

will be given the prompt to choose which optimization selection to select.

5.10. State Variable Options in the Control Algorithm

In any control problem, state variables are chosen such that changing any of them
during the control process gives a result that makes sense for the general objective of the
control algorithm. In our application, the state variables selected are the seven joint limits

of the robotic arm and the two wheelchair wheels’ angles. This is not necessarily the best

103

www.manaraa.com

way to control the WMRA system. Other state variables may make more sense in the

overall control objectives, and may be used in a better way in terms of optimization.

5.10.1. Seven Robotic Arm Joints, Left wheel and Right Wheel Variables
This is the default state variables selection that applies the resolved rate scheme to

find “¢” that contains the nine joint variables selected. These joint variables are the

seven joints of the robotic arm, the left driving wheel angle, and the right driving wheel
angle of the wheelchair. As far as the robotic arm is concerned, controlling its seven
joints is the only available selection, but when it comes to the wheelchair, there is another
way to control its wheels’ angles. In this sub-section, the selected variables for the
wheelchair motion gave undesired motion that was not necessary to execute the
trajectory-following command.

When used with the weighted least norm solution optimization scheme, a weight
matrix that contains preference weights to each of the nine state variables was created
such that the wheelchair wheels’ motion carry higher weights than the robotic arm’s
joints. This is done so that if the task is within the workspace of the robotic arm and can
be executed without the need to move the wheelchair, the control process would result in
minimal wheelchair motion and maximum arm motion for task execution. In the event
that the user is working in an office environment, he/she will not be inconvenienced be
constantly moving his wheelchair unnecessarily.

The problem found with the selection of these state variables is that when motion
of the wheelchair is necessary for task execution, and both wheels are given equal

weights, the wheelchair turns unnecessarily. This happens because the robotic arm is

104

www.manaraa.com

mounted on the side of the wheelchair, and when it follows a long trajectory and the arm
reaches its workspace boundaries, the left wheel starts to move since it is the closest one
to the arm base that will cause the arm to continue following the trajectory. This results in
a wheelchair rotation since the right wheel is not necessary to move at that point. When
moving the left wheel is no longer sufficient to give the robotic arm the necessary motion
to follow the trajectory, the right wheel starts moving and causes the wheelchair to turn
again unnecessarily. Even though the end-effector precisely followed its trajectory and
the wheelchair moved as it was necessary, its motion was unpleasant.

In a test of moving the end-effector in a straight line trajectory extending 10
meters in the forward direction of the wheelchair, the motion that makes sense is that the
arm should extend forward, and the two wheels of the wheelchair move at the same speed
as necessary, but because of the wheel proximities to the robotic arm base, they were
giving different speeds to the wheels over the simulation period of time until the
destination point was reached. Giving the two wheels different weights based on their
proximity of the arm base doesn’t solve the problem since the trajectory can be different
from the straight line, and in the case of left or right hand motion of the end-effector, the

wheelchair will not behave in the best way possible.

5.10.2. Seven Robotic Arm Joints, Forward and Rotational Motion of the Wheelchair

In avoiding this kind of behavior in the wheelchair motion response, the two
wheelchair’s state variables should be changed. Since the user does not care about the
wheels motion or which wheel moves faster than the other, two different state variables

must be chosen, and then related to the wheels’ motion. The choice that makes sense in

105

www.manaraa.com

this context is to choose polar coordinate control of the wheelchair, and that can be done
by controlling the linear distance and the angle of the wheelchair. If having the linear
motion and the rotational motion of the wheelchair as the two state variables rather than
the two wheels’ motions, it can be used with the weights to give motion that is more
convenient to the user. A linear motion of the wheelchair corresponds to equal velocities
of both wheels in the same direction, while a rotational motion corresponds to equal
velocities of both wheels in opposite directions. A combination of linear and rotational
velocities corresponds to algebraically adding the resultant motion of both in each of the
wheels. To make this option available, let’s re-define equation (5.2) by the two new state

variables as follows:

{T ranslation(X)}
g = (5.42)

Rotation(¢)

For pure rotation of the wheelchair, both wheels will be running to the same angle

with opposite directions, the resulting wheelchair’s inclination angle is:

_Ls g -
p=70-06) (5.43)

|
Since “0,“ and “0,” are equal in value, but opposite in direction, lets take the right
wheel angle as the positive angle, that is:
6 =-60,=60 (5.44)

This simplifies (5.43) to:

L, 2-L,-6
=5.2.0)===
/ L (2-6) L

(5.45)

Or,

106

www.manaraa.com

o L-¢ (5.46)

Using (5.44) and (5.46) gives the relations:

) _ZhL¢ ,and 6, _L-g (5.47)
2L, 2-L,

For pure translation of the wheelchair, both wheels will be running to the same

angle “0” with the same direction, the resulting wheelchair’s linear distance is:

X:L5-0,0r6’,=9,=£ (5.48)

5
For the general case when we have both rotation and translation, we can add the
wheels’ angles in (5.47) and (5.48) together. Now we need to relate the old state variable

to the new state variables in the wheelchair as follows: let the new wheelchair’s state

X
variables be defined as g, = [s } , then the two wheels’ rotational angles will be:

“L s X andg =g X (5.49)
21 7L 2 UL

6, =

Differentiating (5.49) with respect to time gives the rates of the angular motion of

the wheels as:

—L -¢5+£,and 0 = L -;z%+£ (5.50)

6, =
2-L, L, 2-L, L,

Remembering that — =6 for linear motion, using the angle instead of the
5

distance makes the Jacobian compatible in units. Putting (5.50) in a matrix form gives a

better prospective as follows:

107

www.manaraa.com

1
6}1 L_s 2L X
= A7 5.51
M AP e
LS
This gives the Jacobian that relates the two wheels to the angle of inclination and

the travelled linear distance of the wheelchair. The Jacobian used in (5.7) then can be

modified as follows:

1 -4
L, 2-L
[Ivew = Lot - 15 I : (5.52)
2 1
L, 2L,

The rest of the derivation can be carried on in the same way as done to combine
the manipulability of the wheelchair and the manipulation of the arm done earlier this

chapter. The new state variables will become:
q{q*‘}:[a 0, 0, 6, 6. 6, 0, X o (5.53)

Care must be taken again here when using the angle “0” in the Jacobian instead of
the linear distance “X”, a conversion from distance to angle must be done before
processing the Jacobian, and then another conversion back to distance after processing
the Jacobian.

The combination of the above two variables would be sufficient to describe any
forward and rotational motion of the wheelchair. Having these two state variables in
vector “q” instead of the wheels’ velocities gives a greater advantage in controlling the

preferred rotation or translation of the wheelchair. The wheelchair’s Jacobian in (5.6) is

changed for the new state variables before augmenting it to the arm’s Jacobian, and the

108

www.manaraa.com

results are much better in terms of desired control. When these new state variables were
used in simulation with the weight matrix, we were able to avoid user inconvenience
problem that happened in the previous method by assigning heavier weight to the rotation
of the wheelchair than the weight of the translation so that when a trajectory is followed,
rotation only occurs as necessary. We will show examples of that in simulation results

chapter.

5.11. Trajectory Generation

Trajectory generation is an important step in performing autonomous tasks using
any robotic device. Since this 9-DoF robotic system can be used in both autonomous
motion and teleoperation motion, it was essential to explore on different trajectory
generation schemes. Four different trajectory generators were developed for this WMRA

system, and the user were given the choice to choose one of them for any particular task.

5.11.1. Generator of a Linear Trajectory

It is important to mention here that the transformation from one point to the other
in space is a non-linear process if it involves rotation. For this reason, the trajectory
generator must take that into consideration when dealing with rotations. A typical
homogeneous transformation matrix consists of three rotational vectors and one

translational vector as follows:

nx OX a)f R‘C
n o, a P

T = ny oy ay Py (5.54)
O 0 0 1

109

www.manaraa.com

Where “n” is the projection of the unit “X” axis on the reference frame, “0” is the
projection of the unit “Y” axis on the reference frame, “a” is the projection of the unit
“Z” axis on the reference frame, and “P” is the coordinates of the frame’s origin on the
reference frame. Since vector “P” is a linear vector that involves only distances, it needs
no modification. The modification is needed for the unit axes projections on the reference
frame since they include non-linear sine and cosine functions of the three angles of
rotation. The three Euler angles of rotations in the homogeneous transform can be
represented by a single rotation about a new single axis in space [51]. Finding that axis of
rotation and the new single rotational angle makes it easier to divide that single angle into
angle steps along the trajectory. The single angle of rotation can be found from the

homogeneous transform as [51]:

[0, =a) +(a, ~n)? +(n, -0,)’
an

(n,+o,+a_.-1)

0=t

(5.55)

Using the function (Atan2) instead of (Atan) would give a single value of the
angle based on its position in the quadrant of rotation. Once this angle is found, we can
now find the new axis of rotation by defining its unit vector projection on the reference
frame. This can be done through three different conditions:

1- When the rotation angle is zero or very small, in this case, there is no rotation,

and the axis of rotation can be arbitrary. For simplicity, we can define it as:
k=1 o o] (5.56)
2- When the rotation angle is less than 90°, in this case, the axis of rotation can be

defined as:

110

www.manaraa.com

T
p=| 22" 4 0% (5.57)
2-sin@ 2-sin@ 2-sin@

3- When the rotation angle is more than 90°, in this case, the axis of rotation can

be defined as:
- n,— cosd |
SO0 =) N oo
0, —cosf
k=|sign(a, —n,) | *——— (5.58)
} 1—cosé
. a, —cosf
Sgn(n, =00\ oos0

Where “sign” indicates the sign of the difference of what is inside the bracket.
These values are not always true [51], and adjustments must be made based on
which one of the projection components is the largest value as follows:

a- If “ky” is the largest, then the other two are:

+
o= O and k =— %t (5.59)
" 2k -(1-cos0) 2-k_-(1-cos0)
b- If “’k,” is the largest, then the other two are:
n +o, 0,+a,
k. = S P— and k= : (5.60)
2-k,-(1-cos®) 2-k,-(1-cos®)
c- If “k,” is the largest, then the other two are:
+
o= Gt and k =— 2% (5.61)
2-k.-(1-cos0) Y 2k, -(1-cos®)

It is important to remember that the transformation matrix of the task is usually
defined based on the global coordinate frame, and that the current end-effector’s frame is

defined based also on the global coordinate frame. The rotation from the end-effector’s

111

www.manaraa.com

current position “R;” to the desired task position “R4” should be found, and that rotation
is the one that should be processed for trajectory generation of the angle between the two,
and that can be found as:

R=R'-R, (5.62)

Once we have the single angle of rotation and the axis of rotation, we can
generate the trajectory in a linear line. The approach used to generate the trajectory
utilizes a constant transformation change along the trajectory, which means that the
trajectory will be divided into “n” transformation matrices, with “0T” transformations

between every two consecutive points in the trajectory as shown in figure 5.3.

Transformation
Change with Equal
Distances and angles

Initial End-Effector’s /
Transformation

Desired End-effector’s
Transformation

. World Coordinate Frame
Transformations of

Trajectory Points
f (,5? WMRA System Y

Figure 5.3: Linear Trajectory Generation.

To find the constant transformation change along the trajectory, the four variables
(dx, dy, d,, de) that represent the constant distance change and the constant angle change

must be defined as follows:

112

www.manaraa.com

dx Px, — Px;

dz| n | Pz, —Pz '

do 0

From these values, we can now construct the rotation change along the trajectory

using the following equation:

k:(1-cosdf)+cosdt kk,(1—cosdO)—k sind0 k k. (1—cosdb)+k, sind0
dR=| k k,(1—codO)+k_sind6 kyz(l—cosdH)+cosd9 k k. (1—cosd)—k sind0 | (5.64)
kk.(1—cosdf)—k, sind0 k k. (1-cosdd)+k sind0 k:(1-cosd6)+cosdt

Using (5.63) and (5.64), we can now find the transformation change between any

two consecutive points along the trajectory as follows:

dx

sT=| 4R (5.65)
dz
000 1

To find the transformation matrix of any point along the trajectory line, the
following equation will be used:

T=T-0T", 1<t<n (5.66)

Where “T,” is the trajectory point transformation and “Ty” is the initial
transformation matrix of the end-effector. The above scheme was coded into a program in

the form of a function for trajectory generation and used for WMRA autonomous control.

5.11.2. Generator of a Polynomial Trajectory
When the robotic arm starts moving from rest, it is impossible to move it from

zero to full speed in virtually no time. When the linear trajectory was generated,

113

www.manaraa.com

simulation revealed that the joint space variables are commanded to move at infinite
accelerations at the beginning of simulation to reach the desired velocity in no time. To
take care of this issue, a polynomial trajectory is introduced so that when the arm starts
from rest, the trajectory points are very close to each other, and then the arm will reach a
maximum speed and ramp back down to zero velocity when it reaches the destination as

shown in figure 5.4.

» t

to te
Figure 5.4: Polynomial Function of 3 Order for Variable Ramp with Time.
The governing equation for such a polynomial [49] can be written for any variable

that needs to be ramped as follows:

X(t):XO+%~(Xf —XO)-t2+%-(Xf - X,)-t (5.67)
Iy ty

The above equation was implemented in the trajectory generator, and all four

variables from (5.63) were divided to non-linear segments, and the results were

satisfactory since the transformation change is no longer constant, but rather variable

with time. This was added to the program as a second choice, and the previous linear

option was also kept as the first choice.
114

www.manaraa.com

5.11.3. Generator of a Polynomial Trajectory with Parabolic Blending Factor

When using the polynomial function to generate a non-linear trajectory, efficiency
of the trajectory-following task was not acceptable. The reason is that the desired velocity
is reached at the mid-point of the trajectory, and ramping that velocity up and down takes
a very long time. To overcome this problem, a polynomial blending procedure was
adopted [49]. The blending factor accelerates the velocities at the beginning of the
trajectory, and then set the acceleration to zero throughout the major part of the trajectory
following procedure when the desired velocity is reached, and then decelerate the
velocity back down to zero at the end of the trajectory-following task as shown in figure
5.4 with a blending factor of “5”. Since the middle segment is linear, we use the linear
function definition to define that segment. The beginning and ending segments of the
trajectory are assumed to have the same duration and at the same constant acceleration
with opposite signs. We first begin by defining the blending factor “b”, in our case, we
chose 5. Then we define the acceleration during blending as:
‘ X, - X,

2
tf

X,=4-b (5.68)

Where “t¢” is the time at which the trajectory-following task is completed. Then

we define the time when blending ends as:

:;_f_\/Xz-tz—4-X-(X_,'—Xi)

t = 5.69
b= % (5.69)

The velocity at that point would be: X, = X, -7, (5.70)

And the variable’s value at blending would be: X, = X, +0.5- X, - (5.71)

115

www.manaraa.com

Substituting these values in to the 3" degree polynomial gives a smooth trajectory
as shown in figure 5.5. When the blending factor is “1”, the constant velocity region
becomes a point, and that returns us back to the polynomial with no blending as decribed

in the previous subsection.

» t

to te

Figure 5.5: Polynomial Function of 3 Order for Blended Variable Ramp with Time.

A slight modification was made to make the blending factor vary based on the
length of the trajectory and the commanded velocity so that the curve is not too steep and
at the same time it doesn’t, the acceleration is reasonable during the blending regions.
The second blending region is done the opposite way of the first one. Figure 5.6 shows

the trajectory generation with polynomial function.

5.12. Control Reference Frames

At the beginning of solving the manipulation and mobility combination problem,
the commanded motion was referenced to the ground frame. In reality, this doesn’t
always help the user in the most effective way. For instance, when the robotic arm is used

in autonomous mode, it is better to reference the motion to the ground frame, but when

116

www.manaraa.com

the user is controlling the WMRA system using teleoperation, he/she will be confused
about which direction represents the forward or right turn and so forth. For that reason,
three different control reference frames were programmed so that the user can choose the
most convenient one based on the task at hand. The ground frame is most suited for
autonomous operation with pre-set tasks, the wheelchair’s frame is most suited for
wheelchair motion in the most part, and the end-effector’s frame is most suited for
teleoperation using the end-effector. Refer to figure 5.1 for the Cartesian coordinate
frame of references that we will be working on to transform the Cartesian task space and
the Jacobian from one frame to the other.
Transformation

Change with varying
Distances and angles

Initial End-Effector’s /
Transformation

Desired End-Effector’s
Transformation

. World Coordinate Frame
Transformations of

s O Trajectory Points

@ WMRA System Y

Figure 5.6: Polynomial Trajectory Generation.

5.12.1. Ground Reference Frame
This is the default option that was used for reference in all the previously

generated equations. The commanded Cartesian positions expressed in a homogeneous

117

www.manaraa.com

transformation matrix were based on the ground coordinate frame, and the Jacobian was
also based on the ground frame. If the user is operating in autonomous mode, the
trajectory will also be generated based on the ground frame. If the user uses this option, it
may cause some inconvenience in the sense that if the wheelchair rotates 180° and the
user tries to move forward in his/her mind, the actual motion would be backwards since
the positive X-axis of the ground reference frame is stationary and will be pointing

backwards from the wheelchair’s prospective.

5.12.2. Wheelchair Reference Frame

In this option, the user would like to use the wheelchair’s frame as the reference
frame for the motion of the WMRA system. Two transformations have to be made, one
that transforms the commanded Cartesian positions from the wheelchair’s reference

frame to the ground’s reference frame, and that would be modified as:
T=yT"T (5.72)
And the other transformation is to transform the Jacobian from the ground frame

to the wheelchair’s frame as follows:

i _|SRT[0] g i | SR [0] g
JW—[0] (jRT} J, ,and JA—{ 0] jRT} J, (5.73)

When the user is using the WMRA system to perform pre-set tasks of activities of
daily living in autonomous mode, a third transformation is necessary to transform the
trajectory generation from the wheelchair’s reference frame to the ground’s reference

frame as follows:

T =Sr' St

t,new A" current A” initial

T, ota (5.74)
118

www.manaraa.com

This gives the user the feeling of controlling the WMRA system based on where
the wheelchair moves. A very good choice to for this option would be when the user is
controlling the wheelchair alone without autonomous motion and without using the

robotic arm.

5.12.3. End-Effector Reference Frame

In this option, the user uses the end-effector’s frame as the reference frame for the
motion of the WMRA system. Two transformations have to be made here as well, one
that transforms the commanded Cartesian positions from the end-effector’s reference

frame to the ground’s reference frame, and that would be modified as:
°T=ST-'T (5.75)

And the other transformation is to transform the Jacobian from the ground frame

to the end-effector’s frame as follows:

o _[7RT o] | o _[7RT o] |
JW—{ 0] fRT} J, ,and JA—{ 0] fRT} J, (5.76)

When the user is using the WMRA system to perform pre-set tasks of activities of
daily living in autonomous mode, a third transformation is necessary to transform the
trajectory generation from the end-effector’s reference frame to the ground’s reference
frame as follows:

T =Sr!' °r

t,new 7 current” 74 initial];,old (577)
This gives the user the feeling of controlling the WMRA system based on where

the end-effector is pointing. This option is a very good choice when the user controls the

WMRA to do activities of daily living using the end-effector.
119

www.manaraa.com

5.13. Summary

The main aim of this chapter is to show the theory of combining the mobility of 2-
DoF the wheelchair and the manipulation of the 7-DoF robotic arm to form a single
control structure of the 9-DoF wheelchair-mounted robotic arm. We derived the
combined forward kinematics of the system, and showed the relations between the two
subsystems with each other and with the ground. The new WMRA system with 3 degrees
of redundancy was controlled using the resolved rate after augmenting the Jacobian to
include both subsystems. Several methods of inversion were implemented to find the
inverse of the jacobian to solve the inverse kinematic problem. Optimization was then
done using several techniques and the control algorithm was designed to use any
optimization method or criterion function.

Two different state variables were implemented in the WMRA system to reduce
the unintended motion of the wheelchair while executing a task of a long trajectory. It
was found that using the polar-coordinate type variables in the mobility side of the
problem gave more efficient results when used with the robotic arm. Trajectory
generation was done using different linear and polynomial functions with or without
parabolic blending. The control reference frame was also shown in three different bases

of reference, and each one of them was useful in different kinds of setups.

120

www.manaraa.com

Chapter 6:

User Interface Options

6.1. Introduction

One of the important aspects of controlling robotic devices is the user interface,
especially if the user is a person with disabilities. If the design of the robot is good, the
control algorithm is very sophisticated, but the user interface is insufficient, the user
might not utilize the robot up to its capabilities due to lack of control. In this chapter, we
will talk about the clinical tests done on two WMRA user interfaces that are used in
commercial WMRA systems. Then we will talk about the user interface devices used for
this new WMRA that was included in the program software, as well as some other

possibilities that can be added later as the user prefers.

6.2. User Interface Clinical Testing

Two different user interfaces were tested in two different commercial wheelchair-
mounted robotic arms, Manus and Raptor. These two user interfaces are the double-axis
joystick as well as a keypad. A test procedure was put in place to do the testing, and
human subjects with disabilities were tested to perform these tasks using the chosen user
interfaces. Cognitive load was addressed based on the different user interfaces for

different users and the type of control they are using (Cartesian or joint control). The

121

www.manaraa.com

effectiveness of the two commercial WMRA based on these aspects and the execution

times for different ADL tasks were addressed.

6.2.1. Representative ADL Tasks Used for the Clinical Study

In WMRA applications to perform tasks of daily living, the user-specific needs
should be taken into consideration to make a proper selection of a WMRA [57]. This
criterion is based on user’s age, size, weight, disability and prognosis. Other
characteristics should also be addressed such as the cosmetics features, cost and payload
capacity needed. In this clinical study, a representative population of individuals with
different functional limitations who use a personal aid to do their ADL tasks were
observed and interviewed while performing reach and manipulation tasks associated with
their ADL using Manus and Raptor in separate occasions. Their opinions on the ease of
use and comfort-related aspects were obtained.

Based on the uses of WMRA devices for ADL tasks, a test bed was designed to
evaluate the user interface and control of each WMRA. In order to assess the functional
use, different ADL related tasks, as shown in figure 6.1, were designed as follows:

I- Relocating an object on a level plane: This task consisted of moving the
WMRA from the home position (H), picking up an object from quadrant-1
and positioning it in quadrant-2. Each quadrant was 8 deep and 11.5” wide.
The quadrants were on a table surface 30 above the floor surface.

2- A pronation / supination function to simulate a pouring function: This task

consisted of moving the WMRA from the home position (H), picking up a

122

www.manaraa.com

water bottle from quadrant-1 and pouring the water into a cup in quadrant-2.
Each quadrant was 11.5” deep and 8” wide.

3- Accessing a higher level cabinet: This task consisted of moving the WMRA
from the home position (H), picking up the object from the surface of a shelf
(24”) above the surface of the table and placing it on the table surface.

4- Picking up an object from the floor: This task consisted of moving the WMRA
from the home position (H) to the floor (1), picking up the object and placing

it on the table surface (2).

}4 SAIN ’ 2
[|
2 [A\

o H o f H\
N NS B 0™
(@) (b) (© (d)

Figure 6.1: Four Different ADL Tasks.

Each task was performed three times and the time was recorded. The Raptor was
tested with the joystick interface and the Manus with the joystick and the keypad
interfaces. The input device for Raptor consists of an eight-way joystick. An additional
set of switches controlled the opening and closing of the gripper. The four-way joystick
of Manus controls the arm and the gripper using four different menus in the Cartesian
control mode. The user accesses the menus by a quick tap of the joystick in either
direction. The keypad interface consists of 16 buttons that the user can activate for
control of the WMRA. Both the keypad and joystick systems offered a visual display to

the user indicating the menu and function.

123

www.manaraa.com

6.2.2. The Tested User Interfaces

Three user interface devices were tested in this clinical study, two different
joysticks and one keypad. These devices were supplied by the manufacturer of these
robotic arms, and they had no flexible robotic system to take third-party user interfaces.
Manus uses a two dimensional joystick, four-way joystick as shown in figure 6.2, that is

easy to move in all directions in its circular motion.

Figure 6.2: Four-Way Joystick for Manus.

Manus was also equipped with another user interface that uses a 4X4 matrix of
buttons on a keypad as shown in figure 6.3. This device works individually from the

joystick, and it has a clear display of button functions.

Figure 6.3: Eight-Button Keypad for Manus.

124

www.manharaa.com

The third user interface came with Raptor, which is a two-dimensional, eight-way
joystick as shown in figure 6.4. That joystick can travel only along the eight directions to
control the arm, and if the direction does not match one of these eight ways, the joystick

doesn’t move.

Figure 6.4: Eight-Way Joystick for Raptor.

6.2.3. Population of the Chosen Users with Disabilities

In this clinical study, two individuals with disabilities (C5-6 quadriplegia) of
similar size and weight, who have been power wheelchair users for 25 years, were
selected to test the evaluation test bed. The home position for each WMRA was chosen as
the stored position in which the user would normally place the arm when travelling. After
each user was trained on the use of the WMRA device, they were timed on the
performance of each task. Errors were noted if the object was dropped, placed 6” beyond
the destination or the task was incomplete. In the second phase, cognitive load was added
to determine the effect on the time. This was done by asking the subjects a series of

questions using a telephone headset as they performed each task.

125

www.manaraa.com

6.2.4. Clinical Test Results on User Interfaces

In the tests conducted by this study, the users were active power wheelchair users,
and they favoured a joystick interface, but did not like using a two dimensional control
for three dimensional output. A space-ball or glove with voice recognition and macro
controls would be far more efficient. The tests showed that the Raptor’s 2D, 8-way
joystick control interface was the easiest to understand and learn. However the users
found it difficult to activate the secondary switch for opening and closing the gripper.
The Manus with joystick was the most difficult to learn and errors were caused by the
user when using the joystick to access the menu structure. The keypad offered direct
control and was most efficient. However the users had difficulty with the size of the

buttons and shape on the keypad as shown in figure 6.5.

Figure 6.5: Clinical Testing of the Keypad by a Power Wheelchair User.

In moving the object in the same plane, the users had difficulty picking up objects

from quadrant 1 and took an average of 180 seconds to pick up the object using Raptor as
126

www.manharaa.com

shown in figure 6.6. Once the object was picked up, positioning it in quadrant two was
done in 15-30 seconds and the return to home occurred in 20 seconds or less. The same
task took about half the time when Manus was used with the keypad. Cognitive loading
interestingly did not affect the initial phase of the task (H-1), but significantly increased
the time trebled for the remainder of the task. The users had difficulty with diagonal

movement of the arms.

Figure 6.6: Clinical Testing of the Joystick by a Power Wheelchair User.

The pouring task was the most difficult and the operation of tilting the bottle often
caused the water to spill outside the receiving cup when Raptor was used. The model
presented was a useful test to evaluate WMRA. Both the degrees of freedom and the
control interface are critical for an efficient WMRA use. Performance was best in the
case of the Manus with the keypad, where sufficient degrees of freedom existed with the

least complicated user interface control. However, the performance can be greatly

127

www.manaraa.com

enhanced by a more intuitive control with less cognitive load. Other user interfaces may

put these two arms in a better usability when used by people with disabilities.

6.3. The New WMRA User Interfaces Used

One of the most difficult situations that can affect the outcome of the use of
WMRA systems is the existence of two individual user interfaces to individually control
the power wheelchair and the robotic arm. In the new WMRA system, since both the
wheelchair and the arm are being controlled in the same control algorithm, a single user
interface can be used to perform ADL tasks without the need of user-cooperated motion
from two different interfaces. In the program structure, flexibility was one of the
objectives in the design of user interfaces so that a wider range of these interfaces can be

used based on the user’s abilities and preference.

6.3.1. Six-Axis, Twelve-Way SpaceBall

This user interface makes a three dimensional motion that corresponds to the six
Cartesian space variables used in the WMRA. Three translational directions in their
positive and negative values, and three rotational directions in their positive and negative
values. Figure 6.7 shows the SpaceBall device that is programmed and used in the control
software implementing the control algorithm discussed in this work. In addition to the
SpaceBall’s main functionality, twelve fully programmable buttons were added for any
sub-commands that might be used in the control of the WMRA system. The problem in

this device is that it is stiff and might be hard to move by people with disabilities.

128

www.manaraa.com

Figure 6.7: Twelve-Way SpaceBall.

6.3.2. Computer Keyboard and Mouse

Another user interface is the computer keyboard and mouse, where the user might
prefer the use of these devices as shown in figure 6.8. This option was programmed in the
control algorithm in case a computer is equipped with special software, such as speech

recognition software, that the user might be using for other functions.

Figure 6.8: A Keyboard and a Mouse.

129

www.manharaa.com

6.3.3. Touch Screen on a Tablet PC

This is one of the main user interfaces that can be used in this application since a
tablet PC is already installed as part of the control hardware. The implementation of the
control structure included this option in both simulation and actual WMRA motion. The
touch screen used is of a Fujitsu Lifebook tablet PC equipped with a 12-inch active

digitizer as shown in figure 6.9.

Figure 6.9: A 12-Inch Touch Screen of a Tablet PC.

This user interfaces can be used with the newly developed graphical user interface
(GUI) program shown in figure 6.10, where the user can touch any of the directional

buttons to activate the proper Cartesian directional motion of the WMRA system.

) WMRA_screen

‘$” ¥ stopt | | L L

Figure 6.10: GUI Screen Used for the Touch Screen.
130

www.manharaa.com

6.4. The Brain-Computer Interface (BCI) Using P300 EEG Brain Signals

Many people with severe motor disabilities need augmentative communication
technology to enable them to control different devices independently. Those who are
totally paralyzed, or “locked-in,” cannot use conventional augmentative technologies, all
of which require some measure of muscle control. Over the past two decades, a variety of
studies has evaluated the possibility that brain signals recorded from the scalp or from
within the brain could provide new augmentative technology that does not require muscle
control [58] for a comprehensive review. These BCI systems measure specific features of

brain activity and translate them into device control signals as shown in figure 6.11.

BCI SYSTEM

SIGNAL PROCESSING

SIGNAL DIGITIZED F Translati DEVICE
___> Feature |y |Translation
ACQUISITION | SIGNAL COMMANDS

Extraction Algorithm

AckUPp
=
N
\ 2N
) iviAN
\

Figure 6.11: Basic Design and Operation of the BCI System.

6.4.1. The P300 EEG Signal
The P300 is a neural evoked potential component of the electroencephalogram, or
EEG [59]. This event-related potential (ERP) appears as a positive deflection of the EEG

voltage at approximately 300 ms. It dominates at parietal electrode sites. The P300 is

131

www.manaraa.com

supposed to follow unexpected sensory stimuli or stimuli that provide useful information
to the subjects according to his/her task.

The P300 only peaks in the vicinity of 300 millisecond for very simple decisions
[59]. More generally, its latency appears to reflect the amount of time necessary to come
to a decision about the stimulus. The P300 also has useful properties of being larger to
rare stimuli, especially if they are targets. The amplitude of the P300 therefore gives
information about how the person is categorizing the stimuli and how rare they are
considered to be subjectively. The P300 is only seen when the person is actively keeping
track of the stimulus so it also gives information about what they are paying attention to,
which makes it useful for BCI applications. A further parameter is the method of
feedback used and this is shown in studies of P300 signals. Patterns of P300 waves are
generated involuntarily (stimulus-feedback) when people see something they recognize

and may allow BClIs to decode categories of thoughts without training patients first.

6.4.2. The Use of the BCI

The features used in studies to date include slow cortical potentials, P300 evoked
potentials, sensory motor rhythms recorded from the scalp, event-related potentials
recorded on the cortex, and neuronal action potentials recorded within the cortex. These
studies show that non-muscular communication and control is possible and might serve
useful purposes for those who cannot use conventional technologies. To people who are
locked-in (e.g., by end-stage amyotrophic lateral sclerosis, brainstem stroke, or severe
polyneuropathy) or lack any useful muscle control (e.g., due to severe cerebral palsy), a

BCI system, as shown in figure 6.12, could give the ability to answer simple questions

132

www.manaraa.com

quickly, control the environment, perform slow word processing, or even operate a
neuron-prosthesis or orthosis [58]. For easier, non-invasive use of this neuro-imaging
technology, the user wears a head mask fitted with several electrodes to measure the

P300 EEG signals from the activities of the brain as shown in figure 6.12.

Figure 6.12: The Non-Invasive BCI Device.

6.4.3. The BCI-2000 Interface to the New 9-DoF WMRA System

In collaboration with the Department of Psychology at the University of South
Florida, we were able to develop a new user interface that uses the portable BCI-2000
device to control the new WMRA system even for people who are paralyzed from the
neck down. The screen shown in figure 6.13 was developed to give the user the proper
prospective of what to control, and at the same time to serve as the user feedback for the
selected image. The BCI-2000 scans the rows and columns of the screen choices shown
in figure 6.13 at high frequency so that one row or one column is shown at a time. The

user is asked to look at the symbol that he/she would like to use to control the WMRA

133

www.manharaa.com

system and count the number of times the/she saw that symbol. Every time the user
counts one more view of the symbol, the P300 EEG signal is recorded, and the
corresponding row or column that was shown at that moment was also recorded. In about
15 seconds, the BCI-2000 gives the selected row and column of the shown matrix on the
screen. Once this value is received by the WMRA control program, it translates it into a

Cartesian velocity in the proper direction and executes the algorithm to move the arm.

Figure 6.13: Basic Design and Operation of the BCI System.

6.4.4. Testing of the BCI-2000 with the WMRA Control

Before the BCI-2000 was tested to control the robotic arm, a volunteer human
subject was trained properly to use the device. The BCI-2000 was also trained to be
optimized for that particular human subject, and it showed high accuracy of the selected
choice (ranging from 92% to 100 %). These gains were recorded to be used for the actual
test. During the testing phase, a successful control with high accuracy of the motion

response was apparent. Few potential problems were noticed as follows:

134

www.manaraa.com

1- Every full scan of a single user input takes about 15 second, and that might
cause a delay in the response of the WMRA system to change direction on
time as the human user wishes. This 15 second delay may cause problems in
case the operator needs to stop the WMRA system for a dangerous situation
such as approaching stairs.

2- After an extended period of time in using the BCI-2000 system, fatigue starts
to appear on the user due to his concentration on the screen when counting the
appearances of his chosen symbol. This tiredness on the user’s side might be a
potential problem.

3- In case the wrong selection was made by the BCI-2000, the user will be
frustrated to return back to his/her original choice.

4- When the user is constantly looking at the screen and concentrating on the
chosen symbol, he/she will not be looking at where the WMRA is going, and
that poses some danger on the user.

Despite the above noted problems, a successful interface with a good potential for

a novel application was developed.

6.5. Expandability of User Interfaces

During the programming and implementation of the designed control algorithm,
modularity and flexibility of the WMRA system was taken into account. For this purpose,
all mentioned user interfaces are converted into a corresponding vector that is interfaced
to the main program through a single function. Changing the user interface, or adding

other interfaces is very easy in this context since the output of any new user interface can

135

www.manaraa.com

be reformatted to the proper vector format in a new function that will directly interface to
the main program and be used as a new interface selection. Other possible interface

selections can be added, including the following devices.

6.5.1. Omni Phantom Haptic Device

The force-feedback enabled Phantom device from SensAble Technologies shown
in figure 6.14 can be used as one of the user interface devices. It carries a stylus mounted
on a six-joint mechanism with encoders and force transducers. The Cartesian coordinate
velocities of the tip of the stylus can be mapped into an input to the commanded

Cartesian velocities of the WMRA system.

|

Figure 6.14: The Phantom Omni Device from SensAble Technologies.

The Phantom allows users to actually feel virtual objects if integrated with a
sensory suite. The Phantom contains 3 motors, which control the x, y, and z forces
exerted on the user's fingertip. Mounted on each motor is an optical encoder to determine

the X, y, and z position of the user's fingertip. The torque from the motors is transmitted

136

www.manharaa.com

through a proprietary transmission cable to a stiff, lightweight linkage. Incorporated at
the end of this linkage is a passive 3 degree-of-freedom set of gimbals attached to a
thimble [60]. The passive gimbals allow the thimble to rotate so that a user's fingertip

may assume any comfortable orientation.

6.5.2. Sip n’ Puff Device

The Sip n’ Puff is a term used to describe a dual-switch system which utilizes
pneumatic switches. A single piece of tubing, accessible to the user, controls both
switches as shown in figure 6.15. A slight pressure (puff) operates one switch, while a
slight vacuum (sip) operates the other, and the proper signal to the controlled device is
sent through an RS232 serial port. This device is widely used in assistive technology
applications for control. A disadvantage of this device is the fact that it acts as an on/off
switch, which means that its use will be very complicated for the user to control functions

that need many input choices.

Figure 6.15: The Sip and Puff Input Device.

137

www.manharaa.com

6.5.3. Head and Foot Switches

Head and foot switches such as the ones shown in figure 6.16 can also be used for
a user interface to the WMRA system in case the user’s foot or head muscles are the
strongest controllable muscles in his/her body. Some of the foot switches allow the user
to rest the activating body part on top of the switch between activations. The head switch

can be activated with a light pressure exerted by the user’s head,

Figure 6.16: Head and Foot Switches.

6.6. Summary

In this chapter, several user interface options were presented. A clinical study of
the user interface devices used by the commercially available WMRA was presented, and
a test procedure was described. The high-level control algorithm of the WMRA can be
interfaced with many user interfaces, but the ones tested were the SpaceBall, the
Keyboard and mouse, the touch screen, and the Brain-Computer interface (BCI) that
reads the P300 EEG signal from the brain to control the WMRA just by paying attention
to a visual display. Other devices that can easily be adapted to the WMRA control

include the Phantom Omni haptic devices, the Sip n’ Puff devices, and the head and foot

switches among others.

138

www.manharaa.com

Chapter 7:

Testing in Simulation

7.1. Introduction

When new concepts in control are developed, it is important to validate them by
means of simulation. In our case, the control methods that combined the manipulation
and mobility of the newly developed WMRA were tested in simulation before applying
them to the actual WMRA system. This step is very important for debugging and
inspecting the methods before applying them into the actual arm so that no harm to the
physical system is done in case of unexpected errors. In this chapter, we will show the
different ways this theory was implemented, and the different programming packages

used for this purpose. Figure 7.1 shows a flowchart of the program procedure.

7.2. User Options to Control the WMRA System

In the control software, several options were made available to include the
modularity, re-configurability and flexibility requirements for this WMRA system. These
options were programmed to work in combination with any possibilities that make sense
of the control as follows:

1- What to control: This option gives the user the option to control both position

and orientation of the end effector with its six Cartesian variables, or control

139

www.manaraa.com

the position only and ignore the orientation to bring the Cartesian space
variables down to three variables and use the resultant six-degree of
redundancy system for different sub-task optimization.

What to run: In this option, the user is given three choices. These choices are
to run the robotic arm only while freezing the wheelchair, to run the
wheelchair only while freezing the arm in certain configuration specified by
the user, or to run the combined WMRA system that uses both the robotic arm
and the power wheelchair.

What is the control coordinate reference frame: This option gives the user the
choice of controlling the end effector in reference to the ground coordinate
frame, the wheelchair coordinate frame, or the gripper’s coordinate frame.
What kind of simulation to run: This option gives the user to run Virtual
Reality simulation, Matlab wire frame simulation, both simulations together,
or no simulation at all.

Run the actual WMRA: This option gives the user the option to run the
WMRA system or not when running the control software.

Print diagnostic plots: This option allows the user to print out the various
states of the system variables in terms of position, velocity and acceleration of
the points of interest in the WMRA system, as well as the manipulability
measure of both the arm and the WMRA system.

Optimization Method: This option gives the user the option to use the eight

optimization combination methods discussed in chapter five. It also allows the

140

www.manaraa.com

user to select the joint limit avoidance and/or the joint limit and obstacle
safety stop options on the control system.

8- Close all when completed: This option gives the user the option to close or
keep open the simulation windows, the diagnostic plots, and the WMRA
control DLL library that connect to the actual WMRA.

9- User interface options: This option allows the user to choose autonomous
operation using position control, velocity control of the end effector. It also
allows the user to choose teleoperation control using the SpaceBall, the BCI-
2000 system, or the touch screen.

10- Trajectory generator: This option allows the user to chose the trajectory to be
linear, polynomial, or polynomial with parabolic blending.

11- Where to start: This option gives the user the option to start the WMRA
system at the ready position, the current position or a user-specified position.

12- Include pre-set task motion: This option gives the user the option to initialize
the system from its parking position to its ready position, and when the user is
finished using the WMRA system, it gives the option to go back to the ready
position and the park position, respectively.

The above user choices were adequate to allow the user to choose the most
comfortable options based on his/her preference so that the WMRA could be used
efficiently with as many user-specific needs as possible. When the user chooses to control
the wheelchair only, the wheelchair motion is slow relative to the normal wheelchair
velocities. If the user needs a normal operation of the wheelchair, the control system can

shut down, and the control switch can be switched to the standard wheelchair controller.

141

www.manaraa.com

7.3. Changing the Physical Dimensions and Constraints of the WMRA System

It was noted in previous programming experience that a program can be
extremely difficult to modify by other than the developer if any physical changes or
modifications to the system occur. Since this is a project that could involve several
changes, it is important to store few files that describe the physical characteristics of the
system, and have each function or script programmed to read from these files so that any
physical changes to the system can be easily accommodated in the control software.
Three files were dedicated for this purpose as follows:

1- Wheelchair dimensions: A file named “WMRA WCD.m” was designed to
carry the physical dimensions of the wheelchair that are used in the program,
as well as the mounting location of the robotic arm on the wheelchair.

2- Robotic arm parameters: A file named “WMRA DH.m” was designed to
carry the D-H parameter table of the robotic arm.

3- Robotic arm joint limits: A file named “WMRA _Jlimit.m” was designed to

carry the maximum and minimum joint limits of the robotic arm.

7.4. Programming Language Packages Used

In order to fulfill the need of implementing the program in simulation and in the
physical arm, it was important to choose compatible programs whenever possible. For the
physical arm, the communication protocols and functions that send the commands and
receive the sensory information from the controller boards use C++ with certain DLL
library functions. On the other hand, simulation is best done using Matlab 2006b from
MathWorks because of its powerful toolboxes that include good packages for simulation.

142

www.manaraa.com

Collect Physical
Data and User
Choices

Run the Forward

Kinematics

Procedures
Teleoperation Autonomous
Get Velocities Run Trajectory
and Port Info Generator

Initialize the
System and
Timer

Run the
Procedures for
the Jacobians and
Augment Them

Calculate the
» Cartesian Space
Norm of Errors

Run the Resolved
Rate Solution and
Optimization
Procedures

Update the Joint
Space Variables

Send the
Commands to the
Joints and
Wheels Run the Forward

Kinematics
Procedures

Update the
System Variables

Synchronize the
Run Time and the
Commanded

Velocities

.| Deactivate and
"|Reset the Syste

Display Optional
Charts

i

Figure 7.1: Program Flowchart.

143

www.manaraa.com

To be compatible with the goal of modularity of the physical system, a separate
file that includes the physical characteristics of the robotic arm and the wheelchair was
created, and every thing in the program refers to that file to read the piece of information
needed for its calculations. In this sense, the program can be easily modified for any other
WMRA system with different physical characteristics by editing that file and changing

the information from the current system to the new system.

7.4.1. Programs in C++ Programming Language

Since the PIC Servo SC controller boards were interfaced to the PC using DLL
libraries that are programmed in C++ as functions, it was clear that this programming
language had to be used for communication with the PC. In terms of simulation, these are
not needed since we did not need to communicate with the actual WMRA to perform the
simulation. However, for the Space Ball to be implemented and integrated with the
system, C++ programming was required as its drivers were compatible with a C++
library. The program is designed to run the driver of the SpaceBall and collect the user
inputs from the device and send it to a Matlab environment as a vector variable that is

changed constantly as the user moves the SpaceBall.

7.4.2. Matlab Programming Environment

The main programming language used to implement the control system is Matlab
since it includes a lot of libraries and simulation capabilities. The program was coded into
Matlab code that includes the main script as well as several functions created for certain

purposes. Each one of the function was created in such a way that it was simple to

144

www.manaraa.com

understand, and at the same time easy to be modified for future changes. The main script
runs in Matlab command prompt and starts by asking the user questions and collecting
the answers so that it runs according to the user preferences. When the program runs in
simulation mode, the user can chose between simulation in wire frame graphics or in
Virtual reality graphics. In the wire frame graphics, precise Cartesian coordinate lines
were drawn and simulated through time for the ground, wheelchair, arm base and end-
effector coordinate frames. Another coordinate frame was added in case autonomous
operation was required and the desired destination coordinate frame can be shown. In this
case, at the end of simulation, the end-effector’s coordinate frame coincides with the
destination coordinate frame. This gives a precision representation of the simulation
accuracy.

At the end of simulation, optional plots can be displayed, including the positions,
velocities and accelerations of the joint space variables, the Cartesian coordinates of both
the end-effector and the wheelchair, and the manipulability measure throughout the
simulation period. These plots are very useful to understand the behavior of the system
and the response throughout the simulation and when certain characteristics or methods
are chosen over others. They also help in diagnosing any problems or potential problems
that may appear when the control is implemented. Figure 7.2 shows a sample of the
command prompts when the user uses the program from the common command line of
Matlab to use the simulation in autonomous mode. Figure 7.3 shows the simulation
window of the WMRA wire frame with the Cartesian coordinate frames attached and
color-coded. The results of the simulation will be shown and discussed in the next
chapter.

145

www.manaraa.com

>>WMRA Main

Choose what to control:
For combined Wheelchair and Arm control, press "1", For Arm only control, press "2", For Wheelchair
only control, press "3". 1

Choose whose frame to base the control on:
For Ground Frame, press "1", For Wheelchair Frame, press "2", For Gripper Frame, press "3". 1

Choose the cartesian coordinates to be controlled:
For Position and Orientation, press "1", For Position only, press "2". 1

Please enter the desired optimization method:
(1= SR-1 & WLN, 2=P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) 1

Do you want to include Joint Limit Avoidance? (1= Yes, 2= No) 1
Do you want to include Joint Limit/Velocity and Obstacle Safety Stop? (1= Yes, 2= No) 1

Choose the control mode:
For position control, press "1", For velocity control, press "2", For SpaceBall control, press "3",
For Psychology Mask control, press "4", For Touch Screen control, press "5". 1

Please enter the transformation matrix of the desired position and orientation from the control-based frame
(e.g.[0011455;-100369;0-10999;000 1]) [100800;010-500;001350;0001]

Please enter the desired linear velocity of the gripper in mm/s (e.g.50) 50

Chose the Trajectory generation function:
Press "1" for a Polynomial function with Blending, or
press "2" for a Polynomial function without Blending, or press "3" for a Linear function. 1

Choose animation type or no animation:
For Virtual Reality Animation, press "1", For Matlab Graphics Animation, press "2",
For BOTH Animations, press "3", For NO Animation, press "4". 2

Would you like to run the actual WMRA? For yes, press "1", For no, press "2". 2

Press "1" if you want to start at the "ready" position,
or press "2" if you want to enter the initial joint angles. 1

Press "1" if you want to include "park" to "ready" motion, or press "2" if not. 1

Press "1" if you do NOT want to plot the simulation results, or press "2" if do. 1

Simula. time is 7.460476 seconds. Elapsed time is 7.513704 seconds.

Do you want to go back to the "ready" position? Press "1" for Yes, or press "2" for No. 1
Do you want to go back to the "parking" position? Press "1" for Yes, or press "2" for No. 1|

Do you want to close all simulation windows and arm controls? Press "1" for Yes, or press "2" for No. 1

>>
>>

Figure 7.2: A Sample Command Prompts for Autonomous Operation Mode.

146

www.manaraa.com

-} Figure 11 g@
~

Fle Edit View Insert Tools Desktop Window Help

DEEE b aafEE 0B = o

WMRA Animation

m— LOBOTIC -

ARM
— iheelaxle

* wheslchair

initial position
== desired position

current position
=== arm base position
= round position

local x-axis

1200 ooal yeaxis

local z-axis

foon -

nt PR

2z (mrm)

i R
an

m

0
800

-800 %, (mrm)

¥ {mrm)

Figure 7.3: Simulation Window of the WMRA System in Wire Frame.

7.4.3. Simulation with Virtual Reality Toolbox

The same simulation discussed in the previous sub-section was also programmed
and simulated using Virtual Reality simulation. SolidWorks models of each one of the
link segments of the robotic arm were drawn, as well as the wheelchair model and the
two driving wheels separately. All drawn models are then converted into WMRL files
that use WMRL language. A new VRML program was created to call each individual
segment of the WMRA system in a hierarchy, and relate them together using variable
positions of the joint space variables. In that environment, enhancements were made to

make the background and the floor look realistic in simulation. The new VRML file

147

www.manaraa.com

created was then called during Matlab simulation and updated with the new joint space
variables so that the view of the WMRA change as the simulation progresses.

Different view points were created to view the system in Virtual Reality. Unlike
workstation robots, this WMRA is not stationary, and it eventually gets out of the
simulation window if the wheelchair is driven too far. For this reason, several dynamic
views are also developed to follow the wheelchair as it moves so that it stays within the
viewing area of the window. These views can be changed during the simulation, and snap
shots or videos can be recorded. Figure 7.4 shows a static view of the Virtual Reality

program window that shows the WMRA in the ready position.

Figure 7.4: A Sample of the Virtual Reality Simulation Window.

148

www.manharaa.com

The Virtual Reality model used for simulation was tested using several user
interfaces, including the SpaceBall, the keyboard and mouse, the brain-computer
interface (BCI2000) and the touch screen interface. The program performed in a

satisfactory way with precise and fast simulations with no noticeable delays.

7.4.4. Graphical User Interface (GUI) Program

Using the main program in Matlab to control the robotic device was hard for a
user with disabilities to accomplish because of the initial questions asked by the program
to bring the control up to the user preference. A new GUI program was created to ease
this process and make it practical and user friendly for persons with disabilities. The main
program was integrated with a GUI with default values so that the user can store the
default values in the main program and use it directly as the software opens. This feature
dramatically reduces the burden on the user to fill out the initial options every time he/she
wants to use the WMRA system. Figure 7.5 shows the graphical user interface with its
default options. To make it even easier and less confusing to the user, different windows
or buttons will disappear if they don’t apply to the user’s selected option or when next
options do not apply to the currently chosen mode. Since the tablet PC is equipped with a
touch screen, the user can easily tap the selections. When a touch-screen user interface
control is selected, another screen appears with the functions and directions that the user
can choose appear as shown in figure 6.8. This screen accepts commands by touching the

intended button, or by pressing the button by mouse or the equipped touch pad.

149

www.manaraa.com

J WMRA_Main_GUI

File Help

——\What to cortrol? Usar irterfacs? Where to start?
Position/Crisrtation vl |P03iti0n e v| |Ready Position Vl
Position control
T Desired Td; (4 x 4) Include park to ready? ——
— \vhat to run® (3%3) (3% 1) mm— HES Vl
R v | of | of | 1| [_ress] ' e
—— i (rad)l—— weci: (i pad)
Control co-ordinates? | &l | | Dl | Ij| | 369|
Ground - | D| | 1 | | Dl | 999|
Simulation? ‘ 0 L Ll L ‘
' [
Linear velocity of gripper T I:I
G v | |
W 50| mmisec ljl
Run WwhiRA? : :
Trajectory function
-I 5708
Mo - |PolynomiaIWB v| -
Plot=? “elocity cortrol
Welocity componerts Y. 30 hack to reacy?
Mo R
| 70 | 70 | | =70 | [, ¥, Z] mmfzec I‘r’es w |
Onptitvize method? | 0.001 | | o001 | | 000 | (hz, 1y, t2] radisec Go back to park?
|SR|W|-N V| Tirme T=: | ;_-| rasie e v|
| JL aviod: JLAC st
i R Spacebal [psychology mask §screen cortral
—— Gripper ——
Cloze all when dang? Liner velacity & : = e o Start
-pen
7 Port nurmber i i
Stop
Figure 7.5: The Graphical User Interface (GUI) Screen with the Defaults.
7.5. Comments on Interfacing Different Programs Together

When this program was created, we knew that communication problems would

occur between software and hardware or software and software. The first problem was

integrating the SpaceBall and interfacing it with Matlab. DLL libraries that are written in

C++ are possible to read and use the functions they contain, but the problem comes when

these functions use different data structure than Matlab while compiling. This means that

150

www.manharaa.com

the functions are either unusable or very hard to use. In the case of SpaceBall, a new C++
program was created to send the data to a Matlab environment and make it ready for use.

Another problem came when we were going to use the program to operate the
actual WMRA system. Since it uses functions from complex DLL libraries, we had to re-
create functions in C++ and compile them into DLL files in a data structure that is
compatible with C++, and then use them in Matlab and call these functions to
communicate with the PIC Servo SC controller boards used in controlling the WMRA.
This works out well, except that some times the virtual link between Matlab and the DLL
library fails, and that results in unresponsive WMRA when commanded to do a task. This
problem can be taken care of if the program controlling the arm is separated from the
program that simulates the arm. This way, the program that controls the arm can be
rewritten in C++ so that less interfacing problems will appear.

The BCI 2000 user interface also uses a C++ program for processing and sending
the data out. In this case, a networked TCP/IP port was dedicated to communicate
between the BCI2000 and the computer that is running the control algorithm, and Matlab

was interfacing with the TCP/IP port to get the date and use it in the control software.

7.6. Summary

In this chapter, a description of the simulation software was presented and
discussed. Different programming languages and packages were used to create different
applications and interface them together. The main program was written in Matlab, and
two different graphic simulation were used. Wire frame graphical simulation of WMRA

was created for precise inspection of the simulation and its results, and Virtual reality

151

www.manaraa.com

simulation was created for its realistic look and appearance. Several plots can be shown
to describe the system behavior during the simulation period.

The main program can be run in two different ways, one is through the common
command line of Matlab, and the other through a graphical user interface (GUI). The
GUI was more user-friendly and easier for use by people with disabilities. Several
communication and interfacing problems were faced during programming different parts

of the WMRA system together with the control software. The solutions to these problems

were presented.

152

www.manharaa.com

Chapter 8:

Simulation Results

8.1. Introduction

Simulation of many different cases to test the theory developed in chapters 3, 4,
and 5 is important to validate the control algorithm and the methods used for control,
especially if these algorithms are going to be used to control the actual WMRA system
built at USF. In this chapter, simulation of these cases will be shown, and the effects of
different control schemes and values will be discussed. Many plots of Cartesian space
variables and joint space variables will be shown in positions, velocities and accelerations
of these variables throughout the simulation period. The effectiveness of the singularity
avoidance schemes will be shown by plotting the manipulability measure of the robotic
arm and the combined WMRA system. The control system of the 9-DoF WMRA system
is implemented in simulation using Matlab 7.0.4 with Virtual Reality toolbox installed on

a PC running Windows XP.

8.2. Simulation Cases Tested
Several cases were tested in this simulation using the Weighted Least Norm
solution control with Singularity-Robust inverse of the Jacobian since this was the most

effective way of controlling the WMRA system. Five different values were tried for the

153

www.manaraa.com

diagonal elements of the weight matrix (W) to implement the control system and to verify
its effectiveness. These values were expressed in the following five cases:

1- Case I: The weight matrix of the first case carried in its diagonal elements the
same value “1” for all 9 variables. That means that all seven joints of the arm
and the two wheelchair position and orientation variables will have equal
potential of motion.

2- Case II: In the second case, “W” carried “10” for each of the arm’s seven
joints, and “1” for wheelchair’s position and orientation variables, which
means that the wheelchair’s two variables are 10 times more likely to move
than the arm’s joints.

3- Case III: The third case carried weights of “1” for the arm’s joints, and “100”
for the wheelchair’s two variables in “W”, which means that the arm is 100
times more likely to move than the wheelchair.

4- Case IV: In the fourth case, “W” carried weights of “1” for the arm’s seven
joints and the wheelchair’s orientation variable, and a weight of “100” for the
wheelchair’s position. This means that the forward or backward motion of the
wheelchair is 100 times less likely than the motion of the rest of the system

5- Case V: The last case was the opposite of the fourth case, where the orientation
of the wheelchair took a weight of “100”, and the other eight variables took a
weight of “1”. This means that the wheelchair’s rotational motion is 100 times
less likely to occur than the motion in the arm’s joints and the wheelchair’s

translational motion.

154

www.manaraa.com

To show the effect of choosing the state variables of the wheelchair’s non-
holonomic motion in the planar Cartesian coordinates as the linear position and angular
orientation rather than the two wheelchair wheel angles, two other cases were added for
comparison of the WMRA system’s behaviour when either method was used as follows:

1- Case A: When the state variables representing the wheelchair’s motion were
selected as the two angles of the wheelchair’s driving wheels.

2- Case B: When the state variables representing the wheelchair’s motion were
selected as the linear forward motion and the angular motion of the wheelchair
in the planar Cartesian space.

Each one of these individual cases will be discussed, and the results will be shown

to express the difference between these cases and the effectiveness of the methods and

variables chosen.

8.3. Results and Discussion of the First Five Cases

The first five cases dealing with different weight values in the weight matrix “W”
will be discussed in this section. The simulation was tested by commanding the WMRA
system to move the gripper’s frame from its ready position defined by the following

homogeneous transformation matrix based on the ground frame:

0 0 1 455
-1 0 0 -131

T = (8.1)
0 -1 0 899
0 0 0 1

Moving the arm from its ready position defined above to the desired position

defined by the following homogeneous transformation matrix based on the ground frame:

155

www.manaraa.com

1 0 0 455

T, = 0 0 1 970 82)
0 -1 0 550
0 0 0 1

Figure 8.1 shows the initial pose of the WMRA system at the beginning of the
simulation when it was at the ready position. The end-effector’s position and orientation
on the Cartesian space were the same in all trials since the trajectory was the same for all
five cases tested. Figure 8.2 shows the end-effector’s position and figure 8.2 shows the
end-effector’s orientation during simulation as it moves from the initial pose to the
commanded point in the workspace. The motions of the individual variables in the joint
space were completely different for each one of the cases depending on the selected

weight for each variable so that we can get the desired behaviour of the WMRA system.

Figure 8.1: The Initial Pose of the WMRA in Simulation.

156

www.manharaa.com

Hand Position vs Time

(ww) ‘uonisod

time, (sec)

Figure 8.2: Position of the WMRA During Simulation.

Hand Orientation vs Time

roll

pitch
yaw

20

(Bap) ‘uonejusuo

12

10

time, (sec)

Figure 8.3: Orientation of the WMRA During Simulation.

157

www.manharaa.com

8.3.1. WMRA Configurations in the Final Pose of the Simulation

During simulation, each case behaved differently in terms of solved values of the
joint space variables. Figures 8.4, 8.5, 8.6, 8.7 and 8.8 show the final poses of the
WMRA system after the end-effector reached the desired destination for the five cases
studied. Observing the figures, it was apparent from the first case compared to the others
that all seven joints of the arm and the two wheelchair’s position and orientation variables
had equal potential of motion as shown in figure 8.4. In the second case, the wheelchair’s
two variables were 10 times more likely to move than the arm’s joints, and that is
apparent in the results shown in figure 8.5. In the third case, the arm was 100 times more
likely to move than the wheelchair, and that can be clearly seen in figure 8.6, where the
wheelchair had a minimal motion and the arm did most of the motion.

The beauty of this simulation comes apparent in the last two cases, where in the
fourth case, the forward or backward motion of the wheelchair was 100 times less likely
than the motion of the rest of the system, and figure 8.7 shows how the wheelchair’s
forward motion was minimal. Figure 8.8 shows the last case, which is the opposite of the
fourth case, where the wheelchair’s rotational motion was 100 times less likely to occur
than the motion in the arm’s joints and the wheelchair’s translational motion.

These poses clearly show the property of combining the wheelchair’s motion and
the robotic arm’s motion under the optimization and redundancy resolution schemes
discussed in earlier chapters. It was also observed from running other tasks that took the
WMRA system out of its reach in the vertical direction that this method was stabilized by
ignoring some of the trajectory’s orientation or position errors as needed so that the

system doesn’t go out of control by producing high velocities in the joint domain.

158

www.manaraa.com

Figure 8.4: Destination Pose for Case [, When W =[1,1,1,1,1,1,1, 1, 1].

S

Figure 8.5: Destination Pose Case II, When W =[10, 10, 10, 10, 10, 10, 10, 1, 1].

159

www.manharaa.com

Figure 8.6: Destination Pose Case III, When W =[1,1,1, 1, 1, 1, 1, 100, 100].

e

Figure 8.7: Destination Pose Case IV, When W =1, 1,1, 1,1, 1, 1, 100, 1].

160

www.manharaa.com

e

o __.

Figure 8.8: Destination Pose Case V, When W=1[1,1,1,1,1,1, 1, 1, 100].

8.3.2. Displacements of the Joint Space Variables

The simulation program was designed to give different useful values and plots
throughout the simulation process for observation and diagnosis of any potential
problems that might occur during the task execution whether the physical arm is running
or if it is just the simulation. Among these plots are the joints’ angular displacements and
velocities. Figures 8.9 through 8.13 show the angular displacement versus time for the
arm’s seven joints throughout the simulation period for all five cases. The first case in
figure 8.9 shows the normal weights with no preference to any of the nine variables. In
the second case shown in figure 8.10, when the arm was assigned large weight in the
weight matrix, it was clear that the seven arm joints had minimal motion that was

necessary for the destination to be reached. That end-effector destination was impossible
161

www.manharaa.com

to reach by using the two wheelchair variables only. The last three cases shown in figures

8.11, 8.12 and 8.13 show an easy arm motion as compared to that of the wheelchair.

Joint Angular Displacements vs Time

(Bap) ‘so|bue juiof

time, (sec)

(LLLLLILILIIL

Figure 8.9: Arms’ Joint Motion for Case I, When W

Joint Angular Displacements vs Time

(Bap) ‘se|bue juiof

time, (sec)

[10, 10, 10, 10, 10, 10, 10, 1, 1].

Figure 8.10: Arms’ Joint Motion for Case II, When W

162

www.manharaa.com

Joint Angular Displacements vs Time

(Bap) ‘sa|bue juiof

time, (sec)

Figure 8.11: Arms’ Joint Motion for Case III, When W =1[1,1,1, 1, 1, 1, 1, 100, 100].

Joint Angular Displacements vs Time

(bap) ‘sa|bue juiof

(sec)

time

[1,1,1,1,1,1,1, 100, 1].

Figure 8.12: Arms’ Joint Motion for Case IV, When W

163

www.manharaa.com

Joint Angular Displacements vs Time

(o]
o

60

joint angles, (deg)

B
o

Figure 8.13: Arms’ Joint Motion for Case V, When W=1[1,1,1,1,1, 1, 1, 1, 100].

Another plot that was given in the simulation program was the track distances
drawn by each of the two wheels of the wheelchair. These plots were useful in particular
to observe the wheelchair’s motion. Figures 8.14 through 8.18 show these distances
driven through the simulation for all five cases. An important property of this
optimization method was apparent during simulation, and can be seen in figure 8.14,
which was minimization of singularity. As the arm was moving to the destination and the
left wheel was moving backwards, it reversed its motion in the middle of the simulation
period when the arm approached singularity as seen in figure 8.21. The maximum
wheelchair motion occurred in the second case as shown in figure 8.15, where the higher
weight was assigned to the arm, and the wheelchair was free to move. Figure 8.16 shows
the opposite, where the wheelchair moved the least among all cases since the weight was

assigned to the wheelchair’s motion and the arm did most of the motion.

164

www.manaraa.com

Wheels Track distances vs Time

(ww) ‘saoueysip Yoel} s|Paym

time, (sec)

(LLLLLILILILIL

Figure 8.14: Wheels’ Motion for Case I, When W

Wheels Track distances vs Time

(wuw) ‘sadue)sip Yoel} s|Paym

time, (sec)

[10, 10, 10, 10, 10, 10, 10, 1, 1].

Figure 8.15: Wheels’ Motion for Case 11, When W

165

www.manharaa.com

Wheels Track distances vs Time

4

(ww) ‘saouelsip yoel} s|paym

-20

12

10

time, (sec)

Figure 8.16: Wheels’ Motion for Case III, When W =11, 1,1, 1, 1, 1, 1, 100, 100].

Wheels Track distances vs Time

(wuw) ‘sadue)sip Yoel} s|Paym

time, (sec)

[1,1,1,1,1,1, 1, 100, 1].

Figure 8.17: Wheels’ Motion for Case IV, When W

166

www.manharaa.com

Wheels Track distances vs Time

140

120

100

80

60

40

20

wheels track distances, (mm)

-20

-40

-60
0

Figure 8.18: Wheels’ Motion for Case V, When W=1[1,1,1,1,1,1, 1, 1, 100].
Observing figures 8.17 and 8.18 shows how the opposite weights carried by the
position and orientation variables of the wheelchair in these two cases led to a rotation
as observed in figure 8.17, where both wheels carried the same but opposite motion, and

a translation as observed in figure 8.18, where both wheels carried the same motion.

8.3.3. Velocities of the Joint Space Variables

The velocity profiles of the five cases were observed, but the beauty of the
trajectory generator was apparent. Figures 8.19 and 8.20 show the velocity profiles of the
seven arm joints and the two wheelchair wheels respectively for case I. When using a 3™
order polynomial with parabolic blending, velocities ramped up or down at a constant
acceleration rather than going from zero to the desired joint velocities in no time. This

option was used in all simulation cases.

167

www.manaraa.com

Joint Angular Velocities vs Time

(s/Bap) ‘sa13000|9A julof

time, (sec)

(,1,1,1,1,1,1,1,1].

Figure 8.19: Arms’ Joint Velocities for Case I, When W

Wheels Track Velocities vs Time

(S/wwl) ‘sa1J000|9A YOorI} S[9ayM

)

time, (sec

(,1,1,1,1,1,1,1,1].

Velocities for Case I, When W

B

Figure 8.20: Wheels

168

www.manharaa.com

8.3.4. Singularities and the Manipulability Measure

Figures 8.21 through 8.25 show the manipulability index of both arm only and the
combined WMRA system. It is important to note here that these values were multiplied
by (10”) to get the normalized manipulability measure. It is clear that the manipulability
is much higher for the WMRA system than that of the arm only due to the fact that the
WMRA system carries two more degrees of freedom. In all five cases, the manipulability
measure was maximized based on the weight matrix. Figure 8.22 shows the
manipulability of the arm as nearly constant because of the minimal motion of the arm.
Figure 8.23 shows how the wheelchair started moving rapidly later in the simulation (see
figure 8.16) as the arm approached singularity, even though the weight of the wheelchair

motion was heavy. This helped in improving the WMRA system’s manipulability.

x 10 Manipulability Measure vs Time
3 T T T T T
S I | | Warm
| ~ | Tk | |
) AN o W
P | | | R
25 :,Af;: _ ,: ,,,,, J‘ ,,,,, i ,,,,, L ,,,,, : ,,,,,,
l l l l l
| | | | |
| | |) |
GLJ | | | | |
5 | | | | |
§ 2
= | | | | NG
> | | | | [
= | | | | | ~—~—
'_5 | | | | |
(_5 | | | | |
215 - P S A
c | | | | |
© | | | | |
> | | | | |
| | | | |
! | | | |
| ! | | |
- i Bl Il Sty o
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
05 | | | | |
0 2 4 6 8 10 12
time, (sec)

Figure 8.21: Manipulability Index for Case [, When W=1[1,1,1,1,1,1,1, 1, 1].

169

www.manaraa.com

Manipulability Measure vs Time

ainses|\ Ayjigendiueiy

time, (sec)

10, 10, 10, 10, 10, 10, 1, 1].

[10,

Figure 8.22: Manipulability Index for Case II, When W

Manipulability Measure vs Time

X 108

25
1

ainses|\ Ajjigendiuely

time, (sec)

Figure 8.23: Manipulability Index for Case III, When W =1, 1,1, 1, 1, 1, 1, 100, 100].

170

www.manharaa.com

Manipulability Measure vs Time

ainses|\ Ayjigendiueiy

time, (sec)

[1,1,1,1,1, 1,1, 100, 1].

Figure 8.24: Manipulability Index for Case IV, When W =

Manipulability Measure vs Time

X 108

WAFWI

25

ainses|\ Ajjigendiuely

time, (sec)

J1,1,1,1,1, 1,1, 100].

[

Figure 8.25: Manipulability Index for Case V, When W

171

www.manharaa.com

It is important to mention that changing the weights of each of the state variables
gives motion priority to these variables, but may lead to singularity if heavy weights are
given to certain variables when they are necessary for particular motions. For example,
when all the seven joints of the arm were given a weight of “1000” and the task required
rapid motion of the arm, singularity occurred since the joints were nearly stationary.
Changing these weights dynamically in the control loop depending on the task in hand

leads to a better performance.

8.4. Results and Discussion of the Second Two Cases

The two other cases tested in simulation were done to show the effect of choosing
the state variables of the wheelchair’s non-holonomic motion in the planar Cartesian
coordinates as the linear position and angular orientation rather than the two wheelchairs
wheel angles. In the first case (A), the state variables representing the wheelchair’s
motion were selected as the two angles of the wheelchair’s driving wheels. In the second
case (B), the state variables representing the wheelchair’s motion were selected as the
linear forward motion and the angular motion of the wheelchair in the planar Cartesian
space. In this simulation test, the WMRA system was commanded to move the gripper
forward on a straight line along the global “X” direction for one meter (1000 mm), i.e., it

was moved from the ready position shown in equation 8.1 to the following desired

position:
0 0 1 1455
- -1 0 0 -131 ©83)
1o -1 0 899 '
0O 0 0 1

172

www.manaraa.com

The natural response that the operator would expect is to move the wheelchair
forward without turning since the trajectory is in a straight line in front of the wheelchair.
What actually happened in the first case (A) was different. First, when the weights of all
joint variables were the same, the response was the same in both cases since it didn’t
make a difference what the state variables were if you assigned the same weights to all
variables. Figure 8.26 shows the position of the robotic arm’s base that is mounted on the
power wheelchair. Observe that the arm had to move about 650 mm forward and 400 mm
to the side of the wheelchair. Also, figure 8.27 shows the orientation of the robotic arm’s
base that is mounted on the power wheelchair. Observe that the arm had to turn
unnecessarily about 28 degrees clockwise, and then turn again about 9 degrees counter
clockwise. This unnecessary motion can be avoided using the weight matrix only if the

state variables are selected in the proper way to be controlled.

Arm Base Position vs Time
A T T ! T

1 s e -

position, {mm)

o i i ‘ i ;

time, (sec)

Figure 8.26: Arm Base Position When the Weights Were Equal, W=[1,1,1,1,1,1, 1, 1, 1].
173

www.manaraa.com

Arm Base Orientation vs Time

rall
pitch
yaw

orientation, (deg)

1] IR [NSNS N (N R i

- i i i | i
1]

tirne, (sec)

Figure 8.27: Arm Base Orientation When the Weights Were Equal, W=[1,1,1,1,1,1, 1, 1, 1].

In case (A), the state variables were the two wheels of the wheelchair, and the
only way to control these two variables were by assigning heavy weights on both of them
so that the wheelchair doesn’t move unnecessarily. The weights assigned were “50” to
both wheels, and “1” to the seven robotic arm joints. Figure 8.28 shows the position of
the robotic arm’s base that is mounted on the power wheelchair. In this case, the arm had
to move about 625 mm forward and 250 mm to the side of the wheelchair. Even though
the side motion was not necessary, but it was less than the motion when the weights were
equal. Also, figure 8.29 shows the orientation of the robotic arm’s base. Observe that the
arm had to turn unnecessarily about 16 degrees clockwise, and then turn again about 2
degrees counter clockwise. Even though this unnecessary rotation happened, it was still

less than that motion when the weights were equal.

174

www.manaraa.com

Figure 8.28: Arm Base Position for Case A, When W=1[1,1,1, 1,1, 1, 1, 50, 50].

Figure 8.29: Arm Base Orientation for Case A, When W=[1,1,1, 1,1, 1, 1, 50, 50].

o L
NIRRT\
l.._..-?l_.J hitmit! W1

175

www.manharaa.com

Having control over the forward motion and the orientation of the wheelchair
separately allows greater and more meaningful behavior of the system response. In case
(B), the state variables were the wheelchair’s linear motion and its rotational orientation,
and these two variables can be controlled separately to give preference to the rotation or
the forward motion separately by assigning heavier weights on the variable that should
not change unnecessarily. The weights assigned in this case were “50” to the
wheelchair’s rotational motion, and “1” to the wheelchair’s forward motion and the seven
robotic arm joints. Figure 8.30 shows the position of the robotic arm’s base that is
mounted on the power wheelchair. In this case, the arm had to move about 700 mm
forward and 100 mm to the side of the wheelchair. Even though the side motion was not
necessary, it was significantly less than that for case (A). The wheelchair moved more
forward to compensate for the unwanted side motion. Also, figure 8.31 shows the
orientation of the robotic arm’s base. The orientation change was minimal, and it was less
than 8 degrees clockwise. This turn was less than half of that in case (A) since heavier
load was given to the orientation rather than all wheelchair motion. Notice that the
orientation change not only was minimal, but it didn’t change direction to go counter
clockwise as what happened in case (A). This shows that the apparently unnecessary
rotation that happened was in fact necessary to follow the trajectory without getting close
to singular configurations.

The observations of these cases emphasize the importance of choosing the
variables based on the convenience of the user. The adapted variables for WMRA control

in the actual arm were the forward position and the rotational orientation of the WMRA.

176

www.manaraa.com

Figure 8.30: Arm Base Position for Case B, When W =[1, 1,1, 1,1, 1, 1, 50, 1].

Figure 8.31: Arm Base Orientation for Case B, When W=[1,1,1,1, 1, 1, 1, 50, 1].

o L
NIRRT\
l.._..-?l_.J hitmit! W1

177

www.manharaa.com

8.5 More Simulation for Optimization Methods and Criterion Function Effects

To show the effects of optimization method and the criterion function on the
simulation results, four different cases of optimization methods with different criterion
function were tested in simulation. These cases are:

1- Case I: The minimization of Euclidean norm of errors using Pseudo inverse of

the Jacobian.

2- Case II: Joint limit avoidance based optimization with Pseudo inverse of the

Jacobian and the gradient projection term.

3- Case III: The Weighted Least Norm optimization solution with S-R inverse of

the Jacobian.

4- Case IV: The Weighted Least Norm optimization solution with S-R inverse and

joint limit avoidance.

The four tested cases showed different joint reaction in the WMRA system based
on the method used and the optimization criteria selected. The WMRA system was
commanded to move in autonomous mode from its initial position before simulation to a
point that is (-1500, -400, 100) mm away from the ground’s frame with the same
orientation as the ground frame’s orientation. Figures 8.32 and 8.33 show the results of
the first case, where the wheels and the joints of the WMRA system moved minimally to
achieve the destination point. Note that joint six can not move more than 100° from the
center of the joint range, and not including the joint limit avoidance made it cross that
limit, while the rest of the joints had plenty of room to move to achieve the destination

and did not move.

178

www.manaraa.com

Figure 8.32: Wheels’ Motion Distances for Case 1.

Figure 8.33: Joint Angular Displacements for Case 1.

179

+4 & I
NIRRT\ I IL

www.manharaa.com

When this same test was conducted with the joint limit avoidance as the criterion
function as discussed in case II, joint limits were successfully avoided as shown in
figures 8.34 and 8.35. The wheelchair moved more than in the first case, and joint one
came close to its limit of 170° to compensate for the other joints for the limited motion in
joint six.

In case III, a different optimization method was used without the joint limit
avoidance criterion function imbedded in the weight matrix. The weight matrix
considered of the user-defined weights of W = diagonal [1, 1, 1, 1, 1, 1, 1, 20, 20].
Figures 8.36 and 8.37 show the motion of the wheels as they occurred later on during the
simulation, and the joint angles travelled to reach the destination at the end effector. It
can be seen that joint six went over its limits of 100° since the weight matrix does not

reflect the joint limit avoidance as the optimization criterion function.

Wheels Track distances ws Time
1000 T ‘ T T T T

L e e s s e e

R e EH-!L — —_— -

wheesls track distances, (mrm)

oo i i i i i i i i
0 el 10 15 20 25 30 & 40 45
time, (sec)

Figure 8.34: Wheels’ Motion Distances for Case II.
180

www.manaraa.com

Figure 8.35: Joint Angular Displacements for Case II.

Figure 8.36: Wheels’ Motion Distances for Case III.

181

*$ I I I
R EY

www.manharaa.com

Juint Angular Displacements vs Time
=0 1 T T T T T T T

joint angles, (deg)

o0 i i i i ‘ i i i

time, (sec)

Figure 8.37: Joint Angular Displacements for Case I11.

In case IV, the optimization criterion function was included in the weight matrix
to avoid joint limits with all the four conditions discussed in chapter 5. Figures 5.38 and
5.39 show how the wheelchair moved significantly more to compensate for the joints that
reached their limits and their weights went to infinity. Joint three reached its limit of 170°
and joint six reached its limit of 100°. This resulted in a smoother simulation with joint
limit implementation while keeping the user’s preference of minimal wheelchair motion
as expressed in terms of the user-defined portion of the weight matrix discussed in
chapter five. These test cases reflect the usability of the system and its reaction to
different control algorithms as it is used based on the user’s preference. It is noted here
that when the user chose case II with teleoperation mode, the system started moving
before the user touched the controls since the system was still optimized to keep the

joints close to the middle of their range of motion.

182

www.manaraa.com

Figure 8.38: Wheels’ Motion Distances for Case IV.

Figure 8.39: Joint Angular Displacements for Case IV.

183

+4 & I
NIRRT\ I IL

www.manharaa.com

8.6. Simulation of the Eight Implemented Optimization Control Methods for the
Case of an Unreachable Goal

To test the difference in the system response in case the WMRA system is
commanded to reach a point that is physically unreachable, eight different cases were
simulated, each uses a different control method. The end-effector was commanded to
move horizontally and vertically upwards to a height of 1.3 meters from the ground. This
height is physically unreachable, and the WMRA system will reach singularity. The
response of the system can avoid that singularity depending on the method used.
Singularity, joint limits and preferred joint-space weights were the three factors we
focused on in this simulation. The eight control cases simulated were as follows:

1- Case I: Pseudo inverse solution (PI).

2- Case II: Pseudo inverse solution with the gradient projection term for joint

limit avoidance (PI-JL).

3- Case III: Weighted Pseudo inverse solution (WPI).

4- Case IV: Weighted Pseudo inverse solution with joint limit avoidance (WPI-

JL).

5- Case V: S-R inverse solution (SRI).

6- Case VI: S-R inverse solution with the gradient projection term for joint limit

avoidance (SRI-JL).

7- Case VII: Weighted S-R inverse solution (WSRI).

8- Case VIII: Weighted S-R inverse solution with joint limit avoidance (WSRI-

JL).
From these cases, we observe the following results in terms of singularity

expressed by the manipulability measure, joint limit avoidance (joint 6 should not exceed
184

www.manaraa.com

+/- 100°), and the user option of preferred weights of motion (1 is used for the arm and 10
for the wheelchair):
I- Case I: (PI) In this case, the system was unstable, the joints went out of bounds,
and the user had no weight assignment choice (see figures 8.40 and 8.41).
2- Case II: (PI-JL) In this case, the system was unstable, the joints stayed in bounds,
and the user had no weight assignment choice (see figures 8.42 and 8.43).
3- Case III: (WPI) In this case, the system was unstable, the joints went out of
bounds, and the user had weight assignment choices (see figures 8.44 and 8.45).
4- Case IV: (WPI-JL) In this case, the system was unstable, the joints stayed in
bounds, and the user had weight assignment choices (see figures 8.46 and 8.47).
5- Case V: (SRI) In this case, the system was stable, the joints went out of bounds,
and the user had no weight assignment choice (see figures 8.48 and 8.49).
6- Case VI: (SRI-JL) In this case, the system was unstable, the joints stayed in
bounds, and the user had no weight assignment choice (see figures 8.50 and 8.51).
7- Case VII: (WSRI) In this case, the system was stable, the joints went out of
bounds, and the user had weight assignment choices (see figures 8.52 and 8.53).
8- Case VIII: (WSRI-JL) In this case, the system was stable, the joints stayed in
bounds, and the user had weight assignment choices (see figures 8.54 and 8.55).
It is clear that case number 8 showed the best performance since it fulfilled all the
important control requirements. This method avoided singularities while keeping the joint

limits within bounds and satisfying the user-specified weights as much as possible.

185

www.manaraa.com

Manipulability Measure vs Time

WARM

WWNRA

ainses|\ Ayjigeindiuey

time, (sec)

Figure 8.40: Manipulability Measure Case I (PI).

Joint Angular Displacements vs Time

(Bap) ‘sajbue juiof

time, (sec)

Figure 8.41: Joint Angular Displacements for Case I (PI).

186

www.manharaa.com

Manipulability Measure vs Time

x 10°

WARM

WWNRA

ainses|\ Ayjigeindiuey

, (sec)

time

Figure 8.42: Manipulability Measure Case 11 (PI-JL).

Joint Angular Displacements vs Time

(Bap) ‘se|bue juiof

time, (sec)

Figure 8.43: Joint Angular Displacements for Case II (PI-JL).

187

www.manharaa.com

Manipulability Measure vs Time

VVAHM

VVWIVRA

ainses|\ A)jigendiuely

time, (sec)

Figure 8.44: Manipulability Measure Case 111 (WPI).

Joint Angular Displacements vs Time

~ N Ll ~ w0 © ~
S D D D D D ==]
T T T
I I |
I I E—	
	I
e [
= I I T	
——————	
T	
	i —
— 1 ————— T	
P — —	
“3‘\!”'”“ ——————	
B >l = — ——	
= = I ==	
N N bo—— o C	
N	
/M	
al	
Lo A A A I	
/	
S/	
)	/
i	{
	5
	/
I	\
\	
	\
\\\\\\\\\ i - - \\\y\\\,\\\\\\\\\\	
	\
	\
	/
	/
	L
	N
Y | ,/,
[| |
1 1
o o (=3 o (=]
8 g 8 2

(Bap) ‘sajbue juiof

25

15

time, (sec)

Figure 8.45: Joint Angular Displacements for Case IIT (WPI).

188

www.manharaa.com

Manipulability Measure vs Time

WARM
WWNRA

e |

5
45— -
4,,,,,,,

ainses|\ Ayjigeindiuey

, (sec)

time

Figure 8.46: Manipulability Measure Case IV (WPI-JL).

Joint Angular Displacements vs Time

91
[92
[93
[94
[95
[96
[97

25

20

(Bap) ‘sajbue juiof

time, (sec)

Figure 8.47: Joint Angular Displacements for Case [V (WPI-JL).

189

www.manharaa.com

Manipulability Measure vs Time

x 10°

3-5777777\777777\777777\777777\77777777777’

WARM
WWNRA

ainses|\ Ayjigeindiuey

time, (sec)

Figure 8.48: Manipulability Measure Case V (SRI).

Joint Angular Displacements vs Time

7 T [,
| | I ,\
| | :
! | [
| , | |
, , v
| | | A
\\\\\\ 2 i N e e e A I S
| | | S
| | | I
| |
| | |
| | | Lo
Lo 1oL oDsor oo T I —_—_
| | Ll
| | | A
| | { N
| | | I
| | | [N
| | | | |
r--- - T [T T (i) e Sty
1 1 1 1 1
o o (=] o o o o
AN o [ee] © < N
— —

(Bap) ‘se|bue juiof

12

10

time, (sec)

Figure 8.49: Joint Angular Displacements for Case V (SRI).

190

www.manharaa.com

Manipulability Measure vs Time

x 10°

WARM

WWNRA

ainses|\ Ayjigeindiuey

(sec)

time

Figure 8.50: Manipulability Measure Case VI (SRI-JL).

Joint Angular Displacements vs Time

(Bap) ‘sajbue juiof

time, (sec)

Figure 8.51: Joint Angular Displacements for Case VI (SRI-JL).

191

www.manharaa.com

Manipulability Measure vs Time

x 10°

WARM

WWNRA

ainses|\ Ayjigeindiuey

time, (sec)

Figure 8.52: Manipulability Measure Case VII (WSRI).

Joint Angular Displacements vs Time

(Bap) ‘se|bue juiof

time, (sec)

Figure 8.53: Joint Angular Displacements for Case VII (WSRI).

192

www.manharaa.com

Manipulability Measure vs Time

x 10°

WARM

WWNRA

ainses|\ Ayjigeindiuey

time, (sec)

Figure 8.54: Manipulability Measure Case VIII (WSRI-JL).

Joint Angular Displacements vs Time

(Bap) ‘se|bue juiof

time, (sec)

Figure 8.55: Joint Angular Displacements for Case VIII (WSRI-JL).

193

www.manharaa.com

8.7. Summary

Simulation results of the implementation of the methods of combining mobility
and manipulation and redundancy resolution were shown in this chapter. Several cases
were defined for simulation, and observation of the simulation results were shown and
discussed for the effectiveness of the solutions. In all cases, the trajectory was generated
to move the end-effector from the initial to the final position following the specified
optimization choices. Final configurations of the WMRA system were shown for all
cases, and the joint space variables were studied. The effect of the 3™ degree polynomial
with parabolic blending in generating the trajectory points were shown in the velocities of
the joint space variables. This led to constant accelerations or decelerations of the
variables so that smooth motion occurred. A couple of other simulations shown in this
chapter verified the idea behind the proper choice of the state variables so that the control
of these variables makes more sense than any arbitrary choice of variables that may
produce undesirable system behavior.

Four comparison cases were presented to compare four different control
optimization methods when used within the workspace. Another eight cases were
presented to show the different behaviors of the system response in case the WMRA
system was commanded to go to a point that was physically out of its reach. These twelve
cases clearly identified the advantage of using the WSRI method with joint limit

avoidance over all other optimization methods.

194

www.manaraa.com

Chapter 9:

Experimental Testbed and Field Tests

9.1. Introduction

The combination of mobility and manipulation in robotics as assistive devices
would be better used in actual products if testing on physical systems was done after
theories and simulation results were developed. In this chapter, we will discuss the
testbed comprise of a new 7-DoF robotic arm design, a modified wheelchair, a new
gripper designed specifically for activities of daily living (ADL), and a control hardware
that controls all these equipment using a tablet PC running Windows XP. Design aspects
and components will be shown, and communication and wiring the system together will

be discussed.

9.2. The New 7-DoF Robotic Arm Design and Development

A 7-DoF wheelchair-mounted robotic arm (WMRA) was designed and built to be
integrated with a power wheelchair to help people with disabilities to do their activities of
daily living independently or with minimal help. The mechanical design incorporates DC
servo drive motors with actuator hardware at each individual joint, allowing
reconfigurable link lengths [52]. It has seven degrees of freedom and uses a side mount

on a power wheelchair. The control system allows coordinated Cartesian control, and

195

www.manaraa.com

offers expandability for future research, such as coordinated motion with the wheelchair

itself.

9.2.1. Design Goals

A new WMRA was developed, designed and built. The goal was to produce an
arm that has better manipulability, greater payload, and easier control than current
designs. The arm is also reconfigurable, which increases the number of applications for

our design. The following design goals were set for the hardware:

9.2.1.1. Weight

In a mobile application, minimal weight is of primary importance. Power
wheelchairs have a rated payload, and a heavy arm reduces the payload available for the
user. Based on this criterion, our goal was to have a total system mass under 14 kg,

including the arm, controller, and all peripherals.

9.2.1.2. Mount Type

As found in previous research [57], side mounting is preferable overall because it
provides the best balance between manipulability and unobtrusiveness. However, care
must be taken to prevent widening of the power chair. The new arm is mounted as far
forward and upward as possible while still in a side mount configuration, and only
increases chair width by 7.5cm. This mounting location allows the arm to be stowed by

folding it back and then wrapping the forearm behind the seat. It virtually disappears

196

www.manaraa.com

when not in use, especially when the arm is painted to match the chair. This helps avoid

the stigma that these devices can bring.

9.2.1.3. Stiffness

It is one of the major differences between this WMRA and a typical industrial
manipulator. As anticipated, teleoperation will be the most common control mode for the
robot, and therefore great precision is not required. With a human participating at all
times, inaccuracy due to a compliant structure is easily and transparently corrected.
Recognizing this allowed the structure to be made much lighter than an industrial
manipulator with the same payload. However, the low stiffness and large backlash of
other WMRASs is an impediment to accurate coordinated control. With this design, we
attempted to find an optimal balance, stiffer than other WMRAs, but less stiff than an

industrial manipulator.

9.2.1.4. Payload

This manipulator is intended for use in Activities of Daily Living (ADL), and for
job tasks of a typical office environment. As such, it is important that the arm be strong
enough to move objects that are common in these environments. A gallon (4 Liters) of
milk is a good upper limit for a typical around-the-house object that must be manipulated.
As this is an approximately 4 kg mass, this was set as the baseline payload for the arm at
full horizontal reach at rest. Then, an extra margin of 2 kg was added to allow for a
choice of end-effector capable of this load. The 4 kg useful payload is much larger than
the 1 kg payload of the Raptor.

197

www.manaraa.com

9.2.1.5. Reconfigurability

Even though a side mount was chosen for this prototype, it is important to note
that the basic design can be adapted to a front or rear wheelchair mount, or a fixed
workstation mount. The arm can be specialized for these workspaces by adjusting link
lengths. Longer lengths can be specified for a rear mount on a power chair, but this
reduces payload and reduces manipulability in front of the chair. Reconfigurable arm
lengths allow greater leverage on the engineering input, as a single basic design may be
adapted to numerous applications. This is only practical with electric drive and actuator

placement directly at each joint.

9.2.1.6. Power Supply and Consumption

In the power wheelchair industry, a 24-volt lead-acid battery pack is standard, and
is the natural choice for the power supply of a WMRA. All motors, controllers, input
devices, sensors, etc. must be able to work with 24vdc. Energy consumption is important,
as users would reject a device that worked well but left them stranded without the
wheelchair power! Therefore, efficient components were chosen to keep power

consumption low.

9.2.1.7. Cost Constraints
Reasonable cost is important to widespread adoption of these devices, but is not a
major hurdle such as poor utility and difficulty of use. The target was to be in the mid-

range of commercially available systems in terms of cost. The usability of the WMRA

198

www.manaraa.com

system will be far more important than the cost when the user decides on which device

should be used.

9.2.1.8. User Interface

People want a useful payload, and a simple intuitive control. Raptor lacks
encoders and therefore control is manual, one joint at a time. Quadrature encoders are a
cost-effective way to provide coordinated Cartesian control. The controllers of the new
WMRA have PWM voltage regulation, and have built-in support for acceleration limits.
The system easily scales to control grippers or even the base wheelchair, all through one

standard control system.

9.2.1.9. Degrees of Freedom

Extra degrees of freedom help improve manipulability. This is evidenced by the
considerable increase going from Raptor’s 4 DOF to the 6 DOF of MANUS. Our new
design incorporates 7 joints, allowing full pose control even in difficult regions of the
workspace, such as reaching around the wheelchair, reaching up to a high shelf,

manoeuvring around objects, or opening a door.

9.2.1.10. Actuation and Transmission Systems

Most actuation alternatives were restricted due to the requirement for
reconfigurability. Changing the length of an arm that is driven through linkages or
flexible cables from motors in the base would require many parts to change, which would

require a new design. The option of pneumatics was eliminated due to positioning

199

www.manaraa.com

difficulty and compressor noise. The best option was to drive the joints electrically
through harmonic gearheads that carry large gear ratio, with the entire actuator positioned

at each joint.

9.2.1.11. DC Motors as Actuators

The only serious choice was whether to use stepper or servo motors [52]. Due to
recent improvements in servo controllers, the cost of this option is not much higher than
that for stepper motors. Brush DC servomotors allow closed-loop control, and are much
quieter, lighter and more efficient than steppers. For these reasons, DC Servo drive was
selected. Quadrature encoders, mounted on the motors, were selected for their accuracy,

simplicity and low cost. Optical limit switches ease initialization at power-up.

9.2.2. Kinematic Arrangements and Component Selection

The arm is a 7-DOF design, using 7 revolute joints [52]. It is anthropomorphic,
with joints 1, 2 and 3 acting as a shoulder, joint 4 as an elbow, and joints 5, 6 and 7 as a
wrist as shown in figure 9.1. The 3 DOF shoulder allows the elbow to be positioned
anywhere along a spherical surface, whereas with the Raptor arm, elbow movement is
limited to a circle. Throughout the arm, adjacent joint axes are oriented at 90 degrees as
shown in figure 9.2. This helps to meet two goals: mechanical design simplicity and
kinematic simplicity. Machining parts on a conventional milling machine is easier with
right angles, and the coordinate transform equations simplify greatly resulting in low

computational cost. All adjacent joint axes intersect, also simplifying the kinematics.

200

www.manaraa.com

Figure 9.1: Complete SolidWorks Model of the WMRA.

All ¥ axes out of page. - 7%
[j > > | >
4 75,16 7
h) Y7
\22 r
il
= 0l
[vy L “z3
Y3
hZ0
e |
= o
[I N T
Y0

-

Tl

Figure 9.2: Kinematic Diagram with Link Frame Assignments.

Emphasis was placed on using off-the-shelf parts wherever possible. The basic
arrangement for each joint is a high-reduction gearhead, a motor with encoder and spur-
gear reduction, and a bracket that holds these two parts and attaches to the two
neighbouring links. The hardware components were selected to meet the design

requirements, as follows:

201

_ +*4 L 4 I
h-':-"'lu 1 }M I IL

www.manharaa.com

9.2.2.1. Gearhead Selection

Harmonic drive gearheads were chosen because they can achieve 100:1 reduction
in a single stage, with only 64mm axial length [52]. In addition, they have bearings
suitable for supporting overhung loads, enabling the next arm segment to be bolted
directly to the output flange of the gearhead. This greatly simplifies the design, reducing
weight and cost through lower part count. Gearheads were chosen based on required
overhung loads and torques, with the size of the gearhead gradually reducing at
consecutive distal joint. Once the basic type of gearhead was selected, information on the
available sizes was collected, namely the mass and recommended maximum torque.
Maximum recommended torque here was taken to be the lesser of two specifications
from the manufacturer: maximum output torque and maximum overhung torque. A
simple spreadsheet model of a horizontally outstretched arm was made, which accounted
for link lengths and self-weight. The target payload (6 kg) was also applied to the end of
the arm, and eventually the gearheads were chosen as shown in Table 9.1. One of the
harmonic drive gearheads selected for the first two joints in the shoulder of the robotic

arm is shown in figure 9.3.

Table 9.1: HD Systems Gearhead Selections for Each Joint.

Joint | Model Selected | Torque (N m)|Outside Diam (mm)| Mass (kg)
1 CSF-25 140 107 1.50
2 CSF-25 140 107 1.50
3 CSF-20 70 93 0.98
4 CSF-17 46 79 0.68
5 CSF-17 46 79 0.68
6 CSF-14 19.5 73 0.52
7 CSF-11 6.6 58 0.15
202

www.manaraa.com

Figure 9.3: Harmonic Drive Gearhead.

9.2.2.2. Motor Selection

Brush DC motors were chosen since they are the least expensive way to achieve
servo control [52]. While brushless motors are a future possibility, performance gains are
dubious, and would significantly increase the cost of the robot. The marginal increase in
efficiency is relatively unimportant, and gear train noise is already greater than
commutator noise. The main benefits for brushless motors are increased service life
before maintenance, and possibly better packaging. Brush DC servo drive is the best
overall compromise for a WMRA. Brush DC, 24v Pittman motors were selected that
meet all performance criteria, and have integrated gearboxes and encoders as shown in

figure 9.4. These relative encoders are initialized with optical limit switches.

Figure 9.4: Pittman Servo Brush Motors with Gearbox and Encoder.

203

www.manharaa.com

9.2.2.3. Material Selection

6061 Aluminum was chosen for the joint brackets because of machinability,
weldability, lower cost, good strength-to-weight ratio, and availability [52]. This
material was also chosen for the link tubes, for the same reasons. Steel was rejected due
to its high density. In many places, the thickness of a bracket is not determined by
strength or stiffness, but by simple packaging constraints. Steel would unacceptably
increase mass in these areas. Carbon fiber/epoxy were considered for the link tubes due
to the increase in stiffness and reduction in weight possible. It was rejected for the
prototype because of its cost. Carbon fiber becomes especially attractive for a long-reach

option, and may make a rear-mount arm more feasible.

9.2.2.4. Joint Design

Once all components were selected, design of each joint was rather straight
forward [52]. The typical arrangement for a joint is to have a gearhead and motor held
together by an angle bracket. This bracket mounts to the previous joint or link. The
output flange of the gearhead attaches to the next link. Billet 6061 aluminum was chosen

for its high strength and dimensional accuracy.

9.2.2.5. Wrist Design

There were two basic choices for a 3-DOF wrist: Orthogonal and nonorthogonal
as shown in Figures 9.5. The conventional orthogonal arrangement was selected due to
better packaging [52]. All three axes are mutually orthogonal and all axes of rotation

converge at a single point. This is common in industrial manipulators, such as the Puma

204

www.manaraa.com

560. It is done to simplify the kinematic equations and provide inverse kinematic
solution with the least amount of computations. Joint 6 has a design unlike the others in
this manipulator. A right angle gearbox between the motor and gearhead greatly
improves packaging, but increases complexity. A single bracket was designed to hold all
3 parts in proper alignment, and to carry the load to joint 5. Joint 7 is coaxial with the last
link, so irrespective of the pose of the arm, rotation about this axis is assured. The
gearhead mounts to a flange welded to the end of the link tube, and the motor is hidden
inside this tube. Wires to the motors and encoders can run inside the tubes or be clipped

on the side of the tubes.

Figure 9.5: Wrist Design: 3-Roll Wrist (Left), Orthogonal Wrist (Right).

9.2.3. Final Design Testing and Specifications

Good stiffness leads to quality construction and accurate control. Stiffness was
tested by extending the arm straight out in front of the wheelchair [52]. A dial indicator
was set to measure vertical deflection, and then a known mass was applied to the wrist

plate. Deflections were measured at the wrist plate (100.3 cm from axis 1), joint 4 (50.8

205

www.manaraa.com

cm from joint 1) and directly on the joint 1 gearhead. Table 9.2 shows the arm deflection

due to the applied load.

Table 9.2: Arm Deflections vs. Applied Load.

Load (kg) | Wrist Deflection (mm) | Elbow Deflection (mm)|Joint 1 Deflection (mm)
2 44 1.8 0.2
4 8.7 3.7 0.4
6 13.3 5.5 0.7

Each joint was individually tested for the maximum load it could lift. This was

done by placing the arm in a pose most adverse for the joint in question. The arm was

placed fully outstretched, pointing forward parallel with the ground. Weights were

progressively added, and the joint was given full power to try to raise them. All joints

were tested up to the design load. Testing shows that joints three and four are

overpowered, and smaller motors could be substituted.

The maximum, unloaded speeds of each joint were measured using a known arc

(90, 180, or 360 degrees as geometry permitted). Time to traverse this arc was measured

with a stopwatch and joint velocities in RPM were calculated. Speeds range from 5 RPM

in proximal joints to 16 RPM in Joint 7. With any battery-operated device, energy use is

very important. A digital multi-meter was connected inline with the power feed from the

wheelchair battery, and power consumption was recorded as shown in Table 9.3.

Table 9.3: Power Usage.

Condition Current (A)
Idle - all motors off, controller only 0.36
Holding self-weight outstretched 0.58
Holding 6kg fully outstretched 1.70
Lifting 6kg with joint 1 3.30

206

www.manaraa.com

While more testing will be instructive, a reasonable estimate is that typical
household and office tasks will lead to an average current of 2 Amperes. Therefore, six
continuous hours of arm use would consume 12 Ah. This would leave a 73 Ah battery
(group 24 gel cell) with 61 Ah for propulsion, or 84% of capacity. Thus, driving range
would be reduced, from about 30 km to 25 km. This should be acceptable for most users,
and daytime charging can help restore range. Figure 9.6 shows the completed robotic arm
in different positions using the SolidWorks model of the arm as well as the actual arm in
two different positions. The photos show the arm with a Barrett hand installed at the end-

effector. A summary of the specifications of the robotic arm built are shown in Table 9.4.

Figure 9.6: WMRA SolidWorks Models and the Corresponding Positions of the Built Device.

207

—

www.manharaa.com

Table 9.4: Summary of the Robotic Arm Specifications.

Arm Mass 12.5 kg

Max reachable height above floor 1.37m

Chair width increase with side mount 7.5 cm

Average Current Draw 2A

Design Pavyload (including gripper) 6 ke

Deflection at design payload 13.3 mm
Degrees of Freedom 7

Actuator Type Brush DC Servo
Transmission Harmonic Drive
Controller Type Pic-Servo SC

9.3. The New 2-Claw Ergonomic Gripper Design and Development

A new robotic gripper was designed and constructed for Activities of Daily
Living (ADL) to be used with the new Wheelchair-Mounted Robotic Arm developed.
Two aspects of the new gripper made it unique: one is the design of the paddles, and the
other is the design of the actuation mechanism that produces parallel motion for effective
gripping. The paddles of the gripper were designed to grasp a wide variety objects with
different shapes and sizes that are used in every day life. The driving mechanism was
designed to be simple, light, effective, safe, self content, and independent of the robotic
arm attached to it.

In designing a gripper, functionality is very important, and it remains one of the
main factors considered in most robotics applications. If the design has good
functionality, minimal cost, high durability, and the aesthetic characteristics are met, a
good product is likely to be produced. In order to decide on a good design for a gripper,
several aspects have to be inspected, such as the tasks required by the mechanism, size
and weight limitations, environment to be used in as well as material selection. Some of

the ADL tasks that will be performed using the gripper are opening doors, grasping a
208

www.manaraa.com

glass to drink from, flipping on a light switch, pushing and turning buttons and knobs,
holding books and similar objects, handling tiny objects such as a CD or lose sheets of

paper, or holding a small ball.

9.3.1. Paddle Ergonomic Design

Specific considerations were taken in the attempt to optimize the functionality of
the gripper. It was decided early on that the gripper would utilize parallel motion
generated from a dual four bar mechanism attached to each side of the two fingers
creating 8 links between the gripper surfaces and the driving mechanism itself. As a start,
the gripper’s fingers (paddles) were first put into consideration. Through the required
tasks expected out of the overall device the gripper’s surfaces were designed to be varied
for the adequate handling and use of household objects mentioned. A rounded surface
was implemented as shown in figure 9.7, which would give the gripper a soft look as well

as good function while grasping objects.

Figure 9.7: The New Gripper’s Ergonomic Surfaces.

209

www.manharaa.com

A spherically channeled surface was placed in the center of the paddle surface
with the intention to contour to spherical door knobs. Small protrusions were added to the
end of each paddle at the tip of the gripper for grasping smaller objects allowing added
dexterity and the operations of press buttons and toggle switches. The tips were
specifically made narrow for precision operations and rounded off to prevent the marring
of surfaces that they would come in contact with. Optional protrusions extending toward
the center of the grip at the tip of one of the paddles was added to allow objects such as
door handles and door knobs to be pulled open with more security, rather than relying on
friction and the locking of the mechanisms grip alone. The other paddle would have a
small opening for the protrusions to go through when closing the gripper is required as

seen in Figure 9.8.

Figure 9.8: The Gripper Design in Application Reference.

It was later decided that an extra flat surface placed closer to the driver
mechanism would be beneficial in grasping larger rectangular objects such as boxes or
books. By relying on the finger tips of the gripper alone to grasp larger objects, a greater

moment would be generated on the driving mechanism and higher stresses induced in the

210

www.manharaa.com

links to achieve the same amount of gripping force attainable from a location closer to the

driving mechanism itself. Figure 9.9 shows these changes to the paddles.

Figure 9.9: Extended Interior Surface Added to the Gripper.

As a final modification to the paddles, a spring hinge was added to the back of the
flat paddle surface, near the hinge location, to allow for a small amount of torsional
rotation. The thought behind this modification was for an added degree of freedom in the
paddles to allow for a better grasp on tapered objects such as cups and for self-
adjustment. Four main contact surfaces were intended for this gripper: The spherical area
at the center of the paddles for spherical objects, the two round surfaces on both sides of
the paddle for handling cylindrical and tapered objects, the two flat surfaces at the bottom
and top of the paddles for handling rectangular and large objects, and the paddles’ tips for

handling small objects, switches, knobs and sheets of paper.

9.3.2. Actuation Mechanism

The driving mechanism was the next step in creating the gripper. As noted
previously, the design was going to utilize four bar linkages to allow the paddles to open
and close in a parallel motion. The main reasons for this were to increase the contact
surfaces between the gripper and the handled object, and to prevent these objects from

slipping out of the grasp of the paddles due to the angular change in the contact surfaces
211

www.manharaa.com

caused by simpler pin joint gripper designs. By keeping the paddles parallel, a more
predictable surface contact angle could be controlled which would allow larger objects to
be grasped safely without the risk of being dropped. This modification was done and
tested.

The first requirement for the gripper was for it to have a minimum gripping force
of ten pounds and be capable of traveling from a full open position of four inches to a
closed position within approximately four seconds. The gripper was also required to have
an onboard motor for modularity reasons. The idea of utilizing an acme screw and a pull
nut setup would be adequate for power transmission, and its compact size, relatively high
variability in gear ratios, and its ability to lock the position without the use a mechanical
brake mechanism made it a good choice for the purpose of this gripper. For this design a
stainless steel 1/4-20 acme screw with a plastic nut was selected and thought to be the
best design for space conservation and overall weight conservation as well. The selected
motor carried relatively high torque to size ratio, and as a result, minimized the overall
weight of the gripper dramatically. For the safety of the user, the handled object, and the
mechanism, an adjustable slip-clutch was attached to the acme screw to build up the
gripping force based on how delicate the object is, and to prevent the torque in the motor

to rise above the designed limit of the mechanism.

9.3.3. Component Selection
The selected components are as follows:
1- The Motor: A 24 volt DC coreless gearhead servo motor was selected since the

wheelchair can supply that voltage from its batteries. The diameter of the

212

www.manaraa.com

selected motor was 0.67 inches having a length of 1.77 inches. This motor,
made by Faulhaber, puts out a stall torque of 11.5 mNm with a maximum
current of 190 mA and a maximum speed of 8000 rpm. This motor uses a 14-1
planetary gear ratio, and an optical encoder with 512 counts per revolution for
the use of feedback control. Figure 9.10 shows the motor assembly with the

gearhead and the encoder.

Figure 9.10: The Selected Coreless Gearhead Servo Motor.

2- Acme Screw and Pull Nut: A Stainless Steel 20 thread-per-inch acme screw
was selected with a diameter of 0.25 inches to transmit the motion from the
motor to the linkages through a Delrin plastic pull nut. This helps in locking
the mechanism when the motor is stopped, and it gives a proper conversion of
the motor speed to the required torque for driving the system.

3- Slip Clutch: An adjustable 0 to 50 oz-in slip clutch was selected to build up the
grip force and slip in case the motor is still running while the required torque
is reached. Figure 9.11 shows a drawing of the slip clutch

4- Spur Gears and Flange Ball Bearings: Two spur gears made out of anodized
aluminum were selected with a pitch of 0.25 inch to transmit the motion from

the motor shaft to the acme screw. A gear ration of 2:1 is used with 36 teeth,

213

www.manharaa.com

9.5 mm diameter gear on the motor shaft and 72 teeth, 18.5 mm diameter gear

on the acme screw.

Figure 9.11: The Selected Slip Clutch.

Figure 9.12 shows the actual driving mechanism after assembly. Aluminum was
the main component used in building the housing and shield of the mechanism and the
links. Other components, including plastics and Teflon, were used as sleeves in the joints

of the driving four-bar linkage mechanism.

Figure 9.12: The Assembled Actuation Mechanism.

When all the side panels are in place and the top cap of the housing seal the

compartment of the spur gears, safety of the operator is ensured in terms of getting any
214

www.manaraa.com

external object caught in the driving mechanism. It also ensures proper protection of the
motor and the small components driving the gripper from external dust and debris.
Extensions on both sides of the gripper’s base with extra holes were added for
expandability in case other devices such as a camera and a laser range finder need to be
mounted to the gripper’s base plate. Figures 9.13 and 9.14 show the final Pro/E drawing

and the physical gripper with the involved components after assembly, respectively.

Figure 9.14: The New Gripper and the Actuation Mechanism.

215

www.manharaa.com

9.3.4. Final Design and Testing

Force analysis of the mechanism was accomplished by working from the paddles’
contact surfaces through the mechanism linkages until reaching the electronic motor.
The force considered in the design was 10 pounds of gripping force at the contact
surfaces of the gripper. The force from the paddle surfaces was then translated through
the parallel four-bar linkages to the pull-nut using static analysis. Teflon bushings were
utilized in the hinges at this joint to reduce friction but accounted for while calculating
the forces. The pull-nut static calculations were used to determine the required torque on
the acme screw to generate the force needed at the pull-nut. This was accomplished
relatively accurately by using the offered specifications by the manufacturer of the acme
screw.

Input torque per output force measurements were utilized when calculating the
torque required within the acme screw. Ball bearings were used to support the acme
screw for maximum efficiency. After calculating the torque needed in the acme screw,
forces were determined at the teeth of the spur gears used in the mechanism. The required
torque and speed of the motor were calculated by assuming a required minimum opening
and closing time of 4 seconds with the given force at the gripper. A safety factor of 2 was
used in selecting a motor for the required torque.

Figure 9.15 shows a close-up view of the gripper, attached to the newly designed
9-DoF WMRA system on a power wheelchair, holding a 2.5 inch diameter ball. Several
tests were conducted using the rapid prototype models and test objects to ensure proper

application before the final design was reached. When the gripper machining was

216

www.manaraa.com

completed and the gripper was assembled, actual grasping tasks commonly used in ADL

were conducted.

Figure 9.15: The New Gripper When Holding a Spherical Object.

Another application tested show the adjustability of the paddles to the grasped
object, as shown in figure 9.16. A standard cup was the test object to show adjustability
of the paddles due to the added hinges that give them an extra degree of freedom for

adjustment to the tapered object.

Figure 9.16: The New Gripper When Holding a Tapered Cup.

One of the main objectives intended for this gripper is the ability to handle

different door handles. Figure 9.17 shows both kinds of handles, the lever handle and the
217

www.manharaa.com

knob handle, commonly used in doors. These handles were used in this test to ensure

proper application.

Figure 917: The Gripper When Opening a Door with a Lever Handle (Left) and a Knop Handle (Right).

Another test for handling small objects and sheets of paper were conducted.
Figure 9.18 shows the gripper holding a business card using the tips of the paddles

without the need to fully close the other end of the gripper.

Figure 9.18: The New Gripper When Handling Small Objects.

Handling large objects can be challenging based on the geometrical complexity of
that object. Figure 9.19 shows the gripper holding the box of heavy tools while moving it
from one place to another. The two side-curved surfaces and the middle spherical

surfaces help in supporting odd objects in case complex shapes are handled.

218

www.manharaa.com

Figure 9.19: The New Gripper When Handling Large and Heavy Objects.

9.4. Modification of a Standard Power Wheelchair

To install the newly designed components on a power wheelchair for a complete
WMRA system, modifications had to be made to a standard power wheelchair both in
hardware and control. The selected power wheelchair was the “Action Ranger X Storm
Series”. The wheelchair has been modified by adding an incremental encoder on each one
of the wheels. The controller module of the wheelchair has also been modified using TTL
compatible signal conditioner and a DA converter so that the signal going to the wheels
can be controlled using the same PIC-Servo SC controllers used in the arm. The only
difference is that the output from this control board used for the wheelchair is the PWM
signal rather than the amplified analogue signal.

Since the wheelchair controller was scaled, and the manufacturers treat these
controllers as proprietary components, we had to find a way to take over the control of
the wheelchair. The best way to do this was by opening the joystick module and

interfacing our control system with the joystick signal. The joystick sends two

219

www.manaraa.com

independent analogue voltages to the wheelchair controller, one controls the forward
speed of wheelchair (i.e. both wheels at the same speed and direction) and the other
controls the rotation of the wheelchair (i.e. both wheels at the same speed bur opposite
directions). The voltage sent is as follows:

1- A voltage of 0.4 volts corresponds to a full positive speed.

2- A voltage of 2.6 volts corresponds to a stop and applies breaks.

3- A voltage of 4.0 volts corresponds to a full negative speed.

Any voltage between these values corresponds to slower motion of the wheels.
The controllers used in our WMRA system are capable of supplying pulse-width
modulation (PWM) signal at 20 KHz. Changing the duty cycle means changing the
average of the signal. A circuit that converts a constant-frequency PWM signal is shown
in figure 9.20. Two independent circuits like these can be connected between the WMRA
controller and the joystick of the wheelchair so that the wheelchair can be controlled

using the arm controller.

a0
+I- 10w
3 .
b AT
nput N ;
AAN =2
10K . Lni358
.
2R MK
e N

Figure 9.20: A Circuit Designed to Convert Digital PWM Duty-Cycle Control Signal to Analogue Signal.
220

www.manaraa.com

A new controller box was designed to fit 12 controller boards, two power
adapters, one converter, a cooling fan, and the connecting cables. Figure 9.21 shows the
box before attaching it to the power wheelchair. This box was built so that it is easy to
take off and put on the wheelchair with quick connectors that can be disconnected from

the arm and the power supply to the battery.

Figure 9.21: The Designed Controller Box Installed on the Modified Wheelchair.

Another item attached to the power wheelchair was the quick-release mechanism,
shown in figure 9.22, that is permanently attached to the power wheelchair and can
quickly mount or dismount the designed robotic arm into or out of the wheelchair. This
mechanism allows the user to quickly detach the arm if the wheelchair needs to be
transported in a small container or a minivan that does not fit the WMRA system. Cable
connectors extending from the robotic arm to the controller box are designed to quickly
disengage the power and logic to and from the arm and the controller box. This also

allows for easier portability that can be done by an average person.

221

www.manharaa.com

Figure 9.22: The Quick-Release Mechanism that Mounts the Robotic Arm on the Wheelchair.

9.5. Controller Hardware

The controller hardware was designed to control all joint servo motors
simultaneously through an amplified analogue signal, and to control the motors of the
differential drive of the wheelchair through PWM signal. Wiring of the boards to the

individual motors was done using quick-release sockets.

9.5.1. Controller Boards

PIC-SERVO SC controllers that support the DC servo actuators were chosen as
shown in figure 9.23. At Scm x 7.5cm, this unit has a microprocessor that drives the built-
in amplifier with a PWM signal, handles PID position and velocity control,
communicates with RS-485, and can be daisy-chained with up to 32 units. It also reads
encoders, limit switches, an 8 bit analogue input, and supports coordinated motion

control. Each joint controller is individually addressable, and can be controlled in
222

www.manharaa.com

position, velocity, or current (torque) mode. In position mode, velocity and acceleration
limits may be specified for smooth operation. Data for the entire arm is interfaced to the
main computer using a single serial link. The PIC-Servo SC controllers use RS-485, and
a hardware converter interfaces this with the RS-232 port or a USB port on the host PC.
The current host PC is an IBM laptop, running Windows XP. However, the
communications protocol is simple and open, and could be adapted to virtually any
hardware/software platform with an RS-232 or a USB port. These controller boards were

all connected to the computer using a single cable.

Figure 9.23: JRKERR PIC Servo SC Controller Boards.

9.5.2. Communication and Wiring
As shown in figure 9.24, PIC-SERVO SC controllers (C1 through C7) that
support the DC servo actuators (J1 through J7) were integrated in the control box. The

logic of the boards run through 12v DC power converted from the wheelchair’s batteries.

223

www.manharaa.com

+ Emergency
+ Stop

24V to 12V
Adapter T
b o -
] USB Port
+ p— [
Serial to
USB
Adapter

Controller Box

Figure 9.24: Control System Circuitry.

The seven motors used to actuate the power wheelchair were connected via a
serial port as shown in figure 9.25 (left), and the single servo motor used for the gripper
was connected to the controller boards using a different serial port as shown in figure
9.25 (right). In figure 9.26, the circuit that connects the wheelchair encoders to the
controller boards is shown. A toggle switch will be added to the joystick supplied with

the wheelchair so that it can still be used if the user wants to run the wheelchair regularly.

9.5.3. Safety Measures
Two safety measures were added to the hardware of the WMRA system. The first
is a panic stop button that is connected and situated under the right elbow of the user to

stop the motor power supply from its battery source without shutting off the logic power.

224

www.manaraa.com

This way, the system can run back up, or a diagnostic procedure can detect any problems
that may have happened. Another safety feature is the use of a timer that cuts off the
power to the motors and to the logic circuits so that the batteries of the power wheelchair

can conserve energy in case the user forgot to shut the system off.

Servo Motor
Servo Motor

—

A B C D E

RARAN

Red
6-pinphone cord

4 B

¢ D E
\\ [/ 6 5432 1
Red(hvePowe) Black (vePowed) 3 6 543 2 1

5-Pin Connector

6-pinphone cord

EE@EDEEEECED
EEEEE)

H [14 13 1&2 9&10

RS232 Serial Port RS232 Serial Port

Figure 9.25: Serial Port Connection of the Joint Motors (Left) and the Gripper (Right).

9.6. Experimental Testing
The newly designed WMRA was put to test in its early stages when the robotic

arm was ready for testing. Even though wheelchair modification is still undergoing, we

225

www.manaraa.com

were able to run the control algorithm to move the arm only as we had this in one of the
user options in the control software. Figure 9.27 shows the WMRA system with the
Barrette hand installed and a video camera used by a person affected by Guillain-Barre

Syndrome. In her case, she was able to use both the computer interfaces.

Friction wheel Motorfgear assembly

HEncoder

24V DC
Battery Pack

/

Driwing wheel = Break system

%
Manual break release
: Jowstick
Wheelchar Controller Module
P to
SpaceBall PIC-Zervo SC_ analogue Om’QEE
User Interface o Controller S Switch
. Encoder Input

Figure 9.26: Wheelchair Encoders and Control Communications.

The robotic arm was also tested with an able bodied human subject using the
Brain-Computer Interface (BCI-2000) with the newly designed gripper as shown in
figure 9.28. The user was able to move the robotic arm without touching any of the
controls by looking at the feedback screen and counting the number of flashes of the
particular direction or choice displayed on the screen. This was a successful test of this
interface that encountered some unanticipated problems. When the user sits on the
wheelchair, which is within the electromagnetic field of all the running wires inside the
WMRA system, the BCI sensors were picking up a lot of noise and magnifying them

along with the brain signal. This reduced the accuracy of the user’s choice recognition,
226

www.manaraa.com

but it was good enough for him to execute the task he was trying to do without the need
to step off the wheelchair. This noise might be reduced if the BCI-2000 gains were

trained on the user while sitting on the wheelchair..

|

LLEGE OF ENGINEERINER!

Figure 9.27: A Person with Guillain-Barre Syndrome Driving the New WMRA System.

Another user interface tested with this WMRA system was the touch screen. It
was one of the most convenient control interfaces that we tested if the user is able to hold
on to the stylus pen and touch the screen icons with it. In autonomous mode, the arm was
also tested by commanding the controller to drive it from one point to another with a
specific trajectory, and it moved the arm at that trajectory and returned back to the ready
position as needed. Other physical tests conducted include the use of end-effector
Cartesian velocity profile inputs to move the arm for a specified period of time. It is
noteworthy at this point to mention that the electronics used to control the WMRA
system stop responding occasionally with no apparent reason and at random without
specific conditions. Overall, the system was functioning as designed, and it was able to
execute ADL tasks with different user interfaces. More field testing will be conducted

later, and the results will be published.

227

www.manharaa.com

Figure 9.28: A Human Subject Testing of the BCI-2000 Interface with the WMRA System.

9.7. Summary

In this chapter, the design of a new 7-DoF robotic arm was presented. The
component selection was discussed, and the final product testing was described along
with the specifications of the device. A new gripper that was designed specifically for
activities of daily living was presented. Special claw design procedure and features were
presented. Each feature represents a specific use for task execution and grasping. The
actuation mechanism of the gripper was designed, and proper components were selected

to provide sufficient power to grasp the desired objects.

228

www.manharaa.com

A standard power wheelchair was modified to hold the robotic arm and the
controller box and the associated hardware. Two optical encoders were added to the
wheels of the power wheelchair to give feedback to the controller when moving the
wheelchair for a closed loop control. The controller hardware that controls the seven joint
motors of the robotic arm, the two wheels of the power wheelchair, and the motor of the
gripper was shown. This controller is capable of running up to 32 controller boards that
are daisy-chained to form a single interface to the computer. Operator safety was
addressed by adding panic stop button and a timer to turn the system power off.

Testing of the WMRA with human subjects was conducted to ensure proper
operation of the system. Several user interface options were tested as well, and the results

were satisfactory.

229

www.manaraa.com

Chapter 10:

Conclusions and Recommendations

10.1. Overview

Extensive analysis was conducted to combine the WMRA’s 7-DoF and the
wheelchair’s mobility in the new redundant 9-DoF system. This redundancy was used
and optimized to improve manipulation capabilities for activities of daily living (ADLs)
and avoid obstacles, joint limits and singularities. The new system was capable of
executing pre-set tasks autonomously as well as in teleoperation mode. A real-time
controller was developed and implemented to provide high frequency inverse kinematics
update rates and real-time sensory feedback for effective closed-loop control of the
WMRA system.

The control algorithm was implemented in Virtual Reality simulation to test its
ability to provide a good and comprehensive control structure that can be used by persons
with disabilities.

A newly built modular WMRA was used. It was developed based on
manipulation trajectories needed for activities of daily living. This WMRA utilized an
optimized controller for both WMRA and the power wheelchair. A standard power

wheelchair was modified to include PC based control and sensory feedback.

230

www.manaraa.com

A keypad, a Spaceball, a touch screen, and a Brain-Computer Interface (BCI)
were used as modular user interfaces with different capabilities for each input device to
fit the individual user needs and capabilities. Future testing will determine the appropriate
interface needed for a specific disability. Higher level control algorithms were developed
to interface the sensory data and the user input for an easy control of the system.

Testing procedures were developed for both simulation and experimental testing
on the developed testbed. That testbed was created to conduct the necessary testing of the
system in realistic environments (Home, Office, etc.). Several US patents were planned

for many parts of this work.

10.2. General Discussion

A 7-DoF robotic arm and a 2-DoF non-holonomic wheelchair were
mathematically modeled for kinematiccontrol. A combination of the two mathematical
models created a new 9-DoF redundant manipulator that combined the mobility and
manipulation. The control system was designed for coordinated Cartesian control with
singularity robustness and task-optimized combined mobility and manipulation.
Weighted Least Norm solution was implemented among others for preference control of
each of the joints and the wheelchairs’ position and orientation.

The control algorithm utilized redundancy to optimize the motion based on
different criteria functions or user-defined weights of preference. It was noticed that the
use of conventional optimization methods resulted in unintended motion that may turn
into undesirable move potentially harming the human user or the WMRA hardware.

These methods add an optimization term that can still be active even when the user is not

231

www.manaraa.com

commanding the arm to move. Even though these conventional methods were kept in the
control algorithm for the user to choose, it was found that the Weighted Least Norm
solution with the new modifications added to it gave the most predictable and robust
control algorithm that resulted in a smooth motion with joint limit avoidance and user-
preferred motion weights.

A wheelchair-mounted robotic arm (WMRA) was designed and built to meet the
needs of mobility-impaired persons, and to exceed the capabilities of current devices of
this type. The mechanical design incorporates DC servo drive with actuators at each joint,
allowing reconfigurable link lengths and thus greater adaptability to a range of
workspaces. Nine principal degrees of freedom allow full pose control of both the
wheelchair and the arm. The used control electronics are capable of controlling up to 32
devices when daisy-chained together, and it is capable of reading different sensory
feedback and supplying it to the control software. Reliability of these electronics proved
unpredictable since it showed some failure with no specific reason or pattern for
diagnostics.

A new gripper was designed specifically to be used for activities of daily living.
The design includes two ergonomic claws with designated surfaces for handling specific
shapes and objects. The actuation mechanism was designed to be light, effective and safe
at the same time. Interfacing the gripper with the robotic arm and controlling it using the
same controllers used to control the arm were some of the features included in the design
and component selection process.

Modularity in both the hardware and software levels allows multiple input devices

to be used to control the system. User interfaces include the SpaceBall, the keyboard and

232

www.manaraa.com

mouse, a touch screen, or the Brain-Computer Interface (BCI) used for people with
disabilities. Any other preferred device can be used easily since the control software is
flexible enough to allow any other user-interface hardware to be added.

Simulation testing of the new control algorithm was conducted using Matlab and
Virtual Reality toolbox among other C++ programs. Modular functions with proper
interfaces were designed to ease the addition to any future developments that might be
needed. The results showed a powerful method of controlling this 9-DoF combined
WMRA system. Simulation results were also shown to emphasize on the effectiveness of
the methods.

The use of simulation and hardware testing showed successful integration
between the mobility and manipulation mathematically and in the real application. When
tested with the actual robotic arm, there were some unpredictable moments of
unreliability between Matlab functions and C++ functions that resulted in the loss of
motion in few occasions. This may be due to the lack of good compatibility between
Matlab program and the DLL library that was compiled using C++. This problem can
very likely be taken care of if the control software of the actual WMRA 1is done
separately on a similar program done in C++.

The following is a list of the major contributions made in this dissertation:

I- Design and development of a 9-DoF wheelchair-mounted modular robotic

arm system.

2- Design and development of an ergonomic gripper to be used for ADL tasks.

3- Development of a complex inverse-kinematics algorithm that combines the

mobility of non-holonomic motion and the manipulation of redundant

233

www.manaraa.com

manipulators for a complex 9-DoF control system with all the associated
details.

4- Expand the WLN method with the S-R inverse for a new control method that
is robust and reliable in real applications.

5- Utilization of redundancy for joint limit avoidance of such complex systems
through optimization.

6- Development of a powerful and modular simulation tool using Virtual Realty
and friendly graphical user interface to model and simulate the 9-DoF WMRA
system with theory implementation.

7- The implementation of the theory on the actual WMRA hardware, and the
resolution of all communication and interface challenges.

8- The use of the BCI system to control WMRAs for people with severe

disabilities.

10.3. Recommendations

Going back to the control method, it would add more enhancements to the control
algorithm if an accurate mathematical model of the human subject along with the
wheelchair and the surrounding obstacles are available. This way, the WMRA motion
would change the configuration to avoid these objects rather than stop the system. The
implemented safety measures and conditions can still be kept in case the system comes
close to singularity or goes out of control.

In the hardware part, better control boards may eliminate the occasional
unpredictable failure of the WMRA system to respond. While the daisy-chaining

234

www.manaraa.com

capabilities of these control boards give the system better connection to the computer
through a single wire, performance was greatly affected and was noticeable. When the
WMRA system was commanded to execute a task, the commanded joint positions and
velocities were sent to the boards for execution. The problem with that was the fact that
the command goes from the first board to move its joint, to the last board, and by the time
the last joint moves, the first joint would already have finished its motion. This
introduced some uneven periods of motion among the joints. A single and more compact
board to control all ten motors may replace the ten boards in use currently whenever they
are commercially available. It is also recommended to change the flexible coupling in
joint 6 to a rigid coupling to avoid slippage.

In the simulation side of this work, a separation of the physical WMRA system
control and the simulation control may be done to convert the control software to C++
only rather than the combination of Matlab and C++ together. While Matlab’s Virtual
Reality simulation is impressive, using it to control the robotic arm in a conventional
operating system introduced undesirable delays. Separating the two softwares would
allow the user to use the actual WMRA system more efficiently, and at the same time
allow the system to be work in powerful virtual environment for testing and development
of new implementations to the system.

User interfaces were also using C++ applications under Windows operating
system. When used with Matlab, it was necessary to interface these two programming
packages together either by intermediate programs that link the information between the

two packages, or by assigning virtual ports and sending the data and information through

235

www.manaraa.com

these ports. In both cases delays were introduced in the system, and some times, it even
froze the computer.

The current control system is sufficient for low velocities, which is what persons
with disabilities need to perform their ADL tasks. Expanding the mathematical
representation of the WMRA system to include a full dynamic model and gravity
compensation can help the user to perform other tasks that require high velocities such as

sports and recreational activities.

236

www.manharaa.com

Chapter 11:

Future Work

11.1. Introduction

This WMRA system has the potential to be one of the leading assistive device
projects in the country. Several patents were planned for for many aspects of this work.
Commercializing this WMRA system would benefit many people with disabilities who
find themselves physically dependent on other that may or may not be willing to provide
the best help possible. Several steps can be taken to ensure an effective system that can
be widely used with many wheelchair-bound individuals. This chapter gives a glimpse of
what can be done in the future to add more capabilities and ease of use to this WMRA

system.

11.2. Quick Attach-Detach Mechanism

This is an ongoing work that is aiming to have the robotic arm and the controller
hardware detached and attached quickly with minimum efforts. The idea is to allow a
single individual the ability to attaching or detaching the robotic arm and the controller
box with all the wires and cables to and from the wheelchair. It was noticed with both
Manus and Raptor that when they are attached to a power wheelchair, transportation of

the wheelchair becomes a problem, even when a power lift is used with a custom-

237

www.manaraa.com

designed wheelchair transportation van. Manus already has a quick-release mechanism to
detach the arm from its hosting wheelchair. The ongoing efforts in this project will
employ a mechanism to attach the arm to the wheelchair using the weight of the arm to
slide it into place and lock the system solid. Quick connection cables are also designed to
remove the cables from the controller box and detach the whole control system from the
wheelchair. This will allow the user to transport both the wheelchair and the robotic arm

independently and with minimum effort.

11.3. A Single Compact Controller

In the current design, each motor to be controlled uses a dedicated controller
board to send the commanded position and velocity to that motor. This resulted in ten
controller boards so far, seven for the seven robotic joints, two for the wheelchair and one
for the gripper. An additional board was used to take the signals from all ten daisy-
chained controller boards to the computer’s serial port or USB port on a single cable.

Currently, we are seeing huge advancements in microelectronics and micro-
processing. Having a single board that is capable of simultaneously controlling all ten
motors without the serial connection delays will give a better performance to the whole
system. This will also affect the size of the controller box. The current controller-boards
box is significant in its size housing the ten control boards, a converter board and power
adapter, and was mounted under the seat cushion of the power wheelchair. Having a
significantly smaller box may eliminate the need for having it mounted on the wheelchair

and keep it on the robotic arm itself. This will reduce the need for many connectors and

238

www.manaraa.com

cables between the wheelchair and the robotic arm, and it will certainly make it lighter

and more self-sufficient.

11.4. Sensory Suite

It is essential for an intelligent robotic system to carry in its sensory suite many
different sensors. In this WMRA system, ten optical encoders were installed for joint
angle measurements. A laser range finder and a digital camera are two other sensors that
are to be added. The laser range finder will be used for object-following or for
determining abject coordinates based on the read distance and the current orientation of
the laser range finder. The camera will be used for navigation feedback to the user as well
as for object recognition and tracking in the plane.

Other sensors, such as proximity sensors, will be used for on-line obstacle
avoidance and for guidance through narrow pathways. Force-torque sensors will be added
at the gripper’s base to provide force feedback to enhance the manipulation of different

objects.

11.5. Real-Time Control

When operating the WMRA system using Windows XP operating system, time
and priority assignments are uncontrollable by the programmer. Doing the control under
a real-time operating system such as QNX allows the programmer to control the priorities
and set priority rules to operate the WMRA as well as any other software or hardware

used by the computer. This will enhance the response time of the system and make the

239

www.manaraa.com

programmer run the system at higher frequencies without compromising the accuracy of

the WMRA system or the operating system.

11.6. Bluetooth Wireless Technology for Remote Wireless Teleoperation

Bluetooth wireless is being integrated to the system to add remote wireless
teleoperation so that the user can perform some ADL tasks while not seated on the
wheelchair. The current USB and serial connections between the WMRA system and the
control software on the tablet PC will be made wireless through special adaptors that will
convert the signal from its current protocol to Bluetooth protocol and back at the
computer terminal. This will allow the user to detach the tablet PC from the wheelchair
when he/she is not using it. For instance, if a user with severe disabilities wakes up in the
morning in need of a drink or a snack, that person will usually wait until the designated
aid or family member comes to the room for assistance. Having the ability to control the
WMRA system remotely allows him/her to drive the WMRA around the house by
operating the system through a selected user interface and looking at the camera view
through the tablet PC monitor. When the fridge is reached, the operator would be able to
use the arm to open the door, get the desired drink and come back to the room with no

need to wait for a human aid.

11.7. Sensor Assist Functions (SAFs)
Sensor Assist Functions (SAFs) will be used to assist or resist user’s motion based
on the trajectory generated to execute the intended task and the motion input coming

from the user interface. Velocity scaling teleoperation, force reflection, varying

240

www.manaraa.com

impedance parameters, and visual servoing for object grasping will be used to enhance
the manipulation capabilities of persons with disabilities. When using a haptic device, the
user can be trained to perform better in ADL tasks by starting with the assist functions

and slowly releasing them with time as the user gets used to proper control.

11.8. Pre-Set ADL Tasks

Programming several tasks to the current WMRA system is quite straight forward.
The plan is to program commonly used tasks for each individual using the customized
WMRA system so that these tasks can be done autonomously as the user selects them.
Several tasks will be included in this WMRA system as follows:

1- Turning switches on and off.

2- Operating an oven, washer, dryer, microwave, dishwasher, etc.

3- Opening and going through spring-loaded doors when the door dimensions are

according to common standards

4- Object-following task as the camera and/or the laser range finder guide the

WMRA system to autonomously follow that object or human.

5- Inserting CDs/diskettes into the computer or the CD player.

These pre-programmed ADL tasks are among many others that can be
programmed to execute at the user’s request. A good scenario of such tasks is when a
user is in a hallway or a room and would like to go outside that room through a spring-
loaded door. The user can point the attached laser range finder to the door handle and
press the assigned button. The control system will start the autonomous mode while

keeping the teleoperation mode running. The autonomous operation will start by

241

www.manaraa.com

calculating the coordinates of the door knob from the given distance from the laser and
the given laser orientation from the optical encoders and forward kinematics of the
WMRA system. Once the door knob location is fully defined, the WMRA control system
moves the wheelchair to a close proximity from the door at certain pre-calculated angle,
reach to the door knob using the arm, grasp it using the end-effector, open the door and
backup the wheelchair from the door way with a resultant circular motion at the gripper
to match the door handle trajectory while opening. The system can then advance the
wheelchair while holding the door using the robotic arm, and drive the wheelchair
through the door until it is clear, and then release the door. The autonomous mode will

then stop until the next pre-set operation is requested.

242

www.manharaa.com

References

[1] US Census Bureau (1997), “Disabilities Affect One-Fifth of All Americans”,
Census Brief, CENBR/97-5, http://www.census.gov/prod/3/97pubs/cenbr975.pdf,
1997.

[2] J. Reswick, “The Moon Over Dubrovnik - A Tale of Worldwide Impact on Persons
with Disabilities”, Advances in External Control of Human Extremities, 1990.

[3] R. Murphy, “Introduction to AI Robotics”, MIT Press, 2nd edition, 2002.

[4] J. Allen, A. Karchak, and E. Bontrager, “Design and Fabrication of a Pair of Rancho
Anthropomorphic Arms”, Technical Report of the Attending Staff Association of the
Rancho Los Amigos Hospital Inc, 1972.

[5] T. Rahman, S. Stroud, R. Ramanathan, M. Alexander, R. Alexander, R. Seliktar, and
W. Harwin, “Consumer Criteria for an Arm Orthosis”, Applied Science and

Engineering Laboratories, www95.homepage.villanova.edu/rungun.ramanathan/
publications/t and d.pdf, 2000.

[6] H.EM. Van der Loos, VA/Stanford Rehabilitation Robotics Research and
Development Program, “Lessons Learned in the Application of Robotics
Technology to the Field of Rehabilitation”, IEEE Transactions on Rehabilitation
Engineering, V. 3, N. 1, pp. 46-55, 1995.

[71 M. Topping, “An Overview of the Development of Handy 1, a Rehabilitation Robot
to Assist the Severely Disabled”, Journal of Intelligent and Robotic Systems, V. 34,
N. 3, pp. 253-263, 2002.

[8] M. Topping, H. Heck, G. Bolmsjo, and D. Weightman, “The Development of RAIL
(Robotic Aid to Independent Living)”, Proceedings of the third TIDE Congress,
1998.

[9] J. Dallaway, and R. Jackson, “RAID - A Vocational Robotic Workstation”,

Procceedings of the IEEE International Conference on Rehabilitation Robotics
(ICORR), 1992.

243

www.manaraa.com

[10] Robotic Assistive Device, Neil Squire Foundation,
http://www.neilsquire.ca/rd/projects/RobotApp.htm.

[11] N. Katevas, “Mobile Robotics in Health Care Services”, IOS Press Amsterdam, pp.
227-251, 2000.

[12] H. Yanco, “Integrating Robotic Research: A Survey of Robotic Wheelchair
Development”, AAAI Spring Symposium on Integrating Robotic Research,
Stanford, California, 1998.

[13] P. Warner, and S. Prior, “Investigations into the Design of a Wheelchair-Mounted
Rehabilitation Robotic Manipulator”, Proceedings of the 3rd Cambridge Workshop
on Rehabilitation Robotics, Cambridge University, England, 1994.

[14] S. Sheredos, B. Taylor, C. Cobb, and E. Dann, “The Helping Hand Electro-
Mechanical Arm”, Proceedings of RESNA, pp. 493-495, 1995.

[15] M. Hamilton, “The Weston Wheelchair Mounted Assistive Robot - The Design
Story”, Robotica, V. 20, pp. 125-132, 2002.

[16] G. Bolmsjo, M. Olsson, P. Hedenborn, U. Lorentzon, F. Charnier, H. Nasri,
“Modular Robotics Design - System Integration of a Robot for Disabled People”,
EURISCON, 1998.

[17] B. Borgerding, O. Ivlev, C. Martens, N. Ruchel, and A. Griser, “FRIEND -
Functional Robot Arm With User Friendly Interface For Disabled People”, The 5th
European Conference for the Advancement of Assistive Technology, Diisseldorf,
Germany, 1999.

[18] H.F.M. Van der Loos, “Lessons Learned in the Application of Robotics Technology
to the Field of Rehabilitation”, IEEE Transactions on Rehabilitation Engineering, V.
3, N. 1, pp. 46-55, 1995.

[19] M. Pauly, “TAURO - Teleautomated Service Robot for the Disabled”, Automated
Mobile Systems, pp. 30-39, 1995.

[20] N. Hogan, H. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, “MIT-MANUS:
A Workstation for Manual Therapy and Training”, Proceedings of the 1992 IEEE

International Workshop on Robot and Human Communication, pp. 161-165, Tokyo,
Japan, 1992.

[21] H. Takanobu, A. Takanishi, D. Ozawa, K. Ohtsuki, M. Ohnishi, and A. Okino,
“Integrated Dental Robot System for Mouth Opening and Closing Training”,
Proceedings of the 2002 IEEE International Conference on Robotics and
Automation (ICRA), V. 2, pp. 1428-1433, 2002.

244

www.manaraa.com

[22] D. Tougaw, C. Polito, P. Weiss, and J. Will, “Sponsoring a FIRST Robotics Team”,
Proceedings of the 2003 ASEE IL/IN Section Conference. pp. 60-62. 2003.

[23] H. Eftring, and K. Boschian, “Technical Results from Manus User Trials”,
Proceedings of the 1999 IEEE International Conference on Rehabilitation Robotics
(ICORR), pp. 136-141, 1999.

[24] M. Hillman, and A. Gammie, “The Bath Institute of Medical Engineering Assistive
Robot”, Proceedings of the 1994 IEEE International Conference on Rehabilitation
Robotics (ICORR), pp. 211-212, 1994.

[25] P. Chang, “A Closed-Form Solution for Inverse Kinematics of Robot Manipulators
with Redundancy”, IEEE International Journal of Robotics and Automation, V.3, N.
5, 1987.

[26] S. Khadem, and R. Dubey, “Global Redundant Robot Control Scheme for Obstacle
Avoidance”, Proceedings of the 1988 IEEE Southeast Conference. pp. 397-402,
Knoxville, Tennessee, 1988.

[27] T. Chan, and R. Dubey, “A Weighted Least-Norm Solution Based Scheme for
Avoiding Joint Limits for Redundant Joint Manipulators”, IEEE Robotics and
Automation Transactions (R&A Transactions). V. 11, N. 2, pp. 286-292, 1995.

[28] S. McGhee, T. Chan, R. Dubey, and R. Kress, “Probability-Based Weighting of
Performance Criteria for a Redundant Manipulator”, Proceedings of the 1994 IEEE
International Conference on Robotics and Automation (ICRA). V. 3, pp. 1887-1894,
San Diego, California, 1994.

[29] L. Beiner and J. Mattila, “An Improved Pseudoinverse Solution for Redundant
Hydraulic Manipulators”, Robotica, V. 17, pp. 173-179, 1999.

[30] E. Zergeroglu, D. Dawson, I. Walker, and P. Setlur, “Nonlinear Tracking Control of
Kinematically Redundant Robot Manipulators”, IEEE/ASME Transactions on
Mechatronics, V. 9, N. 1, pp. 129-132, 2004.

[31] W. Kwon, B. Lee, and M. Choi, “Resolving Kinematic Redundancy of a Robot
Using a Quadratically Constrained Optimization Technique”, Robotica, V. 17, pp.
503-511, 1999.

[32] L. Ellekilde, P. Favrholdt, M. Paulin, and H. Petersen, “Robust Inverse Jacobian

Control with Joint Limit and Singularity Handling for Visual Servoing
Applications”, The International Journal of Robotics Research, 2006.

245

www.manaraa.com

[33] C. Perrier, P. Dauchez, and F. Pierrot, “A Global Approach for Motion Generation
of Non-Holonomic Mobile Manipulators”, Proceedings of the 1998 IEEE
International Conference on Robotics and Automation (ICRA), V. 4, pp. 2971-2976,
Leuven, Belgium, 1998.

[34] H. Osumi, M. Terasawa, and H. Nojiri, “Cooperative Control of Multiple Mobile
Manipulators on Uneven Ground”, Proceedings of the 1998 IEEE International
Conference on Robotics & Automation (ICRA), 1998.

[35] Q. Huang, S. Sugano, and K. Tanie, “Motion Planning for a Mobile Manipulator
Considering Stability and Task Constraints”, Proceedings of the 1998 IEEE
International Conference on Robotics and Automation (ICRA), 1998.

[36] Y. Yamamoto, and X. Yun, “Unified Analysis on Mobility and Manipulability of
Mobile Manipulators”, Proceedings of the 1999 IEEE International Conference on
Robotics & Automation (ICRA), pp. 1200-1206, Detroit, Michigan, 1999.

[37] M. Egerstedt, and X. Hu, “Coordinated Trajectory Following for Mobile
Manipulation”, Proceedings of the 2000 IEEE International Conference on Robotics
& Automation (ICRA), 2000.

[38] A. Mohri, S. Furuno, M. Iwamura, and M. Yamamoto, “Sub-Optimal Trajectory
Planning of Mobile Manipulator”, Proceedings of the 2001 IEEE International
Conference on Robotics & Automation (ICRA), 2001.

[39] B. Bayle, J. Fourquet, and M. Renaud, “Manipulability Analysis for Mobile
Manipulators”, Proceedings of the 2001 IEEE International Conference on Robotics
& Automation (ICRA), 2001.

[40] B. Bayle, J. Fourquet, F. Lamiraux, and M. Renaud, “Kinematic Control of
Wheeled Mobile Manipulators”, Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2002.

[41] K. Nagatani, T. Hirayama, A. Gofuku, and Y. Tanaka “Motion Planning for Mobile
Manipulator with Keeping Manipulability”, Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2002.

[42] H. Seraji, “A Unified Approach to Motion Control of Mobile Manipulators”, The
International Journal of Robotics Research, V. 17, N. 2, pp. 107-118, 1998.

[43] J. Chung, S. Velinsky, and R. Hess, “Interaction Control of a Redundant Mobile
Manipulator”, The International Journal of Robotics Research, V. 17, N. 12, pp. 1-8,
1998.

[44] J. Gardner, and S. Velinsky, “Kinematics of Mobile Manipulators and Implications
for Design”, Journal of Robotic Systems, V. 17, N. 6, pp. 309-320, 2000.

246

www.manaraa.com

[45] B. Bayle, J. Fourquet, and M. Renaud, “Manipulability of Wheeled Mobile
Manipulators: Application to Motion Generation”, The International Journal of
Robotics Research, V. 22, N. 7-8, pp. 565-581, 2003.

[46] D. Xu, H. Hu, C. Calderon, and M. Tan, “Motion Planning for a Mobile
Manipulator with Redundant DOFs”, Proceedings of the International Conference
on Intelligent Computing (ICIC), Hefei, China, 2005.

[47] A. Luca, G. Oriolo, and P. Giordano, “Kinematic Modeling and Redundancy
Resolution for Nonholonomic Mobile Manipulators”, Proceedings of the 2006
IEEE International Conference on Robotics and Automation (ICRA), pp. 1867-
1873, 2006.

[48] E. Papadopoulos, and J. Poulakakis, “Planning and Model-Based Control for
Mobile Manipulators”, Proceedings of the 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1810-1815, 2000.

[49] J. Craig, “Introduction to Robotics Mechanics and Control”, Third Edition,
Addison- Wesley Publishing, 2003.

[50] Y. Nakamura, “Advanced Robotics: Redundancy and Optimization”, Addison-
Wesley Publishing, 1991.

[51] R. Paul, “Robot Manipulators: Mathematics, Programming, and Control”, MIT
Pres, 1981.

[52] K. Edwards, R. Algasemi, R. Dubey, “Design, Construction and Testing of a
Wheelchair-Mounted Robotic Arm”, Proceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3165-3170, 2006.

[53] T. Yoshikawa, “Manipulability and Redundancy Control of Robotic Mechanisms”,
Proceedings of the 2006 IEEE International Conference on Robotics and
Automation (ICRA), V. 2, pp. 1004-1009, 1985.

[54] T. Yoshikawa, “Foundations of Robotics: Analysis and Control”. MIT Press, 1990.

[55] W. Koepf, “The Algebra of Holonomic Equations”, Mathematica, V. 44, pp. 173—
194, 1997.

[56] O. Krupkova, and P. Volny, “Euler-Lagrange and Hamilton Equations for Non-
Holonomic Systems in Field Theory”, Journal of Physics, V. 38, pp. 8715-8745,
2005.

247

www.manaraa.com

[57] E. McCaffrey, R. Algasemi, and R. Dubey, “Kinematic Analysis and Evaluation of
Wheelchair Mounted Robotic Arms”, Proceedings of the 2004 IMECE International
Mechanical Engineering Congress & Exposition (IMECE), Anaheim, California,
2004.

[58] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw,
“BCI2000: A General-Purpose Brain-Computer Interface (BCI) System”, IEEE
Transactions on Biomedical Engineering, V. 51, N. 6, pp. 1034-1043, 2004.

[59] S. Sutton, M. Braren, J. Zublin, and E. John, “Evoked Potential Correlates of
Stimulus Uncertainty”, Science, V. 150, pp. 1187—1188, 1965.

[60] Sensable Technologies website: http://www.sensable.com, 2007.
[61] D. Xu, M. Tan, G. Chen, “An Improved Dead Reckoning Method for Mobile Robot
with Redundant Odometry Information”, Proceedings of the 7" International

Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 631-636,
Singapore, 2002.

248

www.manaraa.com

Appendices

249

www.manharaa.com

Appendix A. Hardware Components

A.l.

@Pittman

GM8724S009

™

Lo-Cog® DC Servo Gearmotor

Robotic Arm Gear Motors with Encoders

Assembly Data Symbol Units Value
Reference Voltage E Y] 12 Included
No-Load Speed SaL rpm (rad/s) 720 (75.4) Features
Continuous Torque (Max.)' Te oz-in (N-m) 15 (1.0E-01)
Peak Torque (Stall)* Tek oz-in (N-m) 42 (3.0E-01) 2-Pole Stator
W eight Wiy oz (g) 1.2 (316) Ceramic Magnets

Motor Data Heavy-Guage Steel Housing

Torque Constant Ky oz-infA (N-m/A) 3.09 (2.18E-02) 7-Slot Armature
Back-EMF Constant Ke V/krpm (V/rad/s) 2.289 (2.18E-02) Silicon Steel Laminations
Resistance Ry Q 4.33 Stainless Steel Shaft
Inductance L mH 2.34 Copper-Graphite Brushes
No-Load Current Ine A 0.18 Diamond Turned Commutator
Peak Current (Stall) Ip A 2 TT Motor Ball Bearings
Motor Constant Ku oz-AnAW (N-mAW) 1.49 (1.05E-02) Qutput Ball Bearing
Friction Torque Te oz-in (N-m) 0.35 (2.5E-03) Standard Gears
Rotor Inertia Ju o0z-in-s* (kg-m°) 2.3E-04 (1.6E-06)
Electrical Time Constant Te ms 0.54
Mechanical Time Constant T ms 14.7 Customization
Viscous Damping D oz-in/krpm (N-m-s) 0.020 (1.4E-06) Options
Damping Constant Kp oz-in/krpm (N-m-s) 1.6 (1.1E-04)
Maximum Winding Temperature BOpax °F (°C) 311 (155) Alternate Winding
Thermal Impedance Ry °Fj/watt (°C/watt) 70.5 (21.4) Sleeve or Ball Bearings
Thermal Time Constant Ty min 10.7 Modified Output Shaft
Reduction Ratio 6.3 Special Brushes
Efficiency 0.95 EMI/RF| Suppression
Maximum Allowable Torque 0z-in (N-m) 100 (0.71) Alternate Gear Material
Channels 3 Optional Encoder
Resolution CPR 500 Fail-Safe Brake
1 - Specified at max. winding temperature at 25°C ambient without heat sink. 2 - Theoretical values supplied for reference only.
3 - Effective gearbox efficiency for this unit improved by use of ball bearings.

250

www.manaraa.com

Appendix A. (Continued)

"ONIMYYQ 3dIM Qv TWNQINGNT ¥3d 3NOQ 39 OL SNOLLOANNOD Qv d3JOONT °L
“FIEVIVAY SNOISNILGQ L3VHS 8v3d TVNOLL4O ‘9
W3QOONT TVOULDC 0X16—S03H ¥ S| ISOTONI °S
F1VLdIIY NO—HSNd OLL™ HUM 3LV TIM
'ONRITTI0S ¥04 J3IV1Id NIl 39V STYNIMMAL ¢
“TIALS LN ¥Od ‘urzo ogL
'XOENY3O OHVONYLS "ul'Z0o 001 S| ONLYM 3NONO0L XOSMYI9 "XYN '€
‘LIYHS INdLNO NO “XWW 0Z0“/01—d ¥3d SONRMVIE TivA QIAVOTI¥d S| HOLON ‘2
‘ON3 ONILNNOW 1Y ONIHOOT JTHM
“WNINNEL L# NO (+) 39VLI0A JAILSOd HUM OINIWMIIEA S| NOLYIONM L4¥HS "L

e -
096/ C7HT z ‘dS ‘03 STIOH €
S 434 'da 0bT
3 8Z—ONN Oo¥—+#
_’Sn.. =
© 210N 335 |/.
-
cio'L
qz0°L
¢ 210N 335 /]
ANISNOH
XN w HOLI3NNOD
0sg” I'_ I —¥G—LEIN/d
[erA+ OBL" -
SNOILONNS 8O e
NVNOWIA 33S ‘SHITANN o
I¥Vd O1I03dS 804 .)
HI0H0 YHOM 338 - = 559 896
TIEVIVAY SIOVHOVd
J4M TWNOLLJO
XN LV

251

www.manaraa.com

Appendix A. (Continued)

A.2. Harmonic Drive Gearheads

.Drderingt Information

L CLUSTINLED SPECHCATION [SPEC]
BE 28 - CONMPONENT SET SLICH &5 SHAPE sl PEARORMANCE
BUH - HouseD LW BET

hasE OF MOIEL = _
BRLICSATES: SHOMT 0P E2I0K s Ao A fg%ﬂ“:;ﬂ”"ﬁ
HAFRIONE DAVE ARG I

CHF: STakDAR) WEFSIN
G5 HH T0R0UE YERSON

Evalution of Harmenlc Dive Gaa rng
Harmroric drive gasning oonlimes 10 splve by imgroving peformancs and Muncticeality.

CSG Senes

'II'I'IECSG BMH[‘:GU EL?;'% Increase
n Lk Capaci iy, WEE
= frErn ?.!.‘EIUI] hl‘al:li-ﬂ]ﬂ:I.EIIl'.'l s,

By pursuirg
h and
ﬁ%. a new Thie CSF achieved 7
Sy T S T s Ratio 30:1 Semes
5EH|E5 was | d IEEF" E& axlal |E|'|ut|'| af
The "5" ApproE | mately 600 Ratic El:mlﬁ added Tor
doibled the Figher autput &pesds.
turﬁ |1
a ness.

MINIATURE Semies

Miniature serles was developed to expand
the range of harmonlc drive gearing.

Tooth Prollles

The harmanic dive compananl s2ts and boused unils peasantad o
i colalog inoorporale the "37 gear loolh prolle. This palenssd
waith pralie peowvickes a sigrificant impravernen] in gear opanmling
characienslics and parfermands.

The new "5 Ioath peofile signilcantly increpses the region of 10oth
engagement. For the raditianal 10oth peofie 15% of 1he ol number
of leeth are in canlact, winks for the new prafle up o 300% of the
Wealh are i conkacl. The ingreased rumber of leeth in engagement
resulls in & 100% ingreass in lorsona stilfness in the low 1 mid
ROnqus rangEs

The new Iooih profile ko destines an snlnnged tooth mal mdus,
which resuls oo higher abowatrie sress and a comespanding

inarense in g cagosity. Furthenmmons, e enlaeged region al toth
el s 30 & mon eden bading of the Wne Generator INFTLAL. ENGAGEMENT FULL EnaaGEMENT

beasring, resuiting in mane than dauble the He expectancy far the gear.

252

www.manharaa.com

Appendix A. (Continued)

Principle and Elru::.iura.

L]
GEARHEAD COMPONENT SET
Cross Roller Bearing Gircular Spline
(Case)
Weve Generator
(input)

Flexspline

Systam Componants

Thé FLEXSPLINE ig p ran-nigid, thin cydindrical cup with extennal testh on o sighlly srmalier pilch dismeter 1han the Cirgulnr Soling.
It T quesr ard is held in an slipficol shape by the Wve Ganersior.

The WAVE GEMERATOR is o thin raced bal Bearing Sited onle an elistical plig sering as o high elicienay gus cormemsr

The CIRCLLAR SPLNE is a ngid ring with inlemnal eeth, engaging the eesh of the Fexisoine acniss the major 0o of the Wnse Gensralon

The Flrespines | alipticaly shaped By The Whan the Circutar Spina is dxed ard For mach 280 degmes clocowse
Wigve Genprotor ond engaged with e the Yo goremicr rotoies chocksese movemant af the ‘Wewe Genarmiontha
Circular Spbne at the major ebptcal auis the Fleospine |5 elasticaly deformed Fhuspling momms coumisrciociose by
The toeth compleidy dsengagn on the and rglates countenciockwizn relatha to twn teath relathm to she Circutar Spdne.
iNDE o, tha Croular Spiine

253

—

www.manharaa.com

Appendix A. (Continued)

Driving Configurations
B

Drving Conflguratlons

A unristy of diflesnt diving canfiquratons
are possable, a5 showm Do,

The recction raso ghoen in Tha tables

e page 10 and 11 comespond W
nrangement 1. in which the

Wree Generasar ac1s as the

mpul s, the Cicular Spline

s Toeed and the Flesspline

acls as the culpel #emeant.

2. Pedugtian Gesring

F& Fed
WG Irput
5 Chstpul
§ B § Al
Rafip= ——= [Equation 1] Palic = — [Erpation 2|

Inpt and aulpa in same dissction.

3. Reduction Gearimg 4. Speed Ingreassr Gearing 5. Spemd Increaser Geanng
[LUE] Finad Wi Fiaesd [0=1 Fed
F& Inpait =] Il F2 frgul
2 st F& Clutgut Wi Chatpu
; B ; A g i
Ratig = = [Exjuation 3] Patiy=- m==r [Baguation] - — e [N 5]
gt and oulpll in same divsciion. Irgen and oyt I same direchion At and aulpad in ogposile drsctian

8. Speed Increaser Gering 7. Dillerentzl Csaring
F5 Fimed WG Cantral gt
= Inpiit [Pelawri Do Nt
NG Qlutpwn F& Petain Ditee- Cipint
1 Humergus dillerenhial lunchians can
Faligy = e [Exuation &) be alained by combinations of ke
q:mad ard mtational directian af
gl and oulplR in gieme dreciion. the thies badc ssemeants
254

www.manharaa.com

Appendix A. (Continued)

CSF Rating Table
= m
Thbxa 1
e 3515] et Limil v Limil far Limsd o WhTdmiaTi ILimil far Mol
Tiscpss Repoalad st} ity [JET] Amrap o
[Frshi Tnpm Pask Spsad Ingari Iniriia
21_:|rm i Y Torisi Sl
|]:r- Hm Hm Hm . pm
ﬂ in-k E [&) Fim i FHimi jrHD X110 i
o 0% [} 14 18 14 12 3 b]
;] sl -3] a3 = a4 o 1] 5 Llea] 500 BSOSO 008 1Nz
0 24] LE- 41 a3 =1 0 B
a0 1z 10 4.5 40 34 1} B.5 =
i - x] as i B3 Ta 1 4 7 150 14000 2500 [-] agi2 Qi
¥ S5 A4 11) B3 T bl eyl
5] a5 a5 &0 k= 1] -3 1) 7 150
14 k] 54 40 H 150 =1} Bl a5 a1n 140 500 £ |] NIz} LR
B 18 -] boc] i1 o 47 418
L] 18 -] = 245 11 o = 478
a0 BE TH ® 142 12 108 0 X8
k] 18 142 i a x I3 ™ [P 1]
i7 B b 195 &3 0] Iy T3 B k] 1000 Ta00 [T] O07e Ll :}]
00 24 32 =4 L] &3 345 2] ass
T2 b | 22 =4 L]] 345 B Tl
a0 15 133 a7 0 b 77 = 443
sl 2= 24 = Ll] 4 a0 k-] Bes
1] B M)] 4 [: =] a¥ a1 17 i3 liiai] €500 B0 500 i Qg7
0 A 54 -] If a3 a4 ALh 1301
T 40 a5 &F ro Ll 434 7 1301
i 40] k] Bit a3 434 7 1301
a0 b L] = 443 I8 95 B41
k] el M5 -] 22 55 L= 18 1B
-] B ;1] ms 157 e BT I ‘a5 el Tam B0 5800 A5G 413 41
00 iy 533 157 T i a58 . 513
T2 r) - £ 167 HIE 18 958 = | b L
i r) - £ 17e 1558, 18 958 £1L | o
E: u] 1] 415 100 [: 2 i) B4 . 1) 1T
sl e [ErgE] il iz i a58 SHZ it o]
= B 118 104 M 200 16T 1875 L) ST e i ul 4800 [0 -] 1.6F 172
¥ 1ar 1212 fe= 13 24T Zid @iz 47 F]
T 1ar 1212 =+ i Zid @iz B =iy
i 1ar 1212 e TE I8 1012 [) o
- x] 1ar 1212 A aesd, 1M iFas -) =iy
B i | 1821 Eid AEE et | i1 = o) BET
40 il as 245 = a7l a2 1080 =] SEO0 4000 B 00 4,50 4.50
T am X Ll sS40 451 21 110 10443
i am X 7 &o5x 451 21 1% 10443
B0 178 1558 L1 k] 4425 pri] 2045 *.~5] 405
B a1a o] T = 2 g2 1270 110
45 0 g3] TES BEHT] 4415 1570 1 350E 5000 800 0 3000 E=1: BiER
Ta 402 = Eval T4 [1] Z4HT 17 19578
i A =] SHE TEE el SEE 1 180
- x] a 2iE8 s exs, a5 S 1430 13868
B a7l i 1 B, id A5F5 18841 18461
50 ¥ A7l 41Ed o BETL =] e 204 18231 A5G &0 000 R 115 2B
T =2 El 1050 e, Bid Tid5 204 18231
1l £x Sl 1120 10443 B4 THE1 2450 2NeE
k] as] 1020 ¥ 1] AEr2 1354 1THe
B 44 L] 1450 13008 T EHIE 2450 2ieEL
5H il =] R[] 1500 14072 10 ¥ at 14l 000 e (6 1] g ZEG ol 5a
T2 Ti5 [= i) 1720 1528 110 10532 it] 2
i Ti5 [= i) 1240 1EZE 1210 1070 L x] aese.

255

www.manharaa.com

Appendix A. (Continued)

Rating Takle
= i =
T2
Slza Rakin Faliad Limsil 1or ILimil Limil fer Kidmiam Limil led W
i Pipisatad A ATy el B o
ot 2000 Plaak T Plaalk S Il neitia
Tr Torpe TR mm R
M am
Flan b Hm el Hm indh Hm by ol Cinaass Qi Oressa xi0gan® #ifglms”
-] 440 437 420 12507 T30 B2 ZEND AR
] 745 [-] 2110 & 1] freit aFrsd EMOE
E5 il '] 418 el 1} HIZEE (£ 1] [Ec L= - T i .] ZHOD 00 1900 4HA]
Tal 51 418 X0 24 (£ 1EE¥E 47E0 4258
L] =1 =418 -t 1) e =30 (EC R R i -
53 B2 Lrata 440 2150 1280 11151 AETD 43100
B 120 11E82 M i 1230 1198 BEQD SEEIZ
E=1] ¥ 1700 1545 £ e i 2360 0ERE TID TOOM 200 2300 0 1500 12 124
T 1980 1712 20 40RZZ 1= I TD oo
L] 11380 1TBI2 20 43454 1= T THID TOOM
50 1183 10443 =3 31 17 1522 BEBD SEM1
|] 1550 13713 a0 |3 210 g | =0 BA182
1] il 200 2000 SRH SIFfa 1] byt R T = |] b 14 pea] 1500 214 beal |
T 2500 el L] B1E0 maEig £ JaES JEID BETAC
il o S B0 il Elil] FEHEE 1A 10n00S
B0 1580 12083 450 SIGHL TH0 i =] B0 THYES
B 2380 21083 - 1] 53881] 200 fied o2eed
100 ¥l M0 28010 TAE0 ESTE 254 S00TE 14100 1PES 2500 1B0D D 1200 58]
12 FiE0 28443 T TikdE S SORZZ 1530 135405
il 4580 A14iS JiE0 Bi 2 P SOEZZ 15500 1ET1TS
CSG Rating Table -
Hrn Rafin Rabed Lissdl for Lisad od Limsd Ies PFleaimaim Limill feq [ETRT T
Torcpes Fipssnad AxuradE Fkzrraanlagy [=T AFtiEEgn o
3000 Piaak Temie Paak Spaad I nertia
T Torps Todrgid T Skt
e pm
Him -k Hm -k Hi n-b Hin irHh 2] i] G 10RGM K] 0 hgies”
50 7o =] 3 ot}] 1] 4 Ly
14 |] [[6} =] a0 .] 14 124 Bt =2 0] 14000 [: =a1] -1 K] 1] LS L0
¥ (6] =] ag 0] 14 124 7l [=e.1]
B0 n 188 44 =0] E b o BlS
7 B 23 =57 £H 408 <] 10 113 1000 10000 730 {11 x] == LO7e atu R}
pail a1 e | o ;4] 5l 431 143 128
Tal ai g To B30 5i 451 112 2
B0 o el g T3 B 44 E] 3 1124
2] LT D] B50 &i 540 185 1a80
1] pail oz 480 107 oy []] 1 18M 10000 [=a] -1 K] 1] i a1
Tal SF A0 113 1000 L] -] i 1BM
Wil SF 480 120 0Bz L2] 5B i 1BM
53 g1 451 a7 1124 72 BT 243 2143
B BZ % 8 1575 113 1005 T =18
-] il |7 T el (£ 140 1253 380 fov. -1 7500 SA0 S0 50 a3 0424
12 - T 27 (0] 140 1253 395 et]
*®i a7 iyl) iy 140 1253 408 31
50 po o A1 24E7 140 1253 47 434
[6] 15 1254 e e 7 1900 T 511
a2 pail 178 1575 43 = g . 2h J4ET 1 Tadd FO00 4800 HE00 1] 1.8 17z
e} 78 1595 453 S0EZ =11 JET =] THE
*®il 178 1575 464 a2 .2 J4ET [: =] TH
50 78 1595 £xL L] x5 257 =] THM
[] 60 71 L | 224 g 1200 11240
40 il 45 3058 T -1~ 44 S WD 1250 =] 4000] SOl 4.501 450
T Ro= =1 S TR S8H g2 1530 12541
il a2 2351 41 TA4L 538 5188 1530 13541
256

www.manharaa.com

Appendix A. (Continued)

External Dimension & Shape
[] =

Wave GENERATOR COMPONENTS

{D Ball S3aparator

i 2
@ Wawe Generator Bearing Ha
—_—
@ Wawe Generator Plug 1 I
@ Inzert E
L
@ Rub Washar
@ Snap Ring
@ Wawe Generator Hub GSF-14,17,20,25,32 45, 53,50 GSF-40,50,55,60,100

Thers i & dilesence in appasrnce of the the bal separmor batween C5F and C5G
{055 e 14 and 17 1me the same ball s=narasar as C5F

C8F ALL 5IZES CEG-20 aND ABCVE

257

www.manharaa.com

Appendix A. (Continued)

External Dimension & Shape
= |

i
[=]
1
m
%
2

.H—u
==
I { ‘
H T
2| |- E R .
=| 59z 4 I IL.-I
v HT

Fexsaling Interlpoe 38)

Dretiailed WA S ans Ak alabs

Mo key on WG hub tar #8, 11, 14, 17

Flexspling Dowel PIin Hola

Dol Pin Option

N cises whens the gear will o2 kods near the
Momertany Peak Torgue lessl, The use of additiorsl
el pang n adcilcn B0

e SOEGS B recorTirEnced
Dipwssd pin hibss e raruiaciuned by raamer ard
the dirmesnsions ane shown n addision. the C5F s

& cilferent npmber o dinael pin Bales than the G55

258

www.manaraa.com

Appendix A. (Continued)

External Dimensions

|
Tabk & i
B 1 [v 20 = & 30
Ba b 2 40) &0]) 110 135
B TEF 215, 2584, 2L L, 363, 265 i 44, A%,
CEQ . . 2EE, 2254, a95%, i 4ai, 53k,
[5T 1451 IT5% e 251 2t bk *
o 98 13 " 125 12 % 16 10
o 27 H 24 a i] a2 4
E .] 2 25 k1 a) 4
F 45 B & BE 75 1 14 17
CEF . . 4 0.5 o 21 25 23
. =6 5 5 1.4 18 15 as 4.2 56
b+ CEF iz] iE 125 #.4 202 =2 0E
"® reg 5 5 5 ;7 215 26 2546 m|r
H 0.4
ity il 5 a1 5 48 54 & £ 180
Ratinw . kTl a5 48 55 [£
o 123 7= 2%] a2] £2 &
o HE & i " 0 16 4]] a2
| CEF B B & 2 12 iz 12 12
£ . B i 16 6 16 16
o 2z 29 a5 24 a5 a5 55 =1
S e EZ 5 151 M3 13 (h VB 5
ts 5 5 1:1 M3 13 ([VB K5
[]] & (13 4 & 7 g
o 2z 29 5 a5 a5 55 (=1
OIFCD 255 a5 o 54 =] TS 100 120
R s B & i B 8 3 1
o . a4 45 55 55 1] 1
T, PCDE s -] 7 B 24] 4 50
T.IPCDE . 152 5 215 27 " i5 6
o, 7 1 14 H b4 -]] a2
o, a2
gy s | 5 &] L] i 14 14
i . . 8 1 15 15 20
o - . - i ‘ 5 5
1 . . . 1044 2By 1559 e85
k) - Chz =K (= K] (=] o4 co4 o4
g, 0.1 0z 025 0.2 0 05 nss 0.9
o - 0z 025 e 025 L% 05 0.5
oz, . 0 0oz o o 0.2 noz oz
i3 HE a0 8% 45 54 7] B 106
e — 1134 M i 0 HE 2 258 33
c 5 5 | 15 15 15 2
o o e . H 3 a 3 + 5 B
e s s 25 a i + 5 §
4 cn.3 Qb4 a4 G4 cna .4 cn4 0.4
LY .3 Gt co4 (= K] (=] o4 co4 o4
d, 0.5 L3 s =181 (1] s =11 ons
@ 2 3 25 a - .
i HEE 2= 0 MEG WENE . .
Wiakghi sl nmeh .05 .00 () nos .42 (] 1.7
259

www.manharaa.com

Appendix A. (Continued)

External Dimensions

=
Taka &)y
a5 El E] EE = [[
08 6 155 170 105 FI 26 200)
B a5, CITA TEGY, B, 101, 1ZEL, 1255,
G s i g 5257 Bt s Tm
& ms 23 75 S a7 4 48
o 45 5 5.8 1 1 o 1
E 4 4 5 5 B B B
F o 2 25 bL E 4 45
o a7 iz 48 5.8 1] 15 &3
H] 2 29 T 481 42 57
H - 0.8 - 22 A - 45
sipg VED s 124 135 155 1 218 245 m2
1420 - - -
ay 72 4 a2z 104 128 1a4 160
oK HE 38 40 48 52 &5 T2 8o
L iz 12 & & 16 |5 "
Y]] g i i 1l " 14
M, Ma ug w0 M M (I iz
H, ME ue Mz ME e (TIE! 1]
o 12 13 (L (L 15 1 20
R]] i i 1l " T
T 14 150 1 s 240 270 0
R B g B] 10 B -
a3 x5 155 155 (T 18 22 b2
T.iRCI) 54 &n T B 100 1 180
T.IRCD) Bl &8 7 o0 184 120 "2
o, az a 40 48 85 B0 85
T8 5 2 5 48 55 5 &5
gy MTEimiu (L] 10 2z L 0 28 28
[P 0 mn a5 n a5 ar 40
WAlsD B B B] e B |
4 1T ey ETE man . sy LT
¥ G4 coe co.8 CLE coe co.B coa
iz, 05 5 s 05 05 o 10
o, o o 075 10 10 o 10
oz, o o -] o ooz 002 -]
[113 133 154 irz 2tz 23 5
e &S5 20 462 50 &l G5 R
c 2 2 25 25 a] a
D B B B B 8 B - 1
d, A oA Co4 oA God o4 caa
i, kA o Cikd okA o o4 coa
o G5] G5 (=] cos =2 =]
"] - - -
I - . - - - - .
Wght (g 23 a2 a7 ar 124 s ms

This pld o mariar beor tha Ciroular spbing can b sllhar O o S48 Sufaca hIMMME‘qm

Thas ol kradng pedamelors can ba modlied io aconmnckia ©ielosmir- i o el
Vv Geraralor: GW 3, W

Repiing: F, @3

Cleralar Epline: 0L L

260

www.manharaa.com

Appendix A. (Continued)

Diameters
= |
Hole amelar of Wirse Generator Hub Tk 18

T T §E ! T b - T - S| R - - - I - R
Taarlar e a 5 & B 5§ 11 14 [[0 FE EL Fo3]
Minimermn Hol Dimarcdon. - = & 4 5 [& 10 10 10 13 6 18 19 23
Masimum Hoka Damsansdon = B 0 5] 15 15 30 30 0 5 an 35 57 A0
Haole Diameter of YWave Genarabor

Neazimum Ciamatar ar Hola wilhicul Sidham Coupling

i T T
Tm] i 17]
Ma: MidcessalphgH 1 67 67 72 7T

Inztallation of Thres Basic Elameants

ngtalation for Wive Generator and the: sigeimum ok dirensions.

Sharam abose is the standard hole dimengion of the Winse Gereralor for
epth size. The dimension can be changsd withina range up o the
fraudrrLinn hobe dimersian shovan in table 18, We recommend the dimension
of keyway based on JS standand. 1 i5 necessany that the dimensian of
ke shoukd sastain the ranarisson lorgue.

Pleage note: Tapered hiles o alsd avalable

In cases whers a langer hole is reguinsd, use The Wiree Generator willoun the
Dhdharn coupling. The maximum dimeter of the hole shauld be considesed
1ty prevent deformation of he Wave Gensnabor pug by lead 1orque.

The dirmension is shown in labie 15 inchide the dmension of

depith ol ki,
Tedoda 10
P (N N - S| - N SN S N N 1
23 F = 42 47 52 a1 A7 '3 B4 35
1% 11.3 =T 15.0 7.8 19 214 1ah] 1.3 e

Diirection for Thrust Force of Wave Gensrator

F F

-l i
diraction for Faust i o dor thinesl
foroa n accaaation Torce in decdaralion
Emﬂm for meial {oroa
Gaar Rats S KN
j=1/30 F-::-:.E. 0.07 x lan 32°
i=1/50 F-:s:.E. 0.07 = fan 307
I=1/80 and F-!s:_E- 0.07 & tan 3"
Symbols o aqualion
F aodal Foros H
1] HO Size u 000254 m
T [CE IR T Hm

Axial Fome of Wave Genarator

‘When o harmonin drive gear is used 10 accelente a ad, 1he dellection of
the: Flescsnbine leads 19 an fial tame o The Wi Generator. This
ol force. which ac1s i the direction of the desed and of the Flespling,
st be suppansd by the bearings of the input shafl imator shaft)

‘When a harmonic drivie gear i5 used 1o decslerale o lcad, an axial lorce acts
1 puesh Bhe Winae Gieneratar gut of the Flesspling up. Masinum axial ke
of the Yinre Generator can b coloulaled by the soumtion shoem bekns:

The axial farce may vary depending an ils cpesating canditian. The vake of
il o 1ends 1o be a iger number when wsing high fanue. exiemes ke
speed and constant ppenation. The foree i caloubated [apomaimateyd by
the equation. |hall cases, the Wine Generator must be axially (in bath
directions], a3 wel a3 tarsianaly, fiesd 1o the inpul shefl.

Anobel Fleass Gontact i whin yau B the Wave Genenlor b and ingut
shall Ling baks

Caloulalion Exampla

sri H &3
Rtk i=1/50
gl Toamus AD0KM

5 et 3 007 b B
{3250_00254]

F=208H

261

www.manharaa.com

Appendix A. (Continued)

External Dimensions of Housed Unit
[

|
i e e e
—
(14 apn - .
= Wi micw 14 | —
= aom 17
N B Cemmind cmssng iod Bpor B34
f =8 1
& X
g S
St ks W F14, 17 (Ko Kag) I
Dimwarcaks s Tahle 25
fid ir 1] 5 & &0 a5 G50 58 B5
0y T3 e} % T ias 16k 163 10k i i
] gy i 4555, B2k B2 5, Ta54, B L 10415 %, 1164
[a4 ar 46 &7 65 T a5 iy ioas
1] Z8F T 0] T5] 41 B 6.5 5 .5 =11
[] T L TE o [N G L - - - -
E aw 0] 45 HIS5 58 -] iy &5
F T B [1] 10 i2]] Al 24
e} 2 2 3 q q 4 & B
H a.5 4 5 5 41 5 b b =} b
| 165 165 166 185 =5 24 aw a 5 an
| 4.5 4.5 i 4.5 55 7.5 T B &5 8.5
H]] 125 1d ir 165 20 23 M5 &5
L 0.5 Q.5 s 05 i 15 i i 1.5 2
s 9.4 35] 12 15 B 1} B id 1]
P 5 = 5 = = = 5 = 5 q
H i CBF 76 105 M b) . gl | a2 b D] 40 F
(-] 1S e Ly A 215 i 1) =7 - - - -
[0 = 58 B3 T2 =] 145 127 188 165 1586 I
af H] =4 T3 &5 iz 125 147 157 125 P4 1]
af 425 41 5 55 Ta 36 10 12 147 =1} 165
aF HT i 1] 4 i i a2 3= 40 45 a2
AFHT B B - . 1ar
ag i1 1] i4 Hi il 24 25 a2 = ad
T hT 38 48 55 B] 11k 124 135 156 177
W HY 5] F] 1z 14 14 14] [] = 24
) - - 1285 1685 16.8 % 1655 2159 2059 .04 Ay
WA - - 4 4 B 5 [B =] B
Lt 23 aw az 42 55 5] B2 B4 130 11k

* Dhmrs o i Pl b sess ool rafio 3001

262

www.manharaa.com

Appendix A. (Continued)

Extermnal Dimensions of Housed Unit
u

=
R S T Thdzka 20
14 i7T Al 25 az i a5 B 58 =]

?] & & B B B B B B 8
Z MiEE WEE R (2= WEXEZ MO 5 MBS MEZE1E MELEZE 163324 M2
] 1 | 1.5 15 15 2 2 2 5 25
(L&} BS e | = 08 125 1dq L] 4 s P
[] & -] B iz B iz iz -] 8
e 45 a5 55 55 BB 1) E1) E1) i 14
] 3= a5 = =] BE He 113 1= 154 2
I L] L] =] 1] iz E 12 1z] k]
1] Fad i WG 5 =] -] 13 W W3 12
hi 20, M50 34 53 B0 S04 14 530 34 = | LN S =101 5125 &%
i ==] =22 LT =L ana Sisn Sida Sika A [=G
ik al a5 45] TH i] i ii2 185 155
(] 1% LR 5.5 20 ar 0 a5 i 45 55
r 21.4 235 = 20 ar 305 L 5% HE BEA
C5F z z z4 ¥ a 65 A1 5 (=X TG
5] i1 1E] i4 i4 aE - - -
CoF i 5 5 i 1] [1] iZ i4] =]
CaG ai as 36 45 B T& - = - 5
iy 8 T id is 20 24 25 3 38 L]
L g 14 1= 21 28 28 k23 a2 40 L]

vtk neo D Lo 15 3z 50 Z ua s 200

Specification for Cross Roller Bearing
Haugsd unils incorponale o preciss onss rolker baading o directly support o lad. The inner race af the bearing Tonms the gutpul Tangs:
Plaage calculste maxinum oad moment, lite of cross roller baaring, and static sakty Rctor b fly maximize the perfonmancs of the
Fauged unil (gaarhedd)
Calculation Proceduns

1. Maximum Load Momeant ima)

[Colulate meimum load mement i Meaximum kad moment Minad Alowabie moment fc) |

2 Output Bearing Lite

Coatkerlartes vetige radial oo Frend Caloulsie radial load cosfficient [
and werage axisl lood Faa) h and wiial lnad cosicient [v) h “Aloliots Hellme

3 Statlc Safety Factor
[Cocube staic squal radial koad P M Confimn sunic saley facser i1 |

Specification for cross mller bearing

ficaion fox ¢ i bearing i shown on figune. _ _ ke 7
Fiedh Circka Al B DhyTiamnic Fladid Load Basic Elalic Rabad Lol Alkrosaltdd WD Loscl Wi Mkl Rigakly Has
] dp R [Co Al i
i T XN indih XN -l Hm iHh e -
14 oo DLHES 47 416 BRT BXT a 362 4.3 113
17 126 LINES Br9 45 T&.5 BEH =2} BHG T.Ta 200
o] nosn LIHES 678 51 DD a6 E Bla 28 3
= nosa 0 16 pe=ti) 851 151 1536 156 1381 24.2 623
2 noen 0013 150 1228 230 prird s o 531 1320
41 1115 D45 213 1855 355 2230 450 S053 a1 2340
45 niti I 230 N6 426 arTh 5 =g Hi 3630
=1 niia ooig kL S0ED 632 1] a0 &7 i 4500
= IR 23 D205 518 4534 234 8000 1183 10443 283 TE0
& I #E0 L3RS 556 A0 HED 188 | E63 166 404 A0

B dynamic rated load = acanstant radial losd whers the basc dyramic rated Bfe of CREE 1 % 10 mtatians.
Basic slatic rated Icad B a slatic kad whene the vake of mament dgidity B e avwemage vabie,

263

www.manharaa.com

Appendix A. (Continued)

A.3. Wheelchair Selected Encoders

H5 Ball Bearing Optical Shaft Encoder

Dascription:

Tha H5 senes ball baaring oplical shaft encodar has eilher a molded polycarbonaia or a
machinad aluminum anclesure, which utlizes sithar a &pin or 100 pinfingar- bitching sannactor.
This non-conlading rotary o digial corvarter is designed o provide digital feedbeck mformation.

Tha HS is fully assembled with a shalt, two 147 10 by 127 OO hezrey duby ball bearngs and a
meunting plata. Tha shalt i ether made of brass (polyearbonale version)) or stainkes s stesl (matal
varsion). This desion allows for an optional rear shalt extansion |polycarbonala versions only).
Tha mounling plate comes with 2 mourting holes for scrovs & or smalar.

i zacura connaclion o tha H 5 sanes encodar is rrﬂdnﬂ'mughad-fh [simgle-andad vemians)
or 10-pin (diflarential wamsiors) fingar-bkching connector (sold sapambely) The maling
conneclors an aailabke from US Digital with several cable aplions and langths.

For diflarential varsions: the internal diffarential line dhnr(!%an sourca and sink Z0md

a TT Llevels. The recommended receiver is ndusiy standard Waimum noise immunity

is achisvad whan e diferential reoaiver i ferminated with a 110 shm resistor in saries with

a.0047mil capacitor phoad across each differantial pair. The capacitor simply consarves powar;

gd'-a.'\.visn powar consumplion would incresse by approaimately Zomi per pair, or EDmi for
i

Features:

= Haawy duty ball baarings track up to 10,000 RFW

= Low cosl

=2-chamel gquadmbue, TTL scuarewave culpuls

= Optional rdex (3rd channal)

= Differanlial culputs avaiabla

=DOptional Agienl compatible pin-oul

& Pasitisa finger-lakching sornedor

=32 1o 1250 cyclas per revolion (CPR)

w126 1o 5000 pubsas per revobation (FPR)

= Tracks Trom 0 1o 100,000 cycles fsec

et b +100°C operaling bempershuna

=Zingla ~\:'.I'I:l3=J.||:\|:\I{5

=US Digitd wamants ts products againgt delods n
makarias and workmanship for two years. 2ea complete
wamanty for delails.

Mechanical Specifications:

Single-ended Electrical Specifications:

Parameter Dimension | Units For complate details see the EM1 {HEDS data sheal.
a 0000 FFW ma corinuous
ficoalambon 1L md (e))
Zhall Torus UL . oF. max Phase Relationship:
_?.l%%ﬂ"ﬁy e B ks A for chockwisa shalt rotsion, and A ks B for countorckckwiso
wham P = radial ks i lbe. relation viewsad fom tha shaft side ol the encodar fsee fe EMT {HEDS dara sheat)
et o E—
Pelycarbonale Single-andad (H55) 1.79 oo : i P T i .
Pl catbanata Gitforeral |:H|:5D]) 118 Differential Electrical Specifications:
Matal Zingle-andad (HEMS] 298 or. Specification Min. Typ. Max. Uqlllis Hotes
Mtal Differantial (H5ME) 2.3 oo, SaEE e 21 37 AR vl
o gg;ﬁ'ﬂ:’n";“ Index: £4 CPR -2 53 mh Mok
Thrion g5 h2ﬁ;|1 Indesc 12060, 2500 CPR o 56 58 mik Mo bl
’ Indaxe Al Oihar Reasahtions - il ili} mi Hobosd
Hon-indee: <2000 CPH - 18 13 mi Hoload
Hon-indeew: = =000 CPR - jli} ili} mi Hoload
Outpt Volage
Saurcing ko +5 24 34 . Waolls -A0md
SEnkina o Ground - 0.2 04 alis g!ﬂmﬂ.
= For c%nlnamlh wan tha EMT T HELE data shaal.

F"Ell:l."l:artlﬂl'lﬂté
singlé-anded {H5S)

Polycarbonate
Differential (H5D)

Matal
single-ended (H3MS)

T

Matal
Differential (HSWMD)

"I...._-

mmm nfo@ usdigtalcom « wew.usdigiel.com

U 5 = Local 350 260.2468 & Saks: S0, 7350104
FE— g pport 350.397.0999 & Fa: 350.250,2460

n I G I T A I. 1400 HE 135th fva. o Vancouver, Washinglon » 95551 « U246

pags
1

264

www.manaraa.com

Appendix A. (Continued)

H5 Ball Bearing Optical Shaft Encoder

Polycarbonate Single-ended Machanical Drawing (H55):
B 149

il -

Pin t

= =1 - 0000
5T 025 Scuane pins on = TE - - @.zame’ o
P 100 canlars
"I - et Mates wilh COM-FO5-,
s ®" f
e i
-1 1 (] =
1.813 | | 122 .70 .
Lo é_' '
e \@I J Faar Shalt -~
h S Estaraion ~
'_"'_- :'-\;, e n fhis wiew, channel A
i cats channel 8 for
R1.0a - - @m0 clockwise relalion
Polycarbonate Differential Mechanical Drawing (H5D):
- 14% - Pim 1
- " (R
. 025 Squam 3
— E'--.‘ 00 caveern 440 oova
; Malag with CONFC10-.,
__.-4'\""—\-.. .' 1
.22 @7 .
(I
! 1 Fear Shaft r L
Estension
e | S wbe, channgl A — —— 50 oz
laads channal B Tar TIl=
chochwige falal i S g 7 o=
Metal Single-endad Mechanical Drawing (HEMS):
B o - 4 Fin { T
0% 5 o + D00
-l 100 comers il .2498_nngg

Support: F50.307.5559 4 F
1400 HE 1351h Ave. » Van

i Mabas with COM-FCE-
T |
1.812 122 @58
. 1
.)
1 lof -
s e e I this wiw, channel & L
Lol ™ R fnacts channgd B far I: 4 -
o} = TR Sl PO RO 180 —
Metal Differantial Mechanical Drawing (HSMD):
B4 Pini 1 N —
035 Squam pins on - | + DOHE
100 SRR &= @.2408_ onoa
| Fdalas with DOM-FOI0- 1] .- Pin 2
¥
[
1.812 0 EE T
i + i
1. - L
— [* =In th h | & 1
R4 —""T N g1ss lom o be b 74
28 - clockwize rolalion 154 -
.— info@usdigtal com « weew usdigital.cam
U M| b 550 2602468 w Sales: 800 7550104

e 360,280, 2468
couver, Washinglon « 5555 « U3A

pags
2

265

www.manaraa.com

Appendix A. (Continued)

H5 Ball Bearing Optical Shaft Encoder

Compatible Cables & Connectors: Pin-cuts:
Finger-latching: Pin 5-pin 10-pin Differential 10-pin Differential
Spin 10-pin Descniption Single-ended Standard ilent [L-oplion
COHFCh-22* CONFCID Cannector =] o connaclion
CAITTETF Connador on ana end with 4 12 wires 7 Indax Ground +EVOC power
Ca 3132 Connachar an ana end with 5 127 wirss q A channal Ircle- Eround
CA-3T316F TR TR T Cannactor onona end ol a & shia) 7 +EVOL power Indaxt o connaclion
round cable 5 E channal I channel A channel
AT T Sarw as LAATT, Bie for Lopton oy B - Tt channal A+ channal
[[T 5 CAJRTHEFT Cannactors on bath ends ol a & T AV power B channal
shialdad raund cabla [i] +EVOLE power B+ channel
D Ty 05 Lde i1, DI fov Lopton oy 1§ H-_channal Triee-
I !!EFE.; standard 29, o and 20 AT an ako avmbba, Uy B+ channel Teat
** Agilanl compalible cable assambly.
Attention:
S-p-n-clh.' cabla langth when ordering.
= Custom cable knoths are en-allebla "Bz tha Cables | Conneetors dats shaeal
for mome nformalion
Orelering Information:
H55 H55 HsD HsD CostModifiers:
Standard: Index/HiRe s: Standard: Index/HiRes: + Add $2for E-option.
(HI Rez ==1000 CPR) [H Rax ==1000 CPH]
£59.85 1 F68.8311 ST360M1 3820811
$B566/710 %64.00/710 §69.30/10 Fra3 o
FE145 750 FEO1TVED 6510760 57366750
£49.35 7100 %56.75 7100 61957100 570007100
HEM S HEMS HSMD HEMD
Standard: Index/HiRes: Standard: IndexHiRes:
{Hi Res = 1000 CPH] [H Rax ==1000 CFH]
£30.85 1 825801 §94. 5071 F106.79 "1
ETT.TOA10 %HBO.2EM10 §80.25710 5102.64710
7140750 FBZA17ED SA5.05FE0 397.81750
FE8.25 7100 &78.407100 80857100 59298 100
e - CJ - [
Version: : Uptions: n.r.mmm- ™y
5 = Polycarbonate sindleendad e | = Indea |
D = Palyarbonats dilarential.] L= anlcornpallhb pin-oul.’
Ms = Ml'alal-s-m le-ended. E = Hear shall adension™
MO = Met dilfarental. 100
e
CPR Notes: 152 |:Elll2il1 Horbess::
Indm-: ion nol availabla. AN T Only available with differential
121, 900, 12:0 CPRarly 2% versions [H 50 and H O],
a'.ni.:bh with ndex 2% ™ Crily_ avadable with pohyarbonate
50 varsions (HES and Hslij.
400 '
on]
s
E;a:':r.:".. Technical Data, Ry, (2.20.06, August 20046
1000 All inlamation subject ko change without natica.
1016*
14
12mr
U 5.— info@usdigtal com « weew usdigital.cam
M| b 550 2602468 w Sales: 800 7550164
— cupport 350,307,099 ¢ Fa: 350,260, 2460 page
[] I E I T h I. 1400 HE 135th Ave. » Vancouver, Washinglon » 95554 » U4

266

www.manaraa.com

Appendix A. (Continued)

Wheelchair Selected Friction Wheels

Bulletin 842 Encoder Accessaries

Measuring Wheels/Samvo Clamps

Salection Guide

845 —M W—A—1

Dimensicns—mm (incheas)

e asuHng Wheels

i
a
Contact Material
o Descrpllon
i Flbter 0-firg
Fojusthze Rubber 0RRng 2 Porafenc
B{EMVLA-D BMEMW-A-T
Specifications
Deacription Cirunlerancs | 204.5mm (12.000|
Measuing wheels ars used (o comer § meererek Dandce 'f:""ﬂi':'m“'[w"
Ml amednt of inear moton o a Durenater | 70 [Shore
oofrasparding amount af rokary mation. Pakarial J Cast Alurirum
Rutber C-Ring lype oonlact malerial is
e an melal, papss, Toll, N ard hard M1 4582
paslics. Patyursthans type contac
material Is usad on sofl smaclh
materials, such as solt papes,
cardboard and Tne wadve heles.
Salection Guids Dimensicns—mm (inches)
Servo Clamps
845 — SC
W App ol mate
w2 Dimensicn Code Dimenson
A 208 4 D03 (163
Sonvo DEnps .
Fr B 106240 00 [L04E)
G 1.3 (0.135)
1] 1 540000, 01 0532 {1 375
E 3,43 {0.135)
F .90 {03900
L G 313 ([0.128) :
Dascription m 731008 ma Tzl .
Sarn clamps ara usad 1o the mouning N T
of all encodars wiih the saro ype T TE DI Sobom Ve
mauniing cplion. For e size 15 devies, = - e WWRh Scrawd

2 clamps are arrayed on a 48.1mm
[1.B9EIN) dlameater bolt crcle. For The
sl2s 20 device, 2ar 4 damps are
arrayed on a7 7mm (2.27In) dameker
ball cirele. For B0mm encoders (la., The
B424), 3 or 4 clamps a2 anayadana
EG.2mm (2.61n) damekar boll clcle.
For the slze 26 devica, 3 o 4 clamps
are arrayad ona 7o mm (2.7 7n)
damelar all cirde. Sara camps are
sold as a kil jsatal 4 clamps).

Malarial: Slankess Skeal 316

Allef-Braday
267

Lt

Locked

g 8

7-51

www.manaraa.com

Appendix A. (Continued)

A.5. Gripper’s Actuation Motor

Sl FAULHABER

DC-Micromotors 4.2 mNm
Freclous Metal Commutation For combination wilth (cvaniew on page 14-15)
G arhead
158, 168 167
Eren deds
IE2 - 1&.. 12

Series 1724 ... 5R

1 Homiralvwol
2 Termimal rﬁ:m
i Ouipui ar
4 E‘I'LI:IIlFrhrn:me
E Modoad pead MNa E A0 B &00 7 5 =440 E 600 'r’.pm
& Modoad ormaridwith shafia 1,5 miml I [,03E 020 0,00 0, D E 0, 00S
7 Stall M= 122 11,8 105 11,2 1.5 mhim
& Fricion iomue M 13 [INE] 0,12 012 TR E] mhim
@ gﬂ'ﬂﬂfﬂrﬂtﬂlﬂ- . F 1 420 GES 471 T rpme
10 Back-EMF constant I 0,363 0,50 1,50 2,120 7.hEn mpm
11 Tomue coretart 2 R (A=) 14,30 0,20 &30 mkms
12 Currantconstant k i 1] (IR a.0m 0,098 0038 Admbkm
13 § of rfd cunee AR Ed1 T4B 7E2 5D TAE rwﬂrrl‘-lm
14 T induciarg L il TE E[3] 0 1300 1]
15 Mechanksl time mmtant Tu E B 3 -] B ms
1& Roior inartia 1 13 1,0 10 1,0 1,0 CITF
17 Argular sl aretion [. 118 110 10 110 1o O dis”
18 Tranmmal reskbanca Ra1fRar |48 34LE KN
18 Tramal tims mnetam Tl e |3E{IT] H
20 Dparating emparaburg minga:
~matar -30.. + ES [optional - 55... + 125 <
- mtor, max. permisibla HE s
21 Shafi bsaring snbared bronze saees | ball bearings bal | bsaarin g, predoadad
2 Shafi koad max igkandardh Lulp1m|;| lllgﬂ-llll'ﬂllg
-with shaft diamatar 15 1. 1 mm
- rediml &t 3 000 1pm £3 mm from Eeanng) 12 5 |3 /]
-aual 513000 pm a2 0s =1 H
-axal wistandstll o 10 [H
#1 Shaftplay:
- il] a e c} 0,115 o015 mm
-] |] o) 02 0 mm
Houdng material shaed, bdeeck oartesd
25 'Meig a7 q
&5 Diraction of rodaeton dockyisa, Wewed from the from e
Renmmend ad waluay - maethamaticelly ind spa ndamt of eedh other
r = 1] T N
= rqunlfph:\ [B
&2 Currar up bo Hramal imis) Lirein
Crioréation s hrapedt & rotor %
il ok dafined

o 1]
o M1E 14 @l5s e17oan pslE

e

172471
Fer dedaih a bechnical anttnl.mmﬂmum“l'hmﬁﬂ
rafer o page 234 ’ : i h BhOE Botia
Ecilon e ey aar o b b rgraupn con

268

www.manharaa.com

Appendix A. (Continued)
A.6. Gripper’s Planetary Gearhead

Sl FAULHABER
Planetary Gearheads 0,2 Nm

Far combiration vaith

DA cromeio
1574, 1524, 1624, 177, 1724, 1727
?Eru;nu:mmr::
mlﬂ-i-l bor-Tacho Combinations
Series 16/7
16T
Housirg meteal medal
Gaarrain matsrial all sieal
Aeommereded max imput spesd for
-n:\l'l'l.h.lllﬂﬂpirlﬂl:-r'll 500 mpm
Beklath, at no-kad s l*
Hearings on oulpul el praioaded ball bearings
Shadt Ioad, mee:
- radial ¥, 5 mm from mounting facsl 3N
-1l s ERN
Sheft press T fome, max s EM
Shalt play [on bsaring ok :
-rnﬂll:l & 4 el & 002 mm
-1 -1l =D0mm
Operating temperature ranga =30+ 000
kngth with motar oLk tomus
raduction ratio waight | length oo diection | effickmey
[naminal] without |withiout | 1E1ET | 154 T | 163BT [17IFT | 17247 | 177U | opereiion | opamtion |of rodertion
moior | motor T4 T [rewarsible)
L3 L1 L1 L1 L1 L1 L1 M M M max
_a mm mm mm ITim mm mm midm mHm]
1,711 13,0 EFE| 412 aLD .0 41,0 443 20 200 E oo
14] 1,2 e[449 a1 =1 451 443 3m 450 = Bo
a0 ad L3 41,1 43,1 51,3 4.2 4013] E 0] 450 E 0
& | 53 41,1 431 5.3 a2 443 L35 3 450 = o
LE EE] 04 451 x 54 a4 £ 4 21 0] 450 E 2]
1= 1 EL 104 451 E32 5P A and E24 EA 6 (0] 450 = BO
&ME EE] 104 451 32 574 and E24 E& 6 (] 450 = B0
415 1 = EER 403 LT | B1E 505 ETS ELT m 450 = 1
L I | = EER 401 LT | 615 505 ETS EL7 m 450 = 1
[= | = EER 403 LT | B1E 505 ETS ELT m 450 = 1
18%& 1 = 335 401 LT | 615 505 ETS E17 m 450 = 19
1Bl 1 43 a%E E24 El 4 BEE S4E El& E43 am 450 = =0
4388 43 EFA E24 El A4 BEE S4E El& E43 (] 450 = =0
EER 43 EFA E24 El 4 BEE S4E ElE E43 am 450 = =0
Crienkaiion mih mapect i motor [RE-2H) H’*’
berminasis rok dafined a1 G el
E] (R[] rz4]
Fj! 3 216 1824} 0117l @lh end u?-g.ms al j‘.ﬁ?
a
| l l 1,802
10,92
T
BT 143wz
12,2
. L2an2 13.2.a0.3]
L1 sn= 14,2 sa
1&7
Spediimbian mibjact o change wi thout sckica.
112 wrarwr, b busber, o

269

www.manharaa.com

Appendix A. (Continued)

A7,

Encoders

Gripper’s Optical Encoder

Wl FAULHABER

Magnetic Encoders

Series IE2 - 512

Pubas par revclution
Slgnal aut uadraturs;
Sugpply -.-x:ﬂ'lmI [q '
Eurmntmumpth:ln,wpdcal L
Output currant, max.

Puba width

Prizsa shirt, channa Ato E
Signal safall tire, mas. £

e

Operating lemperatune rangs

=5W D)

= 50 pF

W =5 WD Low o I-:h-‘-lﬂ'll:l]'i'\. high gk lesal = 4.5

'L"ﬂnl:ﬂjl {pmi = 1 H

Ondaring Imformation
ErEcaier

IEZX —&4
IEZ -E4
IEZX -84

IEX —128
IEX —138
IEX —128
IEX —288
IEZ - 358
IEX —288
IEZ 542
IEZ -B132
IEZ 51T

Faatures

Triese Incremertal shaft encoders In combinatkan vitth the FALLH&BER
DeC-Micramertors and brushless DC-Sersomoton: ars used Tor irdca-
Hior and controd of batly shaft vaks:Hy and dirsckian of rotation s

e == E SWT = 2

number
of channelks

BRI ORI ORI RIRE R RIRE

(SIEN Y]

5-1

L

450 EE

By B mae. 12
-

180t 45
[T
014 0
g | 4
1975 104

- 26 185 (- 13 I =156

W COS and TIL compatibke:

pulses par resalulicn

Faarturees:
B 10 512 Pubas per revolutian
2 Charinels

Digttal outp

212

channak:
WD

M
[

| & | 160 iz

I ek rat ko e fth

| OO M cromotom ek
| 1335...C,

1516, 50, 1524, 5H,
| 17175, 1734.5R,
| 23345, 22._CR,
| 2642..CH, J657..CH,

1727,

3242..CH, 3357..CH, 3853, C

Erushiless CCSarsameators sias
162E..B, 203 E, 2944..F

Hybifd cirouits veithi sareces and a kow Inarila magnetc dis proskds
T chiannels with 307 phass shift.

Tha wupply voltage for the ancoder and the CC-Momotor aswell =
o s as the bwo channel cutpuat signals are Interfaxad throudgh a dbbon E
Tha ancodar 15 Irtegrated inthe CC-Micromotors SR-Senas and cabla with oonneiorn. |
witends the cverall langth by anly 1.4 mm (0.06 In.) and bult-up Cotalls for the DE-Micrametors and sullable mduction geaeads £
option Tor BC-Mic ors and brushless DC-Saryomotors. ara o saparats catalag p !
]
.
H
Qutput dgnals § Oroult diagram § Connectar Infamratian E
L
1
" r——"
owas |- 1 —a¥a
oo
T " ——amm
. L——d
o 5
Talbniile svsintion o plen il z
AT — § 41 BT}
Dmiyat algral * Dutyt cirenlt
T it sl et i b inlenlcahiornn
phlAMEIN T Mokl Iy . LA
MicroMo Hecironks, nc. . 14281 Brorgrosn fsens: - Cleansaier - A 3501300 - TolFras: B0 ENT01EE - Fac(TITiED 3-EO1E. |rkoalmi croemicuc T Mhebs' T ICIOmc, Lo

270

www.manaraa.com

Appendix A. (Continued)

N FAULHABER

Series IE2 - 512

D-Micromotor 1724 T .. SRwith Encoder IE2 - 16 ._ 512

Fialel Wiler
CE-Micromotor 2224 U .. SR wwih Enmmoder IE2-16 .. 512

amh i b g i e mice . W AT

b b T e ik

Ear s Emoskd

MECMo Elchionks, Ine. - 149351 Buoim rear Sy s - Chianeeriar- FL 32063 -3 0083 - Tol-Frea: (3000 Z07-016E - Fod 271 573-E513 - |nfod Mk Mo DO - Wbt T Nomou m

271

www.manaraa.com

Appendix A. (Continued)

A.8. Gripper’s Spur Gears

SPUR GEARS

STUNLE 58 STEEL D 1408

A b 1 ol il
A LR L O numisara of et
ETOOK P OF MTCH L) =16) ™ - W priccar anga;
Mk TEETH O = 1 D iy i AP 12 a4 (OO 5 e 3
I - ETiT] LTI
[T L] T FEL] Q0 = P 3500 laadh hub darrabkd euaed.5
(LT N L] E- L arsa 93
s 3038 E 200 951
s 3138 - FEL .
AT =] 2= 274 .25
AT el A= IR] .50
P 3042 e ik i} 1 aa
(LAY T E L] 1L HE]
s 1A = LA W
P B0 T ar 1L .
AT T A R] .40
s 3350 1] bk 1] .
PsEl52 52 R] .50
Pus a5] .50 .M
P B0 8 5]]
s 3058 E] k] .10
(LT iR] 1] .00 .50
Ps a2 4] H.5] M.
s ElE4 B R] .50
AT -] T .
ATl aF R .
(LA iR] Al LA 1] .
s -T2 2 .00 .50
ALY TaE] .50 .1
PR B0-TS] 0.5 .25
(LT iR] [1] Hm .1 1]
s 3084 B4 Lm 21.50
(LA i 1] -] nm A
s B30 L] PR .
s Elad L] PRI 5]
P -1 {] 20 4.50
PR - i b .
A0 T I A oM
PR - T Hm R]
R -5 5] .50
P -1Ed 1 20 4.5

Other bore sises, styles ond maberials il alke.
Check ow weebsibe of coll us.

For Couplings Bae Boobiom MG.
For Blafls, Bearings and Collar s Bee Seclion M.
1-800-Z32-BERG (USA DMNLY) MB 10 WIWIN WME ERG.COM

272

www.manharaa.com

Appendix A. (Continued)

A.9. Gripper’s Slip Clutch

SLIP CLUTCH

BDRE BTYLE TOROUE MATERIAL
ADJUSTABLE
18" TO 1,4 FIN HUB 303 STAINLESS S5TEEL
0D OLIN. TO 5D OEIN
EMCH | BORE FRIE I AL USTAELE
P ELE H] FRCE EL TOROUE
CeRT] A 5
ST | 38 48 FRICTON 0 T
-1 2409 2 RNG 100E M
CTTET I 5
ST | 38 48 FRICTON ul T
S350 | 2 RNG S0
s FE L]
- | 38 FRICTON ul T
] 24 2 ANG 5032 1M
S L] EE]
] | 38 FRICTON 0 T
] 245 2 PROS 10 32 I
SC-1-50 L] EE]
L] el 38 1 FRICTION W
S350 240 12 RS S0OE M
BDRE BTYLE TOROUE MATERIAL
ADJUSTABLE
18" TO 1/ CLAMF HUB 303 STAINLESS STEEL
10 OZ.IN. TO 50 OZIN
ETOCK | BORE FRICTION AL SISTAELE
Ju 4 S i 5] PR E L1 TR OLUE
el b | A
AT 147 A FRICTION 10w
A0 2q0) S'H LR S0 W Inl
S b | A
SO 1973 i) FRIC TN 0T
e [2a8 &' PALTE 10 EE IR
S-S | aE A
Jo280C | aEm ‘4 FRICTION 10w
JoAS0C | S] S PALTE S0 W Inl

L AMPF HUE
110 —]
1
I any IT4E
-1 X Dia hd
b1 I
T L T B
S E"-H H r: .'_._.'.'
0 =g N
| [HAL
_| Fricticn Farg
FRICTIOM B0 1l
RTTLE T
e s g i o o o o s i
1-B00-232-BERG G 80D WIWNW.WMEBERG.COM

273

www.manaraa.com

Appendix A. (Continued)

A.10. PIC Servo SC Motion Controller Board

PIC-SERV(O SC Motion Control Board
Far Brush-type DG Mofors (PIN: KAE-TOV10-BOWV1)

The PIC-SERVO SC Monon Control board 1= a complete servo control system with the followmg
faatures:

® FIC-SERVO 5C motion control chip providing servo central of DO metors with meremental

encoders, mclhiding trapezoidal profiling, velectty profiling and support for coordmatad
mult-ams metions,

& [LMDIS200 amplifier capable of drving 3 amps contmuonsly, § amps peak at up to 48vde.

Bult-im thermal, overcwrent and underveltzze protection.

@ Cumrent sensing, active cwrent imifing, and overvoltage protection.

#& PWAL and DIR signals are provided for use with other extermal amplifiers.

& FE5485 senal interface allows up to 32 PIC-SERVO controllers fo be controlled from a
zingle serial port. Connects to an BE5232 port throuzh commenly available full-duplex
adapters or using the Z232-485 converter board.

Step & Direction inputs for control from stepper basad indexing systems.

Two limat switch imputs for overtravel protection.

® Itz zmall size (2" x 3") allows 1t to be meounted near metors, reducing noize and simplifving
winng.

® Wmdows tast software providad including 32 bt Windeows DLL and C zource code. DOS
based T code and Basic code are alse available.

1. Quick Start
Whar you will need:
PIC-SERVD 5C Motion Contrel Board
Z232-485 Convertsy Board, USB-MMC Adapter, or equivalens
DC Motor (48+v max., 2 amp contimuous cument max.) with TTL compatible encoder
Motor power supply (127 mun. - 48vde max)
Logic power supply (7.5 - 12vde, 300 ma)
Motor/enceder cable (DB135 male conmects to your motor)
10 pm flat ribbon cable with standard IDC socket connectors at both ends
Staight DBYS male / DBY famales cable to PC COLI port
PC compatible computer rumming Windows
Test zoftware - MMCTest for Wimdewr=95/098 2000/ NTXP

{available for downlead from www jikerr.com)

BLlost of the cables are availlable from computer or electronics stores. However, you will
probably have to make vour own motor/'encoder cables to conmect to vour particular motor.
Fafer to Secrion 2.1 for the connsctor pin defimtions. To start off, vou only need to connect M=,

ILi-, Encoder A, Encoder B, Enceder +5v and Encoder G, Other connections can be mads as

CAUTION
The PIC-5ERVD SC Motion Confrol Board dees not mmecorporate safeguards for fail-safe
operation. As such, thiz board should not be wsed 1 any device which could cause mjury, loss
of life, or property damage. JEFFREY KERR, LLC makes no warranties whatsosver regardmg the
performance, operation, or fmess of this board for any partienlar purposa.

JEFFREY KERR, LLC * wwujrkerr.com

274

www.manaraa.com

Appendix A. (Continued)

neaded. Mote that when testing, vou may have to swap the M+ and M- leads to comrect for the
polarity of vour motor.

Interconnections and Jumperz:

Basic mterconnections and jumpers are shown in Figure | for both a single controller and for a
multiple controller configuration. On the F232-485 converter, pumpers J23 and P4 are mstalled
in the 1-2 position for use as a simple converter. (Please refer to the F232-485 documentation for
use with the optional standalone processor cards) Jumper JPS i mstallad to distribute logic
power to the controller boards over the communications cable. Logic power is supplisd en
connecter JP6. If vou are uzme a different tvpe of senial peoit adapter, you may attach power to
the pin: of JPE on the PIC-SERVD 5C board.

(On the PIC-SERVO 5C controller beard, jumpers JP& and JP7 are mstalled to connect logic power
suppliad b the commumications cable to the board’s logie supply. In the single controller
confizuration, the three jumpers labeled JP3, JP4 and JPS should be mstallad as shown, In the
multiple controller configuration, these jumpers should only ba mstallad on lasr controllar,
furthest from the PC host. On all imtermeadiate controllers, jumpers at JP3, TP4 and TP5 should be
left uminsralled.

Motor powar should be commected to the two serew terminals, with 12 - 48vde connectad to tha
terminal towards the edge of the board and GWND connected to the terminal towards the center as
shown in Figure 1.

We recommend that both vour logie power supply and your motor power supply have floating
outputs. The PIC-SERVD SC board creates a common ground betwrean the (-] side of the logic
supply, the (-) side of the meotor supply and the commumications ground. With yvour power
supply outputs fleatmg, wou will have a single ground referenced to vour PC's ground, thus
avoiding ground loops.

Loading and Rurning Soffware:

First unzip NMCTEST . ZIP inte a single directory. Before starting up the test code, make sura all
of vour jumpers and mtercomnections are as shown in Figwrs 1. Also make sure vou have logie
power supplied to the Z232-485 comverter,

Fun the program N CTestexe. Selact the correct COM port when prompted (leavme the
dafault baud rate at 19200 for now). If vou are using a different COM port, vouwill gat an emar
massage saying no modules were found. If thes 15 the case, click on the Eeazat Metwork button
and zet the COM port to the comraet value. The program will attemipt to locate contrallers on the
BS4E5 network and will respond with the number of contrellers found. Ifthe number of
contrellers reported does neot match the number connectad, re-check the mterconnections,
Jumpers and power, and then trv agam.

The list box on the left side of the window will display the list of motors found. PIC-SERVO
module 1 will be the last controller which i furthest from the host PC. Clicking on different
contrellers will dizplav the status and controls for that particular metor. Click on PIC-SERVO 1
and spin the motor shaft by hand. See that the position changes accordingly in the statns pansl.

Before enzbling the motor servo make sure that the motor 15 dizconnseted from any mechanizm
which might be damaged. To test the metor, first fum on the motor power. Y ou should see the

275

www.manaraa.com

Appendix A. (Continued)

hlotor Power box checked m the status panel. Next, click on the Enzble Amplifier box m the
Motion Command pansl. Now click cn the STOP! button. Try twming the metor shaft by hand.
If the motor jerks and stops, or spins out of control, tum off the motor power and trv swapping
the M- and M- leads on the motor. Tum the power back on, click on STOP! again. The motor
should attempt to hold a fixed positton. If:t doss, clhick on Pos meode, type 1n 2 position valus of
1000, and then click on "G0D". The motor should move to posttion 1000 (or close to 1t,
depending on how the gams are zet). Trv moving to a bunch of different positions until you are
safisfied that the motor 15 moving as 1f should. Note that 1f vour motor has 2 gearhead, the

motion of 1000 counts may producs an imparcaptibly small metion, and you should use a larger
numbsr instaad.)

If the motor seems to buzz when 1t 15 stationary, oy setting the Deadband Compenszation (D)
valus to | or 2 to compensate for non-linearty in the amplifisr af close fo zero output.

Dtherwise, the control gains, and maximum velocities and accelerations are set to default valuss
which are reasonable for mest small motors. Pleasze refer to the PIC-SERVO SC chipset data sheet
for details on the values for the gains, velocities and accelerations. The WACTast online help
also has 2 great deal of mformation about the PIC-SERVO confroller.

At this pomnt, you will want to read the PIC-SERVD 5C controller chip data shest i detaz] o
dizcover 2ll of the featuras of vouwr PIC-SERVD SC motion controller and for information on how
to start developms vour application.

276

www.manharaa.com

Appendix A. (Continued)

Single Controller Configuration

ZIE2-485 Camrenitai

[|JP2

apsI

Earaigie KYF
1o P SOl Pail

+3ware G

-

JF
s JiFs

nbban
(= =]

PIC-SER W el Cantnslin

]

i:.

{2,

Multiple Controller Configuration

PIC-SER W Melnr Costreler

JIE

Jap7 P4

E .
-

Pa
JP2

4K 12D
Jpr AP P GHD
- B
DES
-} —
EI-ITE Toe uster
Ale =T
E2E2-485 Cairsailai
10 4K 12D
+0vara GM N
) Jpy P4 i GHD
Diad Ty 1 | H "i @ - DES
-| —
Siraight BUF g E]
15 D COM Port j j e Te Westes
N gyt P2 il

CAUTION: Connecting communications cables incorrectly, or installing jumpers
JP3, JP4 and JP5 {on the PIC-SERVO board) in the wrong location may damage
the PIC-SERVO 5C or other NHMC controller chip!

Figure 1 - Bazic Intercomnections.

277

www.manaraa.com

Appendix A. (Continued)

2. Connectors and Jumpers

1.1 Pinouts
Motor Connector P1 - DB15 Male

Pin Definition
1 Motor Outpuat (=)
2 Motor Dutput (M=)
3 LED power - pulled up to 5v with a 230 ohm reststor
(for use with opto-miterrupt tvpe switches)
4 Limit Switch 1 (pulled up to 5v with a 4.7k 1esistor)
3 Encoder Channel A (pullad up fo 5v with a 4.7k rasistor)
5 Encoder Channel B (pulled up to 5+ with a 4.7k resistor)
7 Limit Switch 2 (pulled up to 5v with a 4.7k 1esistor)
3 Encoder Index (pulled up to v with a 4.7k resistor)
g Motor Owmtpaat (W-)
10 Motor Output (M-
11 MDD
12 WD
13 WD (supplied to encoder)
14 +5v (supplied to encoder)
15 WD
Wetwork Connectors JPL, JE2 - 10 Fan Flat Babbon [DC Sockets
Pin Definition
1 PIC-SERVO ECV+
2 FIC-SERVO B.CV -
3 PIC-SERVO X DIT+
4 PIC-SERWVO XMT-
5 FIC-SERVO ADDE_IN on JP1L, ADDE._OUT on JE2
5 MDD
i Logic power (7.5 - 1 2vde)
3 WD
9 Logic power (7.5 - 1 2vde)
10 WD
Extemmal Anplifier Connector JP? - 8 Pm Smgle Fow Locking Header
Pin Definition
1 PV cutput - 20 KHz square wave magnitude siznal or Antiphase siznal
2 Direction output (not needed 1f in Antiphase mode)
3 Ancplifier Enable ouiput (active hugh)
4 Limut? mput (same as Pl pin 7 or Step input if in Step & Direction mode
5 Limit] mput (same as Pl pin 4) or Direction input if in Step & Direction mode
& MCLE mput - can be used to enable/disable contreller 1f mn Step & Direction
mode - pull low to diszble confroller (pulled up to 3v with 2 4 7k resistor]
7 ADDE _OUT cutput - can be uzed 25 a serve fault indicator if in Step &
Direction mode (siznal zoes high when sarve 15 disabled)
3 WD
Meotor Power Connector P2 - Serew Termunals
Pin Definition
1 Motor Power 12 - 48vde (at edge of board)
2 Motor Power Ground (connected intemally to logic zround)

JEFFREY KERR, LLC = wwuwjrkerr.com
278

www.manaraa.com

Appendix A. (Continued)

Logzic Power Connector JPS - 2 Pin Locking Header
(Use only 1f logic power 15 not supplied via the network communications cabla.)
Pin Definirion
1 7.5 - 12vde (pin towards the lower edze of the board)

2 round (pin towards the center of the board)

1.2 Jumpers
PIC-SERVO Motor Control Board Jumpers:
Jumper | Dezeriprion |
P2 Connects ADDE W to GND. Insert jumper for the last PIC-5ERVO on the
network (or 1f only 1 PIC-SERVD 1= uszed)
TR4, Enables termination rasistors on BX and TX. Insert thess jumpers for the last
TIPS PIC-SERVO on the network (or if only 1 PIC-SERVO 15 used).
TB6,JF7 | Logic power intercomisction. Inseriing JPS connects logic power to network
connector JE2, Inserting JE7 connects logic power to JP1. These are used to
control the distiibution of legic power over the network cables. Wormally
both these nompers are mnstalled.

3. PIC-SERVO SC Motion Control Board Description

The PIC-SERVD SC Moton Contrel beard 15 a complete motor serve contral system inelunding 2
servo controller, amplifier, senal compmmications interface, optical encodar interface, and linut
switch mnputs. The board 15 desiznad so that up to 32 controllars can be comnectad divectly to 2
single standard senial port (using an RS232-RS4B5/F5422 converter if necessary).

3.1 PIC-5ERVD 5C Motion Control Chip

The PIC-SERVD SC motion confrel chip forms the core of the controllsr, performning all of the
tasks of servo confrel, motion profiling, communications and amplifier control. Please refer to
the PIC-SERVD SC chip data sheet for complets details on the theory of operation of the za1vo
contrel and motion profiling algorithms. Pleasze see our web pages www jrkerr com/docs Jitm]
and www. jikerr.comsoftware html for a wide variety of information and software useful for
developing vour application.

Iote that earlier versions of the PIC-SERVO chipset (v.5 and earlier) cannot be used in the PIC-
SERVD 5C board.

3.2 Communications Interface

The PIC-SERVO 5C usas an BE54385 multi-drop mterface for allowing muliple control modules to
commumnicate over the same E5435 communication port. The host computer sends commands
out over & dedicated parr of fransmit wires, and all stamus data comes back over a shared pair of
racelve wirtes. Because the host has a dedicated transmst line, 2 standard E5232 sarial port can be
used with simple BE5242-E54335 converter.

With monltiple controllers on a single network, sach controller must have 2 umgue address for
sending commands. Eather than using dip switches or jumpers to assign addresses, the PIC-
SERVO 5C uses a method of daisv-chaining an ADDE._ TN signal and an ADDE_OUT =iznzl for
dyvnamically assigming addresses. With the controllers interconnected as shown 1 Figure I, the
ADDE_OUT signal of one board 13 connected to ADDE_TIW of the next board. The very last
board ha: ADDE_IN jumpered to GND. On powear-up, all boards with ADDE_TN held high wall

279

www.manaraa.com

Appendix A. (Continued)

have thewr commumications dizablad. Therefere, only the last board will be able to communicate
with a dafault address of 0.

To mitalize the network, a command 15 sent to the last controller (with address 0 to change 1ts
address to a value of 1. This has the side effect of cansme 1z ADDE_OUT to lower, enabling
communications with the next confroller. The next command senf to address 0 will now be sent
to the sscond-to-last contreller. This process of assigming addresses 1= repeated unti] all
contrellers have been siven umgue addresses.

3.3 Amplifier

The PIC-SERVO Motor Contrel board wses an LMDIE200 H-bridse amplifier to drive DC brush-
type motors with up to 3 amps contimuously, 6 amps peak, with a supply veltage of 12 to 48vde.
This amplifier has overcurrent, evertemperature and wmdervoltage protection. The PIC-SERVO
&C chip provides additional everveltags protection for the amplifier. Note that 1f vou are diving
more than 500 ma, vou will likely need to mount 2 heat zink o the tab of the amplifier. Thos tab
13 connected to GIND, o 1t mav alzo be bolied drectly to a metal enclozure if vour case ground =
connected to your power ground.

The LMDI12200 provides a cmrent sense output which can be read by the host, and may be alze
used for cwrent limmitmg by the PIC-SERVO SC chip. The board iz confizured zo that the PIC-
SERVO 5C will produce an A/D reading of zbout 39 counts per amp of current. Te anable
cwrrent limiting, yvou should sat the cwmyent limit value to an odd, non-zero valus (e, 39 531 ete).
For example to limit the current to zbowt 2 amps, you should sef the cmrent limat valoe to
approximately 2 x 39, or 79

The PIC-SERVO SC controller clup provides additional overvoltage and undarveltags profection
for the amplifiar. As configured on the PIC-SERVD 5C controller board, if the motor supply
voltage drops balow 10.8v, the servo will be disabled. and the amplifier will be tempaorarnly
dizabled. If the voltage rizes back above 10.8v, the amplifisr will ba re-enabled (1f 1t had bean
enabled bafore the voltage drop), but vouw mnst send a command to the board 1f you want to re-
enable the serve.

If the motor supply voltage nises above 34v, the amplifier will be temporarily dizabled untl the
voltage drops back below 54+, The PLD. serve, however, will remain enabled. This 13
primarily to prevent a dacalerating motor from acting as a generator and diiving the veltags
above a safe value.

If mreater than 3 amps 15 required, the PIC-SERVD SC Motion Control beard can be used with an
externz] amplifier. External amplifisrs may be for brush or brushless metors. FWLL Direction
and Enabls signzals are provided on comnsctor JPY. The PIC-SERVO 5C7s 20 EHz FIWL oufput
can be configured as erther a FWI magmitude signal with 2 separate Direction sigmal, or as a
single Antiphass FWL signal. In Antiphase euiput mode, 2 50% duty cyvele outpui wall
correspond to a zere diive cuiput, a 100%% duty cvele will comespond to a full forward output,
and 2 0% duty cvele will comrespond to a full reverse output. This Andphase output mode 15
more conventent for connectmng to exteinal amplifiers requiring an analog dove mput.

The MMCTest program may be used for enabling the Anfiphaze mode, and alse for permansntly
storing the Antiphaze output mode option mm EEPEOM. On powerap, the Antiphzzs output meds
will be automatically restared.

280

www.manaraa.com

Appendix A. (Continued)

3.4 Limit Switch Inputs

The PIC-SERVO 5C board has two limit switch mnputs which can be wsed for overtraval
protection. A neormally closed limat switch should be connectad between the limit switch mmput
and ground. {The hmat switch mputs are pulled-up infemally to +5v.) When limit switeh 1 15 hat
(i, the switch 1= opened), forward motion of the motor will be mlubited. When lumt switch 2
15 it raverse motion will be mmlebited. Mote that the limat seitch overtraval protection mmst be
enabled with a command to the PIC-SERVD 5C.

3.5 Step & Direction Inputs

The PIC-SERVD 5C has the option of configwme the limit swateh imputs as Step & Direction
mputs instead. This 1z useful when uzing the PIC-5ERVD 5C controller and se1vo metor as a high
performance replacement for 2 stepper moter & diiver. If the Step and Doasction inpuis ars being
used, the limif switeh mputs are unavailable, and you should conmect vour limit switches to your
stepper indexing system mstead

Whez Step & Dirsction mode 15 enabled, the ADDE. OUT signal mav be usad to datect 2 servo
fault condition. During nermal operation, the ADDE_ OUT cutpuat will be low. Howsver, 1fin
Step & Dhrection mode a serve fault condition 15 detected and the servo 15 dizablad, the
ADDF._OUT sizgnal will go HIL

Also when i Step & Direction mods, it 15 useful for your stepper indexar svstem to be abls to
dizable the PIC-SERVO SC through a TTL level signal. The MCLE mput (mternally pulled high
to =3v) can be pulled low to disable the PIC-SERVO 5C.

The Step, Direction, ADDE_OUT and MCLE siznals all appear on connectar JPY for connecting
to vour stepper Indexing system.

Lastly, the PIC-SERVO 5C has an mternzal EEPE.OM which can be confizured to make the board
power-up ready to accept Step & Direction signals. The WACTast program has a “Configure
EEPEROM” button which will allow wou to store the proper startup parameters im EEPE.OM.
When configuring the EEPROM, vou should click on the “Festore Curvant Address”™, “Enabla
Amplhifier”, “Enable Serve™ and “Enabla step/direction mput=" options and then save the
parameters. When the board 15 next powerad up, the servo will be anabled and ready to accept
step and dwection signals.

3.6 Physical Dhmensions
The PIC-SERVO Motor Contrel board 15 2.17 % 3.1 with four 0156 dia. mounting holes at 1.87

x 2457 The overzll dimensions of the PIC-SERVO 5C board and the placement of the
connectors and amphifisy chip are identical to earlier PIC-SERVD boards.

281

www.manharaa.com

Appendix A. (Continued)

e

1 — t Q | 1250
r J::qu _:5:__*_ TF
L a f L— 500

2 45 1) —
2

-—'_
fst— 7 e
£

Figure I - PIC-SERVO 5C board dimensions.

4. Contact Information
Additional information may be found from thess sources:

JEFFREY KERR, LLC Web Site www.jrkerr.com
Your source for data sheets, application notes and test coda. Technical support 1s providad via e-
mail. Please see jrkarr.com/confact. html for contact mformation.

Microchip www.microchip.com

The PIC-SERVO 5C 15 based on the Microchip FICIEF233] mucrocontroller. Please rafar to the
Microchop data shest for this devices for complefs slactrical. dming, dimensional and
environmental specifications.

National Semiconductor www.national.com

Dratasheet for the LMD IE200 PWM amplifiers.

*EiLE 5
N
§

s 3 i il B

JRFPERY ERRR LLD [N =

Figurg 7 - PIC-5ERVO 5C Modon Control Board Schematic

282

www.manaraa.com

Appendix A. (Continued)

A.11. SSA-485 Smart Serial Adapter

S5A-485 Smart Serial Adapter

Serial Converter / Stand-alone host controller

The 55A-485 Smart Senal Adapier is a USB/RS232 o BS455 converier, which allows vou (o
communicate with MMC control modules such as the PIC-SERVO, PIC-STEP, and PIC-#0 through vour
host computer’s USE ar BS232 COM port. The $5A-485 may also be used as a stand-alone host by
adding cather our Simple Sequencer chip or a PIC18F2620 microconiroller. The 554-485 includes the
followmg features:

& Suppors USE or RS232 senal interface with host computer. USB mterface is wdeal for
running diagnosiics on a lapiop.

LUp o 32 KMO PIC-SERVD, PIC-STEP. ar PIC-I'0 modules can be contredled from a single

554485 Smart Senal Adapter,

RS222 operation support baud rates from 19,200 up 1o 115,200

L'SE driver support for Windows, Linux, Apple 08, and other operating sysiems

Mav be used as a stand-alone host with erher our Simple Sequencer processor chip or a

PIC 1 3F2620 microcontredler,

On-board connector for the Microchip MELAE 1CD2 In-Circuit Debugger supports optional
PIC 18F2620 code development m C or assembly langunge.

[Fused with a PICI8F2620 microcontroller, 10 pin header provides addisonal 100
capahilies,

L N

1. Use as a Basic Converter

In normal operation, the S5A-485 15 a USB/RS232 o RS485 (4-wire, full-duplex) converter, allowing
vou to communicaie with KM contrel modules such as the PIC-SERVD., PIC-STEP, and PIC-IC direcily
through vour host computer’s USE or BRS232 COM port. Up to 32 NMC modules may be controlled
using a single 554-485 Logic power 15 supplicd (o the NMC modules and $5A-485 from a single point
and distrnbated through the NMO communications cables {default) or logie power can be supplicd 1o
the boards mdividually

The 55A-485 may be configured for cither R5232 or USE commumication with the haost PC. For
communications setfings {such as baud rate and senal port seitings) with a particular controller module,

please refer (o the senal communicatons protocol description m the comresponding FIC-SERVD, PIC-
STEP, ar PIC-1'0 data sheeis,

Please see Section 3 for jumper and pin definitions

1.1 R5232 Converter Mode

For use as 5232 to B5485 converter, jumper JPE should be set to the posinon marked “232° on the
board, and jumpers 183 and JP4 should be set to the position marked “FT" an the board as imdicated
Frgne 1. A straight (5e.. not a null modem) DBES Male / DBY Female extension cable should be used
i connect the DBY connector FI o standard PC KS232 (COM) poris,

sos CAUTION =e
The 55A-485 Smart Serial Adapter does not mcorporate safcguards for fal-safe operation. As such,
this board should not be used m any device which could cause imury, loss of life, or property damage,
JEFFREY KERR, LLC makes no warraniics whatsocver regarding the performance, operation, or
fitness of this board for any particular purpose

283

www.manaraa.com

Appendix A. (Continued)

1.2 USB Converter Mode

For use ws a SE to REARS converter, jumper TP should be set (o the position marked “USE" on
the board, and jumpers JPS and 1P should be sot to the position marked “PT on the board. A
SR Type A male f USE Type B male esttension cable should be used o comseet the USSR
conseetor JPT to standard PC 1UTSH ports.

Mot that when used in USE converter mode, yvour host computer creates a “virual' OO port,
and vour host"s software will communicate with the MMC medules exactly as i you were using a
standard RE232 COM pont. Ses Seetion 1.5 below for details on USE driver installation.

1.3 Logic Power

Logic power { 7.5v 1o 12y D0C . 500 ma oy s o the S54-485 and 10 MMC contrel modules can be
supplied &t a single point aid distriboted over the BNBMC metwork flat ribbon cables, o it can be
supplied (o the various boards edividually. To distribite the S58-485"= logic power 1o the
nebwork cablos, insen a jumper on JPS (default positton), remove the jumper to power (e boand
soparately. Please see the schoemaiic diagrams For your coniroller modules for more deiails on
distributing logee power fo the rest of vour comrollers over the SO commumications cables.

Typacally, if all BMC control modubes and e S58-285 convertor share the same logie power,
o 18 supplied vin connector JPG on the 5548-485 board. 16 this 18 the case, make suie tat
Juiper JPS s installed. Tt conliguration, 500 ma power supply can drive one S84-485
cotverter and approximately 4 additional MBIC control modules (the corverter and modules each
dravy about D00 mal.

1.4 Connection o NMC Modules

Figre { below shows ow o connect muliiple MO modales to vou host computer via the 554-
485 Modules are daisy-chatmed with 10-wire rikbon cables conmeciing JP1 of one module to JP2
of the et maodule as shown. On the lagt controller in the chain, connoector TP ahould be len

open, and jumpers JP3, TP, and JP3 should be installed. Op imtenmediate modiles, JP3_ JE
aud.[EiaL‘uml.d..he.mnmﬁi

The 10 pin laeader connector (JP1) can b used withe 1O pin flat ribbon cables (with standard TDC
v pe cotmecton) to mberconnect to MNBMC confrol modules, For MNRMC network inferconnect
cables longer than 3 mebers, it is recommended theai vou use twisted-pair Mat ribbon cable.

1.5 USH Driver Installation

The USE mterfawce of the 558-485 uses the FT232EBM, a USHE worial port coiverter chig froim
FTIL Ine. Drrvvers For Windows, Limes, Apgle OF, and other operating systems are available
fromn FTT: web site v fSdichip oo, With the Windows didvers yvou can create a virtual
CO port (OO — CORM2565 and communicate with MAMMC controllors with the zame code
wriblen For wse with vour PCs standard BS232 ports,

Mot versions of Windows X have drivers for the FIOTT interface chip pre-insialled. When you
connect the $88-485 1o vour FC™ 3 TSR port and apply kegic power, Windows should
autematically recognize the adapter and create a virtual CORM port. [5 Windows does nod
recognize the driver, or if you are using o differoni operating svatein, please visil

www Sdiciip. conr 10 ed divers and installation instiactions.

284

www.manharaa.com

Appendix A. (Continued)

Omeee the driver s installed, you should open the Control Panel, double elick on System, and
saloct ihe Hardware Deviee blanager. Under “Poris" you should see listed “1USE Serial Port
COOM . I e COR port is not et o OORMS or COMG, rght-click on the port anmd select
Progeriies. Under the Por Settings tab, elick on the “Advaneed” butten and set the por to CORMS
af CORG. This will insure that vou have no conflicts with existing serial pors of nadems.

Please see the documentation mcluded with the deivers for additional installation information.

Mote that 8 vou turn ofF tee logie poaer o your MMC modules, the LTSE seral gort will i
appear in the list of pors. I appears and dizsappears dymamically depending on whether the 554-
485 i3 plugged in and powered wp.

Wou are now ready 1o the MBC Test utility program bo test vour 354-485 and NMC coniroller
modules. (Bake sure vou have dovnleaded the latest version of this program (rom

www geerr conesoffware S which supporis CORMS and CORES) Run this program and use
whichever COM port vou selected for thee comverter in the Control Panel.

The 558-485 corvenler and our WRC modules have all been tested at baud rates ap w 113,200
I your own applications, i may be possible (o wse faster bawd rates, but fhese are untested and it
15 up b e user to venly the reliability of higher speed connections.

285

www.manharaa.com

Appendix A. (Continued)

Single Confroller Configuration (R5232)

s e D

SEAAE Srnwrt Skl B EEpier

Simghi WF

1A D0 Part

JPE
e
USH

hlinT: Dol Wcoisks

Multiple Contrallar Configuration {R5232)

o e Iy O

DA A1 Trawri Tacisl B

s [
P&
JPiE =3
sl
PT
L ma
=20
Pr -F!.
J74

HMD Cpntyall e Iehockis

JPY JPE

Caulion: Connecling communications cables incomectly, of installing jumpers
JP3, JP4, JP5 {an the MMC Controller board) in the wiong location may damage
the NIMC Contreller beard o the controller chip!

Fignore § — S8A-485 used a5 a basic corverier.

www.manaraa.com

Appendix A. (Continued)

2. Usea as a S5tand-alone Host

The socket 14 15 designed to ascept our Simphe Sequeinear processor chip or a PICTRFIA20
mieraconineller to create stand-alone modion conire] svstems. 15 you are using the Simphe
Seguerresd, vou will also need o populate the socket 15 with a 24LC256 EEPROM chip.

The Simple Sequrencer chip and the Z4LC256 EEPROM chip can be purchased from JEFFREY
KERE, LLC. PICTREFIS20 microcontrollars can be obtaied from Digikey (v digifew com’l,
Moaser (wawsenser. oy or odher electronics distributors,

A 20 Mhe cryatal iz included on the board for use with the Simple Seguencer or te PIC TRF 2630
The Simple Sequeancer requires a 20 bhe coyaial, bui the PICTRF 2620 may be used with other
Trequencies. In particular, you can use the FICTRF2620 with a 10 bhe crystal and the 4x FLL
cacillator mode o give an effective clock frequency of wp to 40 Mle. IFyou need o wse o
different frequency, you will have to unsolder the coystal X2 and replace it.

2.1 Simple Saguencer Dperation

The Simple Sequrencer 1% a programimable controller for creating simple ssquences of motion and
odher actions. 1t is programimed using a simple Windows programining eowvironment which
requires o fommal programming skills, Please nefer to the Simple Seguencer docuimaenlalion
(available ab woe St comdocs famd) for complede details.

To configure the S5A4-485 (or Sunple Sequencer opertion, install the Simple Sequence chip

(B MAE-SS0V1-BDOV1) in the socket marked L4 and install the Z4LC256 chip in the socket
marked U5, Set jumpers JP3 and TP i the position marked “550) . Set JPR for either USE or
RE252 st communications. Inthis configuration, UABMRSI1T sigrals from a host wall connect
o serial port O of the Simple Sequencer , and te REA35 signals from the MRC network will be

commected 1o serial pori | of ithe Shmphe Seguencer.
Logie power conmections and connections 1o NAMC MModules are described in Seciiedn [

2.2 PIC1BF2620 Processor Operation
The S54-485 supporis stand-alone host development using a FIC 1BF2620 microcominoller. In
this configuration. users can insert the 28 pin PICTEF2620 into socket U4 and develop code o
e fhe S5A-455 a5 a stand-alone host. The PICIEF2Z620 15 a genesal purpose mseroconinelles
with & variety of standarsd peripheral features such as analog inputs, ttmers, ete.. 17 you need
apecial processor features, Microchip (s anicrooliip. com) offers a wide vanety of ofber I8 pin
proceasor chips in the PICTRF ooy series which may alzo be compatible with the 554-485.
Please peler to the Microchip PIC 18Fxxxy series data sheats for imose information.

2.2.1 Configuration

To configure the 554-4885 for FIC processor operation, mnstall a PICIEF 620 processor in the
sockot imarked U4, and st jumpers JP3 and JP4 inothe position marked 5807, (Socket U5 may
b Jedi empiy.y Set JPE for either USE or R5232 host commumications. In this configuration, the
TISEME232 gignals will be commected to the PIC"s hardware UART, and the RS4R3 signals from
e FAC network will be eonnected to pins ROCO and RICS which are to be usad as o software
TART.

287

www.manharaa.com

Appendix A. (Continued)

2.2.2 Micrechip MPLAB ICD 2 Interface

Connecior JFY connects directly o the Microchip MPLAB ICD2 In-Circut Debugger. The
MPLAR TCT2 In-Circuit Debugger, available from Microchip (wwwmioroctiipooain), 15 a
coimplete assembly and C language programming development envieenment. The MPLAB [CT2
allows users o develop, download. and debug PIC 18F 2620 code on the 55A4-485

Mt that when using the 1C02, yvou should configune it so that Vee is supplied by the farged. Seo
ihe MPLAB ICD2 Uaer's Guide for details on installing and using the MPLAB TCD2 In-Circuid
Drebugger

2.2.3 Auxiliary 1O Connector

Connecior JF2 on the S5A-485 connects to & 10 pins on the PICTAF 2630 processor. This

[, idizs YT Sy ElETI wilh additional |."[.|'-..':|]”:-i.|.'|“~i:ll.lil.'.-u i acdddition w o whatever MO control
modules SO Ea, have conmecied. These s S be used as p-.'l'lL'l:‘“..il purposs d.ig:ll-:ll a0, bt 3
of the ping can alze be wsed for analog anput, 2 can be used for PWH output, and 3 can be used
For generaiing imlerrugis. See Seciion 3 for commector pan definitions,

Mavtr that these additienal L0 capabilities are only available i programining ¥our owin
PICIRFZAI0 processor. The Simple Sequencer does nod make wse of thess 10 pans.

2.2.4 55A-485 Motion Control Library

[T 55A4-485 Modion Conirol Libsary 18 a libsary of © language funciions for communicating

with the PIC-SERVO, PIC-STER. and PIC-00 modubes. This Llibrary is for use with Microchip's
MCCTHRC compiler. (A basic version of this compiler, along with the MPLAB development

crvironment, can be downloaded free from wwwemicrochip.eom. An enhanced version of the
compiler can be purchased from Microchip.)

Frsclulied a0 the Library are high level routines for imitalizing, conirolling, and managing the PIC-
BERVO, PIC-STEPR, and PIC-I0 modules. The library and example programs ane available from
wwrna frkerr co Sefhacre. fefml,

4. Connectors and Jumpers

3.1 Connector Pin Definitions
Lagic Power Conmector JP 152 pin locking header — 001007 apacing
i Use ondy if logie power is sar gupplied via networkl comimunications cable)

i Flefiniriom
I T30 I Ivde (pin marked =)
2 Cipoumnd {pim marked GRS

RE232 Sertal Comnector PL (female DY sonnector)
i Flefiniriom

2 R5252 Transimi Data Onrgiad
3 8252 Recerve Diata ligan
5 Ciroaingl

14, | Mot Used

b=

288

www.manaraa.com

Appendix A. (Continued)

USE Connector JPT (female DEE Type B Socket)

Pire | Definition
| 5wl (froim SR podt)
£ = Jaka
3 +[ata
q Lo

Melasdluilar

Jack JP% (lemale 6 pin modular jack)

Connector o Microehip MPLAR MCDE Tin-Circuit Debugzei

P Hlefiniriom
| Vipp-MCLR
2 5 vide deonfioure [C1) 2 s that Ve iz supphied by the taroet .y
k. Lo
4 Program Lxata
5 Program Cleck
i3 MC
Metwork Connector JP1 — 10 Fin Flat Ribbon 1DC Sockel
P Dlefinilion
1 SSAES XMT+
2 SSA-I88 XMT-
A SSA-EE ROV
4 SSA-EE ROV
5 M.C
i3 Cildlh
7 Logic Power (7.5 — 1 2wde)
= il
i Logic Power (7.5 = 1 2vde)
i3 il

Mouriliary

L0 Commnector JE2 (110 pin locking header — 001007 spacing

Piee | Dhefinirion
| Svde { rigliimeesi pin)
2 PIC Pin 2 (RAWAND — digital 100 or analop inpu
3 PIC Pin 3 (RALAN L — digital L0 o5 analep ingul
4 PIC Pin 4 (RAXANY — digital 100 o5 analop ingu
3 FIC Pin 21 (EBWTM TGO = dimital IO or interrupt mpud
i PIC Pin 22 (EBLTHT Ly — digital IO or interrupl g
i) PIC Pin 23 (EBZTRHT 2y — digital IO or interrupl impa
] PIC Pin 12 {RC LNCCP2) — digital 120 ar PWE oup
0| PIC Pin 13 (RCZICCFL) — digital 10 or PWh outpul
1 i LY lefieosd o)

289

www.manaraa.com

Appendix A. (Continued)

3.2 Jumpers

B5A-485 Jampors

i Hlefinitiom

JP3, | Selects operating mode, Jumper ping marked PT Pass theough) for operation
JPd | as a simple converver (defaulty. Jumper ping marked 5500 (Simple Sequencer)
for opricnal stand-alone operation.

JP5 | Logic power interconnection. Insering JP5 connects logke power (o the
network connector 1P, Mormally this jumpes is installed

JPE | Ulsed b select BS232 or URE communications with the host compuion

Jumper ping marked 232 (defauliy or 1SR for RS232 or UEE opemibon

3.3 Physical Dimension

Fignoe 2 below gives everall board dimensions and the location of the 4 mounting holes. The
RE232 connector and the RE483 NMCO network connector are right-angle connectors mounted on
the ends of e board. The USR and 1CD2 sommectors are vertieal commsectors mounbed in the
center of the board. The Aailiary O connector and the boagic power connector ane viertical
headers mounted along the top edge of the board.

[150- 4 Placas (-

_ t.;;....n | q;_-ﬁ-_l

L
1.800 = TR - 2100
e
o H i
A5 -l 7 & =
15
ERL -

Py 1 — 55A-485 boand dimensions,

4.0Contact Information

Sudditbenal information may be found from these sources

JEFFREY KERR, LLC “Wek Siic woww. jrlerr com

Yo source for data sheets, application nobes and test code. Technical support s provided vaa e-
il

Microchip www . microchip.com

Wit BMicrochip’s web site For information on their ICD2 development tools amd their
PIC L BFwson serbes microcontrollers

FTD Chip www. Tidichip. com
et sheot and drivers for the FITEI3IEM USH chip.

290

www.manaraa.com

Appendix A. (Continued)

h R]
1oFo) abeg = Hel 4

(CEP-UES) Jejdepy [erJag juEwg

277 ‘uy3IN A3¥4430

Ekupul

' B
: 4
a5 &
HEF-
-
;E
g

i

3

£

I..I ||£|:ﬁ

ﬁ'ﬁ'.uﬁ'l

o I < T T

;

291

www.manharaa.com

Appendix B. Matlab Programs and Functions

B.1. VRML File of the Virtual Reality Control Code

#VRML V2.0 utf8

#3%%5995%%%%%%%%%%%% Developed By: Redwan M. Algasemi 3%%5%%%%333%%5%%%3%5%%

NavigationInfo { type "EXAMINE" speed 30 avatarSize [1, 0, 0] headlight TRUE }
DEF WMRAROBOT Group {
children[
Group {
children [
DEF EXT SETTINGS Group {
children [
WorldInfo { title "Wheelchair Mounted Robotic Arm, By: Redwan Alqasemi, USF 2007"},
NavigationInfo {
type "EXAMINE"
avatarSize 180
visibilityLimit 200
speed 1000
3

Background {
groundColor [0.8 0.7 0.1, 0.8 0.7 0.1]
groundAngle [1.57]
skyColor[001,00.51,00.51,0.50.50.5,10.50]
skyAngle [1 1.15 1.35 1.57]
#topUrl "cloud.jpg"

b

DEF DynamicView Transform {
rotation 0100
translation 0 0 0
children [
Viewpoint {
description "a_start"
position 2500 500 1800
orientation 0 1 0 0.8
jump FALSE
b
Viewpoint {
description "a_far"
position 900 6000 -200
orientation -0.601 -0.547 -0.582 2.172
jump FALSE
}s
Viewpoint {
description "a_bk-It-up"
position -1300 1600 -1600
orientation -0.1 -1 -0.25 2.4
jump FALSE

Viewpoint {
description "a_bk-It-dn"
position -1400 400 -1800
orientation 0.025 -1 0.037 2.4
jump FALSE

b

292

www.manharaa.com

Appendix B. (Continued)

Viewpoint {
description "a_ft-It-up"
position 1600 1800 -1400
orientation -0.1 0.9 0.25 2.4
jump FALSE

Viewpoint {
description "a_ft-It-dn"
position 1700 400 -1600
orientation 0.031 1 -0.052 2.4
jump FALSE

)

Viewpoint {
description "a_ft-rt-up"
position 1600 1900 1500
orientation -0.4 0.5 0.14 0.85
jump FALSE

3

Viewpoint {
description "a_ft-rt-dn"
position 1700 300 1900
orientation 0.191 1 -0.075 0.615
jump FALSE

Viewpoint {
description "a_bk-rt-up"
position -1700 1700 1700
orientation -0.25 -0.5-0.12 1
jump FALSE

}s

Viewpoint {
description "a_bk-rt-dn"
position -1800 500 1900
orientation 0.116 -1 0.021 0.818
jump FALSE

}s

Viewpoint {
description "a_birdeye"
position -1100 4900 -1900
orientation -0.56 -0.72 -0.4 2.2
jump FALSE

Viewpoint {
description "a_top"
position 200 3100 0
orientation -0.577 -0.577 -0.577 2.1
jump FALSE
}s
1}
Viewpoint {
description "top"
position 200 3100 0
orientation -0.577 -0.577 -0.577 2.1
jump FALSE

Viewpoint {
description "birdeye"
position -1100 4900 -1900
orientation -0.56 -0.72 -0.4 2.2
jump FALSE

b

Viewpoint {
description "bk-rt-dn"
position -1800 500 1900
orientation 0.116 -1 0.021 0.818

293

www.manharaa.com

Appendix B. (Continued)

jump FALSE

Viewpoint {
description "bk-rt-up"
position -1700 1700 1700
orientation -0.25 -0.5 -0.12 1
jump FALSE

}s

Viewpoint {
description "ft-rt-dn"
position 1700 300 1900
orientation 0.191 1 -0.075 0.615
jump FALSE

Viewpoint {
description "ft-rt-up"
position 1600 1900 1500
orientation -0.4 0.5 0.14 0.85
jump FALSE

Viewpoint {
description "ft-1t-dn"
position 1700 400 -1600
orientation 0.031 1 -0.052 2.4
jump FALSE

}s

Viewpoint {
description "ft-1t-up"
position 1600 1800 -1400
orientation -0.1 0.9 0.25 2.4
jump FALSE

Viewpoint {
description "bk-It-dn"
position -1400 400 -1800
orientation 0.025 -1 0.037 2.4
jump FALSE
}s
Viewpoint {
description "bk-It-up"
position -1300 1600 -1600
orientation -0.1 -1 -0.25 2.4
jump FALSE
b
Viewpoint {
description "far"
position 900 6000 -200
orientation -0.601 -0.547 -0.582 2.172
jump FALSE

Viewpoint {
description "start"
position 2500 500 1800
orientation 0 1 0 0.8
jump FALSE

1,

DEF GROUND Transform {

rotation 1 0 0 0

translation 0 0 0

children [
Shape {
geometry Box { size 5000 1 5000 }
appearance Appearance {
texture ImageTexture { url "9_Z Ground.jpg" repeatS TRUE repeatT TRUE }

294

www.manharaa.com

Appendix B. (Continued)

textureTransform TextureTransform {

rotation 0
center 0 0
translation 00
scale 33
I,
1}
I

Transforming the wheelchair world coordinate system to the VR's world coordinate system:
DEF World Transform {

rotation 1 0 0 -1.5707963

translation 0 0 0

children [

DEF Chair Transform {
rotation 00 1 0
translation -440 -230 168
children [
DEF WCR SphereSensor {}
DEF WCT PlaneSensor { minPosition -400 0 maxPosition 400 0 }
Group {
children [Inline { url "0_Chair.wrl" }

T+ H

DEF LWheel Transform {
rotation 0 1 0 0
translation 0 0 0
children [
DEF LW CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 }
Group {
children [Inline { url "0_LWheel.wrl" }1}1}

DEF RWheel Transform {
rotation 0100
translation 0 0 0
children [
DEF RW CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 }
Group {
children [Inline { url "0_RWheel.wrl" }]}]}

DEF ARMI Transform {
rotation 1 0 0 1.5707963
translation 440 220 139
children [
DEF JOINT1 CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 }
Group {
children [Inline { url "1.wrl" }

DEF ARM2 Transform {
rotation 0 0 -1 1.5707963
translation 0 42.69 -75.1
children [
DEF JOINT2 CylinderSensor { diskAngle 0 minAngle -1.5708 maxAngle 1.5708 }
Group {
children [Inline { url "2.wrl" }

DEF ARM3 Transform {
rotation 0 1 0 1.5707963
translation -1.73 75.08 -42.7
children [
DEF JOINT3 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 }
Group {
children [Inline { url "3.wrl" }

295

www.manharaa.com

Appendix B. (Continued)

DEF ARM4 Transform {
rotation 0 0 -1 0
translation -2.92 42.64 -75.08
children [
DEF JOINT4 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 }
Group {
children [Inline { url "4.wrl" }

DEF ARMS Transform {
rotation 0 1 0 1.5707963
translation -11.45 74.85 -423.58
children [
DEF JOINTS CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 }
Group {
children [Inline { url "5.wrl" }

DEF ARM6 Transform {
rotation 0 0 -1 1.5707963
translation -2.17 45.99 -75.1
children [
DEF JOINTS6 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 }
Group {
children [Inline { url "6.wrl" }

DEF ARM7 Transform {
rotation 0 1 0 1.5707963
translation -2.92 -61.52 -161.49
children [
DEF JOINT?7 CylinderSensor { diskAngle 0 minAngle -1.5708 maxAngle 1.5708 }
Group {
children [Inline { url "7.wrl" }

DEF ARMS Transform {
rotation 00 -1 0
translation -1.78 61.39 -192.29
children [
DEF JOINTS CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1614 }
Group {
children [Inline { url "8.wrl" }

B LB LBL B LD BL B B B B

ROUTE WCT.translation_changed TO Chair.set_translation
ROUTE WCR.rotation_changed TO Chair.set_rotation
ROUTE LW.rotation_changed TO LWheel.set rotation
ROUTE RW.rotation changed TO RWheel.set rotation
ROUTE JOINT1.rotation_changed TO ARM1.set_rotation
ROUTE JOINT2.rotation_changed TO ARM2.set_rotation
ROUTE JOINT3.rotation_changed TO ARM3.set_rotation
ROUTE JOINT4.rotation_changed TO ARM4.set_rotation
ROUTE JOINTS.rotation_changed TO ARMS.set_rotation
ROUTE JOINTG6.rotation_changed TO ARMS6.set_rotation
ROUTE JOINT7.rotation_changed TO ARM7.set_rotation
ROUTE JOINT8.rotation_changed TO ARMS.set_rotation

B R S S S e

I

296

www.manharaa.com

Appendix B. (Continued)

B.2. Matlab Functions Listed Alphabetically

)

% This "new USF WMRA" function SIMULATES the arm going from any position to the ready
position with ANIMATION. All angles are in Radians.

% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians).

% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

[

% Function Declaration:

function WMRA any2ready(ini, vr, ml, arm, Tiwc, gi)
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and
Plots windows:

if ini==
if arm==
try
WMRA ARM Motion(ini, 0, 0, 0);
end
end
if vr==
try
WMRA VR Animation(ini, 0, 0);
end
end
if ml==
try
WMRA ML Animation(ini, 0, 0, O, 0, O, O, 0, O, 0, 0);
end
end
return;
end

3

3 Defining the used conditions:
qd=[pi/2;pi/2;0;pi/2;pi/2;p1/2;0]; % Final joint angles (Ready Position).

ts=10; % (5 or 10 or 20) Simulation time to move the arm from any position to the
ready position.

n=100; % Number of time steps.

dt=ts/n; % The time step to move the arm from any position to the ready position.

% Initializing the physical Arm:

if arm==
WMRA ARM Motion(ini, 2, [gi;O0], dt);
ddt=0;

end

% Initializing Virtual Reality Animation:

WMRA VR Animation(ini, Tiwc, gi);
end

% Initializing Robot Animation in Matlab Graphics:

)

% Inputting the D-H Parameters in a Matrix form:
DH=WMRA DH(qi);

% Calculating the transformation matrices of each link:

297

www.manharaa.com

Appendix B. (Continued)

TO1=WMRA rotx (DH(1,1))*WMRA transl (DH(1,2),0,0)*WMRA rotz (DH(1,4))*WMRA transl (0,0,DH (1,3
))

T12=WMRA rotx(DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(DH(2,4))*WMRA transl(0,0,DH(2,3
))

T23=WMRA rotx(DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz (DH(3,4))*WMRA transl(0,0,DH (3,3
)) i

T34=WMRA_ rotx (DH(4,1))*WMRA transl (DH(4,2),0,0)*WMRA rotz (DH(4,4)) *WMRA_transl (0, 0,DH (4,3
))

T45=WMRA rotx (DH(5,1))*WMRA transl(DH(5,2),0,0)*WMRA rotz (DH(5,4))*WMRA transl(0,0,DH(5,3
))

T56=WMRA rotx (DH(6,1))*WMRA transl(DH(6,2),0,0)*WMRA rotz (DH(6,4))*WMRA transl(0,0,DH(6,3
))

T67=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz (DH(7,4))*WMRA transl(0,0,DH(7,3
)) i
% Calculating the Transformation Matrix of the initial and desired arm positions:
Ti=Tiwc*TO1*T12*T23*T34*T45*T56*T67;
Td=Tiwc*WMRA g2T (qd) ;
WMRA ML Animation(ini, Ti, Td, Tiwc, TO1l, T12, T23, T34, T45, T56, T67);
end
% Check for the shortest route:
diff=qgd-gi(1:7);
for i=1:7
if diff(i) > pi
diff (i)=diff (i) -2*pi;
elseif diff (i) < (-pi)
diff (i)=diff (i)+2*pi;
end
end

% Joint angle change at every time step.
dg=[diff/n;0;0];

% Initialization:
qo=qi;
tt=0;

while tt <= (ts-dt)
% Starting a timer:
tic;

% Calculating the new Joint Angles:
an=qgo+dqg;

% Updating the physical Arm:

if arm==
ddt=ddt+dt;
if ddt>=0.5 || tt>=(ts-dt)
WMRA ARM Motion (2, 1, I[gn;0], ddt);
ddt=0;
end
end

% Updating Virtual Reality Animation:
if vr==

WMRA VR Animation (2, Tiwc, gn);
end

% Updating Matlab Animation:
if ml==

298

www.manharaa.com

Appendix B. (Continued)

[

% Calculating the new Transformation Matrix:

Tla=WMRA rotx (DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(gn(l))*WMRA transl(0,0,DH(1,3))

’

T2a=WMRA rotx (DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(gn(2))*WMRA transl (0,0,DH(2,3))

’

T3a=WMRA rotx(DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz(gn(3))*WMRA transl(0,0,DH(3,3))

’

T4a=WMRA rotx (DH(4,1))*WMRA transl(DH(4,2),0,0)*WMRA rotz(gn(4))*WMRA transl (0,0,DH(4,3))

’

T5a=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz(gn(5))*WMRA transl (0,0,DH(5,3))

’

T6a=WMRA rotx (DH(6,1))*WMRA transl(DH(6,2),0,0)*WMRA rotz(gn(6))*WMRA transl(0,0,DH(6,3))

’

T7a=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz(gn(7))*WMRA transl(0,0,DH(7,3))

’

WMRA ML Animation(2, Ti, Td, Tiwc, Tla, T2a, T3a, T4a, T5a, Téa, T7a);
end
% Updating the old values with the new values for the next iteration:
qo=qn;
tt=tt+dt;
% Pausing for the speed sync:
pause (dt-toc) ;

end

[

% This function communicates with the physical USF WMRA system with 9 DOF to get the
encoder readings and send the commands to be executed.

% The (.H) file and the (.DLL) file that contains the used functions should be in the
directory containing this program.

% config=0: Set the current encoder readings to zeros, config=l: Read the encoder
readings from the configuration txt file.

% config=2: Change the configuration file to the initial values provided by (go), then
read the encoder readings from the configuration txt file.

2 5%%55% 5% 2 55%55%555%55%5555%5%
$55%%55%55%5%%%%9%%%%%%%%% COPY RIGHTS RESERVED %3%%3%%3%%%%%%%%%%55%%%%%5%%
$55%%9%%95%%%%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%%%%%%%%

% Function Declaration:
function [gn] = WMRA ARM Motion(ind, config, go, dt)
% Declaring the global variables:
global L ptr e2rl e2r2 e2r3 e2r4 e2r5 e2r6 e2r7 e2r8 e2r9 e2d

% The initialization of the Arm library:

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA WCD;

% Serial Communication properties:
com=4;

baud=19200;

299

www.manharaa.com

Appendix B. (Continued)

)

% PID controller gains:
Kp=100;
Kd=1000;
Ki=0;
% Conversion of encoder readings to radians: Note that the encoder readings are
negative of the kinematic arrangements in the control code.

e2rl=-pi/900000;

e2r2=-pi/900000;

e2r3=-pi/950000;

e2r4=-pi/710000;

e2r5=-pi/580000;

$e2r6p=-pi/420000;

%e2r6n=-pi/500000;

e2r6=-pi/440000;

e2r7=-pi/630000;

e2r8=1; % Redwan: change this to forward motion when wheelchair controllers are
installed (Only when reading the encoders).

e2r9=1; % Redwan: change this to rotation motion when wheelchair controllers are
installed (Only when reading the encoders).

e2d =-1/100000;

% The case when changing the configuration file to go 1s required:
if config==

% Converting the commanded angles to encoder readings:

%qgo=[qgo(l)/e2rl; qgo(2)/e2r2; qgo(3)/e2r3; qo(4)/e2rd; qo(5)/e2r5; go(6)/e2r6;
qo(7)/e2r7; go(8)/e2r8; qo(9)/e2r9; qo(1l0)/e2d];

go=[qgo(l) /e2rl; go(2)/e2r2; qo(3)/e2r3; qo(4)/e2rd; qo(5)/e2r5; go(6)/e2r6;
go(7)/e2r7; qo(1l0)/e2d]; % Redwan: Replace this with the one above when wheelchair
controllers are installed.

% Changing the configuration file to go:
fid = fopen('configuration.txt','w');
fprintf (fid, ' %10.0f ',qgo);
fclose (fid) ;
config=1;

end

try
% Closing the library in case it was open:
calllib ('controlMotor', 'close');

catch

end

try

)

% Loading the DLL library of functions:
loadlibrary('controlMotor.dll', 'controlMotor.h');

catch

end

% Establishing the connections, and setting the encoders to the current

configuration:

check=calllib('controlMotor', 'init', com, baud, config);

if check == 0

fprintf ('\nWMRA initialization has failed, Please check your communications.\n');
end

% Setting the PID controller gains (All motors the same gains in this case. Use
'setParamsPID' command to set each individual motor to different PID gains:

calllib ('controlMotor', 'setParamsPIDAll', Kp, Kd, Ki);

% Creating a pointer of for the 10 joints to be used to read or set the encoders:
dim = 1:8; % Redwan: Change 8 to 10 when wheelchair controllers are installed.
ptr = libpointer ('int32Ptr', dim);

% Reading the current positions and converting them to radians:
calllib ('controlMotor', 'getPosAll', ptr);

300

www.manharaa.com

Appendix B. (Continued)

gc=double (ptr.Value);

gc=[gc(1l:7), 0, 0, gc(8)]; % Redwan: Remove when wheelchair controllers are
installed.

gn=[qgc (1) *e2rl; qgc(2)*e2r2; qgc(3)*e2r3; qgc(4)*e2r4d; gc(5)*e2r5; qgc(6)*e2r6;
gc (7) *e2r7; gc(8) *e2r8; gc(9)*e2r9; gc(10)*e2d;]1;

% Closing the Arm library:
elseif ind==3
% Reading the current positions to be saved in the configuration file:
calllib ('controlMotor', 'getPosAll', ptr);
% Closing the library and unloading:
calllib ('controlMotor', 'close');
unloadlibrary('controlMotor'");
% Reporting the function output to be zero (This value will not be used):
qn=0;

% Updating the Arm:

else
% Reading the current positions:
calllib ('controlMotor', 'getPosAll', ptr):;
gc=double (ptr.Value) ';

% Converting the commanded angles to encoder readings:

%qo=[qgo(l)/e2rl; go(2)/e2r2; go(3)/e2r3; qo(4)/e2rd; qo(5)/e2r5; go(6)/e2r6;
qo(7)/e2r7; go(8)/e2r8; qo(9)/e2r9; qo(1l0)/e2d];

go=[qgo(l)/e2rl; go(2)/e2r2; qgo(3)/e2r3; qo(4)/e2rd; go(5)/e2r5; go(6)/e2r6;
go(7)/e2r7; qo(l0)/e2d]; % Redwan: Replace this with the one above when wheelchair
controllers are installed.

% finding the needed velocities for the arm, note that a factor of 33.8 is needed for
encoder velocities and position conversion:

gdo (1:7)=33.8*abs (qo(1:7)-qgc(1:7))/dt;

gddo=500*[1; 1; 1; 1; 1; 1; 1; 101,

% Calculating the gripper's commanded position and velocity:

go (8)=go (8)+gc (8); % Redwan: Change 8 to 10 when wheelchair controllers are
installed.

gdo (8)=33.8*abs (gqo(8)-gc(8)); % Redwan: Change 8 to 10 when wheelchair controllers

are installed.

% Splitting the negative sign to be used in the DLL functions:

dir=[0;0;0;0;0;0;0;0]; % Redwan: Add two more zeros when wheelchair controllers are
installed.
for i=1:8 % Redwan: Change 8 to 10 when wheelchair controllers are installed.
if sign(go(i)) == -1
qo(i) = -go(i);
dir(i) = 1;
end
end

% Sending the commanded angles to the controller boards:
calllib ('controlMotor', 'posSelect', [1, 1, 1, 1, 1, 1, 1, 1, -11, go', gdo', qgddo',
dir);

% Reading the current positions and converting them to radians:

calllib ('controlMotor', 'getPosAll', ptr);

gc=double (ptr.Value);

gc=[gc(l:7), 0, 0, gc(8)]; $ Redwan: Remove when wheelchair controllers are
installed.

agn=[qgc (1) *e2rl; gc(2)*e2r2; qgc(3)*e2r3; qgc(4)*e2r4; gc(5)*e2r5; qgc(6)*e2r6;
gc (7) *e2r7; gc(8) *e2r8; gc(9)*e2r9; gc(10)*e2d;];
end

301

www.manharaa.com

Appendix B. (Continued)

)

% This function uses a 3rd order Polynomial with a Blending factor to find a smooth
trajectory points of a variable "g" along a streight line, given the initial and final
variable values and the number of trajectory points.

% The output is the variable position.

% See Egq. 7.18 page 210 of Craig Book

[

% Function Declaration:

function [gt] = WMRA BPolynomial (qi, gf, n)
% Blending Factor:
=5

’

o

)

% Initializing the time:
tt=0;

tf=abs ((qf-qi));
dt=tf/(n-1);

if tf > 0.001
% Blending procedure:
% Time, position, velocity, and acceleration of the variable at the first blending
point:
gddb=b*4* (qf-qgi) /t£"2;
tb=tf/2-sqgrt (gddb"2*tf"2-4*qgddb* (qf-qi)) /abs (2*qgddb) ;
gdb=gddb*tb;
gqb=gi+gddb*tb"2/2;
% Calculating the polynomial factors at the first blending point: From Eqg.7.18 page
210 of Craig Book
all=qgi;
all=0;
a21=0.5*qgddb;
a31=(20* (gb-gi) -8*gdb*tb-2*qgddb*tb"2) / (2*tb"3) ;
%ad4l=(30* (gi-gb) +14*gdb*tb+gddb*tb”2) / (2*tb"4); % Uncomment for 5th order polynomial.
%a51=(12* (gb-gi) -6*gdb*tb) / (2*tb”"5); % Uncomment for 5th order polynomial.
% Calculating the polynomial factors at the second blending point: From Eg.7.18 page
210 of Craig Book
a02=gb+qgdb* (t£-2*tb) ;
al2=qgdb;
a22=-0.5*qgddb;
a32=(20* (gf-a02) -12*al2*tb+2*gqddb*tb"2) / (2*tb"3) ;
%a42=(30* (a02-gf)+16*al2*tb-qgddb*tb"2) / (2*tb”4); % Uncomment for 5th order
polynomial.
%ab52=(12* (qf-a02)-6*al2*tb) / (2*tb"5); % Uncomment for 5th order polynomial.
end
% Calculating the intermediate joint angles along the trajectory from the initial to the
final position:
for i=1:n
if tf <= 0.001
qt (i)=qi;
elseif tt<=tb
gt (i)=all+all*tt+a2l*tt"2+a31*tt"3; S+adl*tt"4+abl*tt”5; % Uncomment before
"+a41l" for 5th order polynomial.
elseif tt>=(tf-tb)
gt (i)=a02+al2* (tt+tb-tf)+a22* (tt+tb-tf) "2+a32* (tt+tb-tf) "3; S+ad2* (tt+tb-
tf) "4+ab2* (tt+tb-tf) *5; % Uncomment before "+42" for 5th order polynomial.
else
gt (i) =gb-gdb* (tb-tt) ;
end

302

www.manharaa.com

Appendix B. (Continued)

tt=tt+dt;
end

)

% This function is to stop the arm if it is moving towards a collision with itself, the
wheelchair, or the human user.

)

% Function Declaration:

function [dg]=WMRA collide(dgi, TO01l, T12, T23, T34, T45, T56, T67)

% Reading the Wheelchair's constant dimentions, all dimentions are converted in

millimeters:

L=WMRA_WCD;

% Collision Conditions:

gr=100-L(4)-L(5); % The ground buffer surface.

dg=dgi;

% 1- Collision of frame 3 using TO03:

TO3=T01*T12*T23;

% Collision with the ground:

if T03(3,4) <= gr
dg=-0.01*dgi;

end

% Collision with the wheelchair's front left side:

if T03(1,4) >= 450 && T03(2,4) <= -150
dg=-0.01*dgi;

end

% Collision with the wheelchair's rear left side:

if T03(1,4) <= 450 && T03(2,4) <= 100
dg=-0.01*dgi;

end

% Collision with the wheelchair's rear left wheel:

if T03(1,4) <= 0 && T03(2,4) <= 100 && T03(3,4) <= 120
dg=-0.01*dgi;

end

% 2- Collision of frame 4 using TO04:

T04=T03*T34;

% Collision with the ground:

if T04(3,4) <= gr
dg=-0.01*dgi;

end

% Collision with the wheelchair's front left side:

if T04(1,4) <= 450 && T04(1,4) >= -100 && T04(2,4) <=0
dg=-0.01*dgi;

end

% Collision with the wheelchair's rear left side:

if T04(1,4) <= -100 && T04(2,4) <= 100
dg=-0.01*dgi;

end

% Collision with the wheelchair's rear left wheel:

if T04(1,4) <= -100 && T04(2,4) <= 100 && T04(3,4) <= 120
dg=-0.01*dgi;

end

[

% 3- Collision of frame 5 using TO05:
TO05=T04*T45;

303

www.manharaa.com

Appendix B. (Continued)

% Collision with the ground:

if T05(3,4) <= gr
dg=-0.01*dgi;

end

% Collision with the wheelchair driver's left shoulder:

if TO5(1,4) <= -100 && TO05(1,4) >= -550 && T05(2,4) <= 150
dg=-0.01*dgi;

end

% Collision with the wheelchair driver's lap:

if TO5(1,4) <= 400 && TO5(1,4) >= -100 && TO05(2,4) <= 0 && T05(3,4) <= 470
dg=-0.01*dgi;

end

% Collision with the wheelchair's battery pack:

if TO5(1,4) <= -430 && TO05(1,4) >= -630 && T05(2,4) <= 100 && T05(3,4) <= 50
dg=-0.01*dgi;

end

% 4- Collision of frame 7 using TO07:

TO7=T05*T56*T67;

% Collision with the ground:

if T07(3,4) <= gr
dg=-0.01*dgi;

end

% Collision with the wheelchair driver's left shoulder:

if TO7(1,4) <= -50 && TO07(1,4) >= -600 && TO07(2,4) <= 200
dg=-0.01*dgi;

end

% Collision with the wheelchair driver's lap:

if TO7(1,4) <= 450 && TO07(1l,4) >= -50 && TO07(2,4) <= 50 && TO07(3,4) <= 520
dg=-0.01*dgi;

end

% Collision with the wheelchair's battery pack:

if TO7(1,4) <= -480 && TO07(1,4) >= -680 && T07(2,4) <= 50 && T07(3,4) <= 100
dg=-0.01*dgi;

end

% 5- Collision of the arm and itself using T37:

T37=T34*T45*T56*T67;

% Collision between the forearm and the upper arm:

if T37(1,4) <= 170 && T37(1,4) >= -170 && T37(2,4) >= -100 && T37(3,4) <=0
dg=-0.01*dgi;

end

)

% This function gives the WMRA's errors from the current position to the required
trajectory position.

$E55%55%%55%%5%%%%%%%%% Developed By: Redwan M. Algasemi $%%$%%%%%%5%%%5%%%%%%%%%

o

% Function Declaration:
function [delta]=WMRA delta(Ti, Td)

ep=Td(1:3,4)-Ti(1:3,4);

eo0=0.5*(cross(Ti(1:3,1),Td(1:3,1)) + cross(Ti(1:3,2),Td(1:3,2)) +
cross(Ti(1:3,3),Td(1:3,3))); % From equation 17 on page 189 of (Robot Motion Planning
and Control) Book by Micheal Brady et al. Taken from the paper (Resolved-Acceleration
Control of Mechanical Manipulators) By John Y. S. Luh et al.

delta=[ep; eo];

304

www.manharaa.com

Appendix B. (Continued)

This function gives the DH-Parameters matrix to be used in the program.
Modifying the parameters on this file is sufficient to change these dimention in all
related programs.

o
S
o
S

59%%
$92%9%%2%%%59%%%%%%%%%%%%% COPY RIGHTS RESERVED %%3%%%%%%%%%%%%3%%%%%%%%%%%

90000000000000000000 . 1 £999000000000000000000
5%%%%%5%5%5%%%%%5%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%%%%%%%%
25050000000000000000000000000000 . 1 2007 2%%%2222232222222222222222333322
5555555 %55%55%55%5%%5%5%%%5%%%%%%%%%%% Apri 5 5555%55%55%5%%%%5%55%5%555%5%%%%%
0000000000000000000000000020200

)

% Function Declaration:
function [DH]=WMRA DH (q)
% Inputting the D-H Parameters in a Matrix form, dimensions are in millimeters and
radians:

% Dimentions based on the actual physical arm:

DH=[-pi/2 0 110 g(1) pi/2 0 146 g(2) ; -pi/2 0 549 gq(3) ; pi/2 0 130 g(4) ;
-pi/2 0 241 g(5) pi/2 0 0 g(6) ; -pi/2 0 179+131 a(7)];

’
’

ol

Dimentions based on the Virtual Reality arm model:
DH=[-pi/2 0 109.72 g(l) ; pi/2 0 118.66 g(2) ; -pi/2 0 499.67 g(3) ; pi/2 0 121.78 g(4)

o0 e oe

-pi/2 0 235.67 q(5) ; pi/2 0 0 q(6) ; -pi/2 0 276.68 q(7)1;

0000000000000000000000000

3%%%555%%%%5%5%5%%%%%5%5%5%%%% Thanks to Mayur Palankar %%%%%%%%%%%5%%%%%%%5%%%%%%%

function varargout = WMRA error_gui (varargin)
WMRA ERROR GUI M-file for WMRA error gui.fig

o

% WMRA ERROR_GUI, by itself, creates a new WMRA ERROR GUI or raises the existing
% singleton*.

% H = WMRA ERROR_GUI returns the handle to a new WMRA ERROR GUI or the handle to
% the existing singleton*.

% WMRA ERROR_GUT ('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in WMRA ERROR GUI.M with the given input arguments.

S WMRA ERROR GUI ('Property', 'Value',...) creates a new WMRA ERROR GUI or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before WMRA error gui OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to WMRA error gui OpeningFcn via varargin.

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

oo

Edit the above text to modify the response to help WMRA error_gui
% Last Modified by GUIDE v2.5 03-Feb-2007 15:47:37
% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;
gui_State = struct('gui Name', mfilename, ...

305

www.manharaa.com

Appendix B. (Continued)

'gui Singleton', gui Singleton,
'gui OpeningFcn', @WMRA error gui OpeningFcn,
'gui_OutputFen', @WMRA error gui_OutputFcn,
'gui_LayoutFcn', 1,
'gui Callback', [1);

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui _mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% —--- Executes Jjust before WMRA error_gui is made visible.
function WMRA error gui OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.
hObject handle to figure
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to WMRA error gui (see VARARGIN)

o o oo de

o

set (handles.editl, 'String', varargin{l}):;
% Choose default command line output for WMRA error gui
handles.output = hObject;

% Update handles structure

guidata (hObject, handles);

% UIWAIT makes WMRA error gui wait for user response (see UIRESUME)
uiwait (handles.figurel);

% —-- Outputs from this function are returned to the command line.
function WMRA error gui OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o o oo

o

o

Get default command line output from handles structure

%varargout{l} = handles.output;

% —--- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close;

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of editl as text
str2double (get (hObject, 'String')) returns contents of editl as a double

o

% —--- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

306

www.manharaa.com

Appendix B. (Continued)

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

o

end

290000000000000000000000000090000000000090090090000000000000000000000000000
5585585855555 5585555555555 5555555%555%555%555%55%5%555%55%5%5%5%5%5%5%5%5%5%%%
00000000000000000000000000 000000000000000000000000000
35555533 %55553%%%555%%%%%5 COPY RIGHTS RESERVED 33%%%%5%5%%%%%%5%5%5%%%%55505%5%%
©9000000000000000000 . i 2220900000000000000000
3%%%55%5%%%%%5%5%5%%%%%5%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%5%5%%%%%%

function varargout = WMRA exit (varargin)

WMRA EXIT M-file for WMRA exit.fig
WMRA EXIT, by itself, creates a new WMRA EXIT or raises the existing
singleton*.

o0 a0 de oo

o

H = WMRA EXIT returns the handle to a new WMRA EXIT or the handle to
the existing singleton*.

o° oo

o°

WMRA EXIT ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in WMRA EXIT.M with the given input arguments.

o° oo

o

WMRA EXIT ('Property', 'Value',...) creates a new WMRA EXIT or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before WMRA exit OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to WMRA exit OpeningFcn via varargin.

o° o0 de de o

o°

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° oo

o

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help WMRA exit
% Last Modified by GUIDE v2.5 14-Mar-2007 23:20:09

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_ State = struct('gui Name', mfilename, ...
'gui Singleton', gui_Singleton, ...
'gui OpeningFcn', @WMRA exit OpeningFcn, ...
'gui OutputFcn', Q@WMRA exit OutputFcn, ...
'gui LayoutFcn', 1,
'gui Callback', [1);

if nargin && ischar(varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui_ State, varargin{:});
end
% End initialization code - DO NOT EDIT

)

% —--- Executes just before WMRA exit is made visible.
function WMRA exit OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
hObject handle to figure
307

3
S

www.manharaa.com

Appendix B. (Continued)

o

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to WMRA exit (see VARARGIN)

o

o°

% Choose default command line output for WMRA exit
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

global VAR _SCREENOPN
VAR_SCREENOPN = 1;

% UIWAIT makes WMRA exit wait for user response (see UIRESUME)
uiwait (handles.figurel);

o

% —-- Outputs from this function are returned to the command line.
function varargout = WMRA exit OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo oo

o

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback (hObject, eventdata, handles)

hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global VAR SCREENOPN

VAR SCREENOPN = 0;

close;

o

% This function gives the Jacobian Matrix and its determinant based on frame 0 of the new
USF WMRA, given the Transformation Matrices of each link.

©99200000000020020022002000 2000200000090000220029022000
$5%5%%5%5%5%5%%5%%5%%5%%5%%5%%5%%5%%% COPY RIGHTS RESERVED $%%%%%%%5%%%%5%%5%%5%%%%5%%%%%%%
999929599009000090000000 . i 29992222292222299%339
3%%%5%5%5%%%%%5%5%5%%%%%5%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%5%%%%%%%
299999900000 0000000000000000000 A 1 2007 2%2222222222222222222222229%2539
3555555555 5%5%5555%%%%%%5%%%%%%% Apri 5%%%%%5%5%5%%5%5%%5%5%%%5%%%5%%%5%%%5%%%5%%
099990000900 0000900000090000090900000990000099000009900000990900009900000990000
g g g g g g g

)

% Function Declaration:

function [J0,detJ0O] = WMRA J07(T1, T2, T3, T4, T5, T6, T7)
T=eye (4) ;

JOo(1,7)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
J0(2,7)==-T(1,2)*T(2,4)+T(2,2)*T(1,4);
J0(3,7)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);

J0(4,7)=T(3,1);

Jo(5,7)=T(3,2);

J0(6,7)=T(3,3);

T=T7*T;

JO(1,6)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
J0(2,6)=-T(1,2)*T(2,4)+T(2,2)*T(1,4);
J0(3,6)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);

308

www.manharaa.com

Appendix B. (Continued)

Jo(4,6)=T(3,1):
J0(5,6)=T(3,2);
Jo(6,6)=T(3,3);

T=T6*T;
JO(1,5)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
JO0(2,5)=-T(1,2)*T(2,4)+T(2,2)*T(1,4);
JO(3 5)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);
JO(4,5)=T(3,1);

J0(5,5)=T(3,2);

JO0(6,5)=T(3,3);

T=T5*T;
JO(1,4)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
JO0(2,4)=-T(1,2)*T(2,4)+T(2,2)*T(1,4);
JO(3,4)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);
JO(4,4)=T(3,1);

JO(5,4)=T(3,2);

J0(6,4)=T(3,3);

T=T4*T;
JO(1,3)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
JO(2 3)=—T(l 2)*T(2,4)+T(2,2)*T(1,4);
JO0(3,3)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);
JO (4,3)=T(3, 1)

J0(5,3)=T(3,2);

J0(6,3)=T(3,3);

T=T3*T;
JO(1,2)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
J0(2,2)=-T(1,2)*T(2,4)+T(2,2) *T(1,4);
J0(3,2)=-T(1,3)*T(2,4)+T(2,3)*T(1,4);
JO(4,2)=T(3,1);

J0(5,2)=T(3,2);

J0(6,2)=T(3,3);

T=T2*T;
JO(1,1)=-T(1,1)*T(2,4)+T(2,1)*T(1,4);
JO0(2,1)=-T(1,2)*T(2,4)+T(2,2)*T(1,4);
JO(3,1)=—T(1,3)*T(2 4)+T(2,3)*T(1,4);
JO(4,1)=T(3,1);

J0(5,1)=T(3,2);

J0(6,1)=T(3,3);

T=T1*T;

=[T(1:3,1:3),zeros(3,3);zeros(3,3),T(1:3,1:3)1*J0;

detJO=sqgrt (det (JO*J0")) ;

[

% This function gives the WMRA's base Jacobian Matrix based on the ground frame, given
the Wheelchair orientation angle about the z axis.
% Dimentions are as supplies, angles are in radians.

$39%2%%2%%%%3%2%%%%3%% Developed By: Redwan M. Algasemi %3%%%%%%3%%3%%%%2%3%%

©0000000000000000000000000000000 : ©00000000000000000000000000000000
/////////////////////////////// Aprll 2007 2o o009 00

www.manharaa.com

cos (p) -

or the wheel axle center
XY (1) *cos (p) XY (2) *sin(p)]

(1)

-2/L(1)

’

;0 0

all dimentions are converted in
;0 0

00

’

sin(p) -2* (L(2) *cos (p) ~L(3) *sin(p)) /L (1)

’

XY)

end
[-(XY (1) *sin (p) +XY (2) *cos (p))

(L(5)/2)*[cos (p)+2* (L(2) *sin(p)+L(3)*cos (p)) /L (1)

by

;0]

0

’

4)=[0
*
+ L(1)/(2*L(5)) 1;

zeros (2, 3)

’

WMRA Jga (ind,

L(2
eye (4)]

’

’

OI

[J]

[eye (2)

zeros (4,2)
Modifying the parameters on this file is sufficient to change these limits in all

This function gives the joint limit vector to be used in the program.
related programs.

Deciding if the motion is in reference to the arm base

Reading the Wheelchair's constant dimentions,

millimeters

L

Function Declaration:
Calculating the Jacobian:

function
WMRA WCD

S

sin(p) +2* (L(2) *cos (p) -L(3) *sin(p)) /L (1)

2* (L (2) *sin(p) +L(3) *cos (p)) /L (1)
L(1)/(2*L(5))

Appendix B. (Continued)

if ind

3
o
S
o
S
o
S
o
S
o
S

oo
o
oo
oo
o
oo
oo
oo
o
o
oo
o
o
oo
o
o
o
oo
o
o
o
oo
o
o
o
oo
oo
o
o
o
oo
o
o
o
oo
oo
oo
oo
oo
o
oo
o
o
o
o
o
o
oe
o
oe
oe
o
o
oe
oe
oe
o
o
oe
o
oe
oe
o
o
oe
o
oe
oe
o
oe
o
o
o
o
o

dimensions are in radians:

’
’

200] *pi/180
200]*pi/180

’
’

100
100

’
’

170
170

’
’

WMRA Jlimit ()

170
170

’
’

170
170

’
’

170
170

’
’

[gmin, gmax]
-[170
[170

This "new USF WMRA" script SIMULATES the Joint control of the WMRA system with

ANIMATION and plots for 9 DOF. All angles are in Radians.

Inputting the joint limits in a vector form,
Dimentions based on the actual physical arm:

Function Declaration:

function
$55555%5%%%%%%%%%%% Developed By: Redwan M. Algasemi

S
S

o
o

>
o
gmin
gmax
o

g

o
o
o
o
oo
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
oo
oo
oo
o
o
o
oo
oo
oo
o
oo
o
oo
o
oo
o
o
o
o
oo
o
oo
o
o
o
o
o
o
o
oe
o
oe
oe
o
o
oe
oe
oe
oe
oe
o
o
oe
o
oe
o
o
o
o
o
o
o
o
o
o
o

www.manharaa.com

\n For BOTH

||2n’

\n For Virtual Reality
\n',"'s");

press

all dimentions are converted in
ll4ll

press
310

\n For Matlab Graphics Animation,
\n For NO Animation,

n3n
’

nyw
’

Conversions from Degrees to Radians.
Conversions from Radians to Degrees.

o
>
o
g
press

input ('\n Choose animation type or no animation:

press

’
’
’

180/pi

pi/180

Reading the Wheelchair's constant dimentions,

Defining used parameters:
millimeters

User input prompts:

WMRA WCD

if choicel=="2"

choicel
Animation,
Animations,

d2r
r2d:
L

Appendix B. (Continued)

vr = 0; ml = 1;
elseif choicel=='

vr = 1; ml = 1;
elseif choicel=="4"

vr = 0; ml = 0;

[
w

else
vr = 1; ml = 0;
end
choice2 = input('\n Would you like to run the actual arm? \n For no, press "0", \n For

yes, press "1". \n','s");
if choice2=="1"
arm=1;
else
arm=0;
end
choice3 = input('\n Press "1" if you want to start at the "ready" position, \n or press
"2" if you want to enter the initial joint angles. \n','s');
if choice3=="2"

gi = input('\n Please enter the initial angles vector of the arm in radians (e.g.
[pi/2;p1/2;0;pi/2;p1i/2;p1/2;0]1) \n');

WCi = input('\n Please enter the initial x,y position and z orientation of the WMRA
base in millimeters and radians (e.g. [200;500;0.3]) \n');

ini=0;
else

gi=[90;90;0;90;90;90;0]*d2r;

WCi=[0;0;01;

ini=0;

if vr==1 || ml==1 || arm==

choice4 = input('\n Press "1" if you want to include "park" to "ready" motion, \n

or press "2" if not. \n','s');
if choiced=="'2"
ini=0;
else
ini=1;
end
end
end
% Calculating the Transformation Matrix of the initial position of the WMRA's base:
Tiwc=WMRA p2T (WCi (1) ,WCi(2),WCi(3));

% Calculating the initial Wheelchair Variables:
giwc=[sqrt (WCi (1) "2+WCi (2)~2) ;WCi(3)];

o

Calculating the initial and desired joint positions:

qgi=[qi;qgiwc];

gd = input('\n Please enter the desired angles and distance vector in radians and mm
(e.g. [pi/3;-pi/3;pi/3;-pi/3;pi/3;-pi/3;p1i/3:;500;pi/31) \n');

ts = input('\n Please enter the desired execution time in seconds (e.g. 2) \n');

% Calculating the initial and final transformation matrices:

[Ti, Tia, Tiwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall(l, gi(1l:7), gi(8:9), Tiwc);
[Td, Tda, Tdwc, TO0ld, T12d, T23d, T34d, T45d, T56d, T67d]=WMRA Tall(2, qd(1:7), gd(8:9),
Tiwc) ;

% Calculating the number of iteration and the time increment (delta t):

dt=0.05; % Time increment in seconds.

total time=ts; % Total time of animation.
n=round (total time/dt); % Number of iterations rounded up.
dt=total time/n; % Adjusted time increment in seconds.

dg=(gd-gi) /n;

% Initializing the joint angles, the Transformation Matrix, and time:
go=qi;

To=Ti;

Toa=Tia;

Towc=Tiwc;

311

www.manharaa.com

Appendix B. (Continued)

tt=0;
i=1;

% Initializing the WMRA:

if ini== % When no "park" to "ready" motion required.
% Initializing Virtual Reality Animation:
if vr==
WMRA VR Animation(l, Towc, qo);
end
% Initializing Robot Animation in Matlab Graphics:
if ml==1
WMRA ML Animation(l, To, Td, Towc, TOl, T12, T23, T34, T45, T56, T67);
end
% Initializing the Physical Arm:
if arm==
WMRA ARM Motion(l, 2, [go;0], 0);
ddt=0;
end
elseif ini==1 && (vr==1 || ml==1 || arm==1) % When "park" to "ready" motion is required.
WMRA park2ready(l, vr, ml, arm, Towc, go(8:9));
if arm==
ddt=0;
end
end

% Re-Drawing the Animation:
if vr==1 || ml==

drawnow;
end
% Starting a timer:
tic
% Starting the Iteration Loop:
while i<=n

% Calculating the new Joint Angles:
gn=qgo+dqg;

% Calculating the new Transformation Matrices:
[Tn, Tna, Tnwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall(2, gn, dq(8:9),
Towc) ;

% Updating Physical Arm:

if arm==
ddt=ddt+dt;
if ddt>=0.5 || i>=(n+1)
WMRA ARM Motion(2, 1, [gn;0], ddt);
ddt=0;
end
end

% Updating Virtual Reality Animation:
if vr==

WMRA VR Animation (2, Tnwc, gn);
end

% Updating Matlab Graphics Animation:
if ml==

WMRA ML Animation(2, Ti, Td, Tnwc, TOl, T12, T23, T34, T45, T56, T67);
end

% Re-Drawing the Animation:
if vr== || ml==

drawnow;
end

312

www.manharaa.com

Appendix B. (Continued)

[

% Updating the old values with the new values for the next iteration:
go=qgn;

To=Tn;

Toa=Tna;

Towc=Tnwc;

tt=tt+dt;

i=i+1;

% Delay to comply with the required speed:
if toc < tt

pause (tt-toc) ;
end

end

% Reading the elapsed time and printing it with the simulation time:
toc

if vr==1 || ml==1 || arm==
% Going back to the ready position:
choice6 = input ('\n Do you want to go back to the "ready" position? \n Press "1" for
Yes, or press "2" for No. \n','s'");
if choice6=="1"
WMRA anyZ2ready (2, vr, ml, arm, Tnwc, gn);
% Going back to the parking position:
choice7 = input('\n Do you want to go back to the "parking" position? \n Press
"1l" for Yes, or press "2" for No. \n','s');
if choice7=="1"
WMRA ready2park (2, vr, ml, arm, Tnwc, gn(8:9));
end
end
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation
and Plots windows:
choice8 = input('\n Do you want to close all simulation windows and arm controls? \n
Press "1" for Yes, or press "2" for No. \n','s');
if choice8=="1"

if arm==
WMRA ARM Motion(3, 0, 0, 0);
end
if vr==
WMRA VR Animation(3, 0, 0);
end
if ml==
WMRA ML Animation(3, 0, O, O, O, O, O, O, O, 0, 0);
end

end

end

o

% This function uses a Linear function to find an equally-spaced trajectory points of a
variable "g" along a streight line, given the initial and final variable values and the
number of trajectory points.

% The output is the variable position.

"

C00060T0T0
©0000000000000000000000000 00000000000000000200020002000
$55%555%5%55%55%555%55%5555055s0s COPY RIGHTS RESERVED %%5%5%%5%5%%5%5%%5%5%55%%55%%55%55%%%

www.manharaa.com

Appendix B. (Continued)

dg=(gf-qi)/ (n-1);

for i=l:n
gt (1) =gi+dg* (i-1);
end

000000000

F%%%555%%%%%5%5%5%%%%%5%5%5%%%% Thanks to Mayur Palankar %%%%%%%%%%%5%%%%%%%5%%%%%%%

function varargout = WMRA matrix entry(varargin)
% WMRA MATRIX ENTRY M-file for WMRA matrix entry.fig

% 7WMRA_MATRIX_ENTRY, by itself, creates a new WMRA MATRIX ENTRY or raises the
existing
% singleton*.

H = WMRA MATRIX ENTRY returns the handle to a new WMRA MATRIX ENTRY or the handle

to
% the existing singleton*.
% WMRA MATRIX ENTRY ('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in WMRA MATRIX ENTRY.M with the given input arguments.
% WMRA MATRIX ENTRY ('Property', 'Value',...) creates a new WMRA MATRIX ENTRY or
raises the

existing singleton*. Starting from the left, property value pairs are

o oo

applied to the GUI before WMRA matrix entry OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to WMRA matrix entry OpeningFcn via varargin.

o°

o o oo

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

oe

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help WMRA matrix entry

Last Modified by GUIDE v2.5 21-Feb-2007 13:19:38

Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_ State = struct('gui Name', mfilename, ...
'gui Singleton', gui_Singleton, ...
'gui OpeningFcn', @WMRA matrix_entry OpeningFcn, ...
'gui OutputFecn', Q@WMRA matrix entry OutputFcn, ...
'gui LayoutFcn', 1,
'gui Callback', [1);

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});

o o oo

oe

o

end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{2:nargout});
else
gui mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% —--- Executes Jjust before WMRA matrix entry is made visible.
function WMRA matrix_entry OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.
hObject handle to figure
eventdata reserved - to be defined in a future version of MATLAB

314

o
S
o
S
o
S

www.manharaa.com

Appendix B. (Continued)

o

handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to WMRA matrix entry (see VARARGIN)

set (handles.edit3, 'String', varargin{l}):;
% Choose default command line output for WMRA matrix entry
handles.output = hObject;

% Update handles structure

guidata (hObject, handles);

% UIWAIT makes WMRA matrix entry wait for user response (see UIRESUME)
uiwait (handles.figurel);

% —-- Outputs from this function are returned to the command line.
function WMRA matrix entry OutputFcn(hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o o oo

o

o

Get default command line output from handles structure
%varargout{l} = handles.output;

functlon editl Callback (hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

o

o

Hints: get (hObject, 'String') returns contents of editl as text
str2double (get (hObject, 'String')) returns contents of editl as a double

o

% —--- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

oe°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o

end

% —--- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global VAR MATRIX
Input=get (handles.editl, 'String');
VAR _MATRIX = Input;

close;

function edit3 Callback (hObject, eventdata, handles)

% hObject handle to edit3 (see GCRO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe°

Hints: get (hObject, 'String') returns contents of edit3 as text
str2double (get (hObject, 'String')) returns contents of edit3 as a double
% --- Executes during object creation, after setting all properties.
function edit3 CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCRO)
315

oe

www.manharaa.com

Appendix B. (Continued)

o

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

% This function does the animation of USF WMRA with 9 DOF using Matlab Graphics.

)

% Function Declaration:
function WMRA ML Animation (i, Ti, Td, Towc, TO01l, T1l2, T23, T34, T45, T56, T67)

% Declaring the global variables:
global L arm wheelchairl wheelchairu wheelchairc initial desired hand
global arm base ground initialco desiredco handco arm baseco

% The initialization of the animation plot:
if i==

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA WCD;

% Arm:
T1=Towc*TO01;
T2=T1*T12;
T3=T2*T23;
T4=T3*T34;
T5=T4*T45;
T6=T5*T56;
T7=T6*T67;
% Wheelchair:
T8=Towc; % Arm Base Position.
T9=T8*WMRA transl(-L(2),-L(3),-L(4)); Wheelbase Center.
TlO=T9*WMRA_transl(O,-L(l)/Z,O); Right Wheel Center.
T11=T9*WMRA transl(0,L(1)/2,0); Left Wheel Center.
% Lower Platform Corners:
T12=T9*WMRA transl(-200,-L(1)/2,0);
T13=T9*WMRA transl(-200,L(1)/2,0);
T14=T9*WMRA transl(L(2)+200,L(1)/2,0);
T15=T9*WMRA transl(L(2)+200,-L(1)/2,0);
% Upper Platform Corners:
T16=T9*WMRA transl(-200,-L(1)/2,L(4));
T17=T9*WMRA transl(-200,L(1)/2,L(4));
T18=T9*WMRA transl(L(2)+200,L(1)/2,L(4)
T19=T9*WMRA transl(L(2)+200,-L(1)/2,L(4

o° oo

o°

o

Rear Right Wheelchair Corner.
Rear Left Wheelchair Corner.

Front Left Wheelchair Corner.
Front Right Wheelchair Corner.

o oo

oe

o

Rear Right Wheelchair Corner.
Rear Left Wheelchair Corner.

Front Left Wheelchair Corner.
Front Right Wheelchair Corner.

o

oe°

)
)

oe

)i
% Initial Animation Plot:
figure (11);
% Plots of the Arm and Wheelchair system:

arm=plot3([T8(1,4), T1(1,4)]1,([T8(2,4), T1(2,4)]1,[T8(3,4),T1(3,4)],'-b",[T1(1,4),
T2(1,4)1,I[T1(2,4), T2(2,4)1,I[T1(3,4),T2(3,4)1,"'-9"',[T2(1,4), T3(1,4)]1,I[T2(2,4),

316

www.manharaa.com

Appendix B. (Continued)

T3(2,4)1,I[T2(3,4),T3(3,4)1,"'-b", [T3(1,4), T4(1,4)]1,I[T3(2,4),
T4(2,4)],[T3(3,4),T4(3,4)],'—q',[T4(l 4), T5(1,4)1,[T4(2,4),
T5(2,4)1,[T4(3,4),T5(3,4)],"'-b", [T5(1,4), T6(4)1,[T5(2,4),
T6(2,4)],[T5(3,4),T6(3,4)],'—g',[T6(1 4), T7(1,4)]1,(T6(2,4),
T7(2,4)1,[T6(3 4),T7(3,4)],'—g','Llnewldth' 3)

hold on;

wheelchairl=plot3([T12(1,4), T13(1,4)], [T12(2,4), T13(2,4)],[T12(3,4),T13(3,4)], -
g',[T13(1,4), T14(1,4)]1,([T13(2,4), T14(2,4)]1,I[T13(3,4),T14(3,4)]1,"'-g',[T14(1,4),

T15(1, 4)] [T14(2,4), T15(2,4)], [T14(3,4),T15(3,4)], '-g', [T15(1,4), T12(1,4)], [T15(2,4),
T12(2,4)1,[T15(3,4),T12(3,4)]1,"'-g',[T10(1,4), T11(1,4)]1,([T10(2,4),
Tll(2,4)] [T10(3,4),T11(3,4)], '-b', 'LinewWidth',3);

wheelchairu=plot3 ([T16(1,4), T17(1,4)],[T16(2,4), T17(2,4)1, [T16(3,4),T17(3,4)],
g',[T17(1,4), T18(1,4)]1,([T17(2,4), T18(2,4)]1,I[T17(3,4),T18(3,4)],"'-g',[T18(1,4),
T19(1,4)1,I[T18(2,4), T19(2,4)1,[T18(3,4),T19(3,4)1,"'-g"',[T19(1,4), Tl6(1,4)]1,[T19(2,4),
T16(2,4)], [T19(3,4),T16(3,4)], '-g', 'Linewidth',3);

wheelchairc=plot3([T12(1,4), Tl6(1,4)],[(T12(2,4), T16(2,4)],[T12(3,4),T16(3,4)],
g', [T13(1,4), T17(1,4)],I[T13(2,4), T17(2,4)],[T13(3,4),T17(3,4)],'-g",[T14(1,4),
T18(1,4)]1,[T14(2,4), T18(2,4)],[T14(3,4),T18(3,4)]1,'-g', [T15(1,4), T19(1,4)],[T15(2,4),
T19(2,4)1,[T15(3,4),T19(3,4)]1,"'-g', 'LineWidth"',3);

% Plots of points of interest on the system:
initial=plot3(Ti(1,4),Ti(2,4),Ti(3,4),"'-co', 'Linewidth"',5);
desired=plot3(Td(1,4),Td(2,4),Td(3,4), " '-ro', 'LineWidth',5);
hand=plot3(T7(1,4),T7(2,4),T7(3,4),"'-yo", 'LinewWwidth',5);
arm_base=plot3(Towc(1,4),Towc(2,4),Towc(3,4)," '-mo", 'LineWidth',5)
ground=plot3(0,0,0, '-ko', '"LineWidth',5);

% Plots of the x-y-z local coordinate lines of the points of interest on the system:
initialco=plot3 ([Ti(1,4), Ti(1l,4)+100*Ti(1,1)]1,[Ti(2,4),
Ti(2,4)+100*Ti(2,1)]1,[Ti(3,4),Ti(3,4)+100*Ti(3,1)],"'-r',[Ti(1,4),
Ti(1,4)+1OO*T1(1 2)1,I[Ti(2,4), Ti(2,4)+100*Ti(2,2)1,[Ti(3,4),Ti(3,4)+100*Ti(3,2)]1,"'~
g',[Ti(1,4), Ti(1,4)+100*Ti(1,3)]1,I[Ti(2,4), Ti(2,4)+100*Ti(2,3)],[Ti(3,4),
Ti(3,4)+lOO*Ti()] '-b', 'LineWidth',1);
desiredco= plot3(Td(1,4), Td(1l,4)+100*Td(1,1)],[Td(2,4),
T 4)+100*Td(2,1)]1, [Td(3,4),Td(3,4)+100*Td(3,1) -r', [Td(1,4),
2)

[1y
d(2 ’ I
Td (1)+lOO*Td(, [Td(2,4), Td(2,4)+100*Td(2,2)],[Td(3,4),Td(3,4)+100*Td(3,2)], "'~
"y + ,4)
al(

]

]
g [Td(l 4y, (4)+100*Td (1,3)1, [Td(2,4), Td(+100*Td (2,3)], [Td(3,4),
Td (3, 4)+100*Td(3 3)], -b', 'LineWidth',1);

handco= plot3([7(1, 4), T7(1,4)+100*T7(1,1)], [T (2 4y,

T7(2,4)+100%T7(2,1)], [T7(3,4),T7(3,4)+100*T7(3,1)], " '-r', [T7(1,4),
T7(1,4)+100%T7(1,2)], [T7(2,4), T7(2,4)+100*T7(2,2)], [T7(3,4),T7(3,4)+100*T7(3,2)1, " '~
g',[T7(1,4), T7(1 4)+100*T7(1,3)1, [T7(2,4), T7(2,4)+100*T7(2,3)1,[T7(3,4),
T7(3,4)+100*T7(3,3)],'-b', 'LineWidth', 1) ;

arm_baseco:plotS([Towc(1,4) Towc (1,4)+100*Towc (1,1)], [Towc(2,4),
Towc (2,4)+100*Towc (2,1)], [Towc 4) ,Towc (3,4)+100*Towc (3,1)],"'-r', [Towc (1,4),
Towc (1,4)+100*Towc (1, 2) Towc 4),

(
(
Towc (2,4)+100*Towc (2, 2) Towc 4) ,Towc (3,4)+100*Towc (3,2)]1,"'-g', [Towc (1,4),
(
(

(3
[(2
L (3 ’
Towc (1,4)+100*Towc (1, 3) ,[Towc(2 4), Towc(2,4)+100*Towc(2,3)], [Towc(3,4),
Towc (3, 4)+100*Towc(3 3)],'-b', "LineWidth',1);

groundco= plot3([100 o1,10,01,10,01,"-x"',[0,0],[100,01,([0,01, "~
g',[0,0],[0,0],[100,0],"-b" 'Llnerdth' 1);

i
]
]
]

o

% Specifying plot properties:

view (40,15);

axis ([-800 500 -500 800 O 1300]); grid on;

title ('WMRA Animation'); xlabel('x, (mm)'"'); ylabel('y (mm)'); zlabel('z (mm)"');
legend([arm(l), arm(2), wheelchairl(5), wheelchairl(l), initial(l), desired(l), hand(1l),
arm _base(l), ground(l), initialco(l), initialco(2), initialco(3)], 'ROBOTIC -
', '"ARM', 'wheelaxle', 'wheelchair', 'initial position', 'desired position', 'current
position', 'arm base position', 'ground position','local x-axis','local y-axis', 'local z-
axis',-1);

hold off;
% Closing the animation plot:
elseif i==

close (figure(11)):;

317

www.manharaa.com

Appendix B. (Continued)

[

% Updating the animation plot:
else
% Arm:
T1=Towc*TO01;
T2=T1*T12;
T3=T2*T23;
T4=T3*T34;
T5=T4*T45;
T6=T5*T56;
T7=T6*T67;
% Wheelchair:
T8=Towc;
T9=T8*WMRA transl (-L(2),-L(3),-L(4));
T10=T9*WMRA transl(0,-L(1)/2,0);
T11=T9*WMRA transl(0,L(1)/2,0);
% Lower Platform Corners:
T12=T9*WMRA transl(-200,-L(1)/2,0);
T13=T9*WMRA transl(-200,L(1)/2,0);
T14=T9*WMRA transl(L(2)+200,L(1)/2,0);
T15=T9*WMRA transl(L(2)+200,-L(1)/2,0)
% Upper Platform Corners:
T16=T9*WMRA transl(-200,-L(1)/2,L(4));
T17=T9*WMRA transl(-200,L(1)/2,L(4));
T18=T9*WMRA transl(L(2)+200,L(1)/2,L(4));
T19=T9*WMRA transl(L(2)+200,-L(1)/2,L(4));

o

Arm Base Position.
Wheelbase Center.

Right Wheel Center.
Left Wheel Center.

o oo

o

oe°

Rear Right Wheelchair Corner.
Rear Left Wheelchair Corner.

Front Left Wheelchair Corner.
Front Right Wheelchair Corner.

o° o

o

o°

Rear Right Wheelchair Corner.
Rear Left Wheelchair Corner.

Front Left Wheelchair Corner.
Front Right Wheelchair Corner.

o° o

o

[

% Updating Animation Plot:
% Plots of the Arm and Wheelchair system:

set (arm (1), 'XData', [T8(1,4), T1(1,4)]1,'Ybata',[T8(2,4),
T1(2,4)], 'Zbata', [T8(3,4),T1(3,4)]);

set (arm(2), 'XData', [T1(1,4), T2(1,4)],'¥YDbata',[T1(2,4),
T2(2,4)1,"Z2bata"', [T1(3,4),T2(3,4)]1);

set (arm(3), "XData', [T2(1,4), T3(1,4)]1,'Ybata',[T2(2,4),
T3(2,4)], 'Zbata', [T2(3,4),T3(3,4)]1);

set (arm(4), 'XData', [T3(1,4), T4(1,4)],'¥YDbata',[T3(2,4),
T4(2,4)1,'zDhata', [T3(3,4),T4(3,4)1);

set (arm(5), 'XData', [T4(1,4), T5(1,4)]1,'Ybata',[T4(2,4),
T5(2,4)1, 'Z2Dbata', [T4(3,4),T5(3,4)1);

set (arm(6), 'XData', [T5(1,4), T6(1,4)],'Ybata',[T5(2,4),
T6(2,4)1,'zDhata', [T5(3,4),T6(3,4)1);

set (arm(7), "XData', [T6 (1) T7(1,4)],'Ybata', [T6(2,4),
T7(2,4)],'ZData',[T6(3,4),T7(3,4)]);

set (wheelchairl(l), 'XData', [T12(1,4), T13(1,4)],'YDbata',[T1l2(2,4),
T13(2,4)1,"'Zbata’', [T12(3,4),T13(3,4)1);

set (wheelchairl (2), 'Xbata', [T13(1,4), T14(1,4)],'YDbata',[T13(2,4),
T14(2,4)1,"'Zbata', [T13(3,4),T14(3,4)1);

set (wheelchairl (3), 'XData', [T14(1,4), T15(1,4)],'YDbata', [T14(2,4),
T15(2,4)1,"'Zbata’', [T14(3,4),T15(3,4)1);

set (wheelchairl (4), 'XData', [T15(1,4), T12(1,4)]1,'YDbata',[T15(2,4),
T12(2,4)1,"'Zbata', [T15(3,4),T12(3,4)1);

set (wheelchairl (5), 'XData', [T10(1,4), T11(1,4)]1,'YDbata',[T10(2,4),
T11(2,4)1,'ZDbata', [T10(3,4),T11(3,4)1):

set(wheelchairu(l),'XData',[Tl6(l,4), T17(1,4)],'Ybata', [Tl6(2,4),
T17(2,4)1,"'%2bata’', [T16(3,4),T17(3,4)1);

set(wheelchairu(Z),'XData',[T17(1 4), T18(1,4)]1,'Ybata',[T17(2,4),
T18(2,4)]1,"'Zbata', [T17(3,4),T18(3,4)1);

set (wheelchairu(3), 'Xbata', [T18(1,4), T19(1,4)]1,'YDbata',[T18(2,4),
T19(2,4)1,'Zbata’', [T18(3,4),T19(3,4)1);

set (wheelchairu(4), 'XData', [T19 (1,4), T16(1,4)],'YData', [T19(2,4),
T16(2,4)]1,"'Zbata', [T19(3,4),T16(3,4)1);

set(wheelchairc(l),'XData',[T12(1,4), Tl6(1,4)],'Ybata', [T12(2,4),
T16(2,4)1,"'Zbata', [T12(3,4),T16(3,4)1);

318

www.manharaa.com

Appendix B. (Continued)

set (wheelchairc(2), 'XData', [T13(1,4), T17(1,4)],'YDbata’',[T13(2,4),
T17(2,4)],"'zZbata’', [T13(3,4),T17(3,4)1);

set (wheelchairc(3), 'XData',[T14(1,4), T18(1,4)1,'Ybata', [T14(2,4),
T18(2,4)]1,"'Zbata', [T14(3,4),T18(3,4)1);

set (wheelchairc (4), 'Xbata', [T15(1,4), T19(1,4)],'YDbata',[T15(2,4),
T19(2,4)],"'zbata', [T15(3,4),T19(3,4)1);

% Plots of points of interest on the system:
set (initial (1), 'XData',Ti(1,4),'YData',Ti(2,4), 'Zbata',Ti(3,4));
set (desired (1), 'XData',Td(1,4), 'YData',Td(2,4), 'Zbata',Td(3,4));
set (hand (1), 'Xbata',T7(1,4), " 'YDbata',T7(2,4),"'Zbata',T7(3,4));
set (arm_base (1), 'XData',Towc(1,4),'YData', Towc(2,4), 'ZData',Towc(3,4));
% Plots of the x-y-z local coordinate lines of the points of interest on the system:
set (initialco (1), 'XData', [Ti(1,4), Ti(1l,4)+100*Ti(1,1)], " 'YDbata',[Ti(2,4),

Td(2,4)+100*Td (2,3 'ZData', [Td(3,4),Td(3,4)+100*Td (3
set (handco (1), "XData', [T), T7 (1, 4)+100*T7(1 1)] Data', [T7(2,4),
T7(2,4)+100*T7(2,1)1, 'Z2Data’ ,[T7(3,4),T7(3,4)+100*T7(3 1),
set (handco (2), 'XData', [T7(1,4), T7(1,4)+100*T7(1,2)], " 'YData',[T7(2,4),
T7(2,4)+100*T7(2,2)1, 'zDbata', [T7(3,4),T7(3,4)+100*T7(3,2)1);
set (handco (3), 'XData', [T7(1,4), T7(1,4)+100*T7(1,3)1, " 'Ybata',[T7(2,4),
T7(2,4)+100*T7(2,3)1, '2Dbata', [T7(3,4),T7(3,4)+100*T7(3,3)1);
set (arm baseco (1), 'XData', [Towc(1,4), Towc(l,4)+100*Towc(1l,1)], " 'YData', [Towc(2,4),
Towc (2,4)+100*Towc (2,1)], 'Z2bata', [Towc (3,4),Towc(3,4)+100*Towc (3,1)1);
set (arm_baseco(2), 'XData', [Towc(1,4), Towc(l,4)+100*Towc(1,2)], " 'YData', [Towc(2,4),
2
3

Ti(2,4)+100*Ti(2,1)1, 'zDhata', [Ti(3,4),Ti(3,4)+100*Ti(3,1)1);
set (initialco (2), 'XData' ,[Tl(l 4), Ti(1,4)+100*Ti(1,2)]1,'YData',[Ti(2,4),
Ti(2,4)+100*Ti(2,2)]1, 'zDhata', [Ti(3,4),Ti(3,4)+100*Ti(3,2)1);
set(lnltlalco(), 'XData', [Ti(1,4), Ti(1, 4)+100*T1(3)1, 'Ybata', [Ti(2,4),
Ti(2,4)+100*Ti(2,3)1, 'ZData’ ,[T1(3 4),Ti(3,4)+100*Ti (3, 3)])
set (desiredco (1), 'XbData', [Td(1,4), Td(1l,4)+100*Td(1,1)], " 'Ybata', [Td(2,4),
Td(2,4)+100*Td(2,1)], 'zbata', [Td(3,4),Td(3,4)+100*Td (3)]L
set(d651redco(), 'XData', [Td(1,4), Td(l 4)+100*Td(2)],'Ybata', [Td(2,4),
Td(2,4)+100*Td(2,2) 1, 'ZData' ,[Td(3 4),Td(3,4)+100*Td (3, 2)])
set (desiredco(3), 'XData', [Td(1,4), Td(1,4)+100*Td(1,3)]1, " '¥YData', [Td(2,4),
)1, [T 1)
7(1 'Y
)i

Towc (2,4)+100*Towc (2,2)], "ZData', [Towc(3,4),Towc (3,4)+100*Towc (3,2)1);
set (arm_baseco (3), 'XData', [Towc(1,4), Towc(l,4)+100*Towc(1,3)],"'YData', [Towc(2,4),
Towc (2,4)+100*Towc (2,3)], 'z2bata', [Towc (3,4),Towc(3,4)+100*Towc (3,3)1);

end

% This function is for the resolved rate and optimization solution of the USF WMRA with 9

$5555%%5%5%%%%%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%5%%%%%%%%%

)

% Function Declaration:

function [dq]=WMRA Opt (i, JLA, JLO, Jo, detJo, dg, dx, dt, q)
% Declaring a global variable:
global dHo

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA_ WCD;

% The case when wheelchair-only control is required with no arm motion:
if i==
WCA=3;

319

www.manharaa.com

Appendix B. (Continued)

% claculating the Inverse of the Jacobian, which is always non-singular:
pinvJo=inv (Jo(1:2,1:2));
% calculating the joint angle change:
% Here, dg of the wheels are translated from radians to distances travelled after
using the Jacobian.
dg=pinvJo*dx;
dg(1l)=dq(l) *L(5);
else
% Reading the physical joint limits of the arm:
[gmin, gmax]=WMRA Jlimit;
% Creating the gradient of the optimization function to avoid joint limits:
dH=[0;0;0;0;0;0;01;
if JLA==
for j=1:7
dH (3)=-0.25*% (gmax (J) —gmin (J)) *2* (2*q (J) ~gmax () -qmin (J)) / ((gmax (J) -
qa(3))"2*(q(J)-amin(3)) "2);
% Re-defining the weight in case the joint is moving away from it's limit or
the joint limit was exceeded:
if abs(dH(J)) < abs(dHo(J)) && q(3) < gmax(j) && g(j) > gmin(3)

dH (3)=0;
elseif abs(dH(J)) < abs(dHo(3)) && (g(Jj) >= gmax(Jj) || a(j) <= gmin(3))
dH (§)=1inf;
elseif abs(dH(j)) > abs(dHo(3)) && (q(3) >= gmax(3) || qa(3) <= amin(3))
dH (3)=0;
end
end
end
dHo=dH;

)

% The case when arm-only control is required with no wheelchair motion:
if max(size(dq))==
WCA=2;
wo=20000000;
ko=350000;
% The weight matrix to be used for the Weighted Least Norm Solution with Joint
Limit Avoidance:
W=diag(1*[1;1;1;1;1;1;1]1+1*abs(dH));
% The inverse of the diagonal weight matrix:
dia=diag (W) ;
Winv=diag ([l/dia(l); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 1/dia(6);
1/dia(7)1);
% The case when wheelchair-and-arm control is required:
else
WCA=1;
wo=34000000;
ko=13;
% The weight matrix to be used for the Weighted Least Norm Solution:
W=diag ([1*[1;1;1;1;1;1;1]+1*abs(dH);10*[1;111);
% The inverse of the diagonal weight matrix:
dia=diag (W) ;
Winv=diag([1l/dia(l); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 1/dia(e6); 1/dia(7);
1/dia(8); 1/dia(9)1);
end
% Redefining the determinant based on the weight:
if i==1 || i==
detJo=sqgrt (det (Jo*Winv*Jo')) ;
end
dof=max (size (dx));
end

% SR-Inverse and Weighted Least Norm Optimization:
if i==

% Calculating the variable scale factor, sf:
if detJo<wo

sf=ko* (1-detJo/wo) "2; % from eq. 9.79 page 268 of Nakamura's book.
else

320

www.manharaa.com

Appendix B. (Continued)

end
% claculating the SR-Inverse of the Jacobian:
pinvJo=Winv*Jo'*inv (Jo*Winv*Jo'+sf*eye (dof));
% calculating the joint angle change optimized based on the Weighted Least Norm
Solution:
% Here, dg of the wheels are translated from radians to distances travelled after
using the Jacobian.
if WCA==2
dg=pinvJo*dx;
else
dg=pinvJo*dx;
dqg (8)=dq(8) *L(5) ;
end
% Pseudo Inverse and Weighted Least Norm Optimization:
elseif i==
% claculating the Pseudo Inverse of the Jacobian:
pinvJo=Winv*Jo'*inv (Jo*Winv*Jo') ;
% calculating the joint angle change optimized based on the Weighted Least Norm
Solution:
% Here, dg of the wheels are translated from radians to distances travelled after
using the Jacobian.
if WCA==2
dg=pinvJo*dx;
else
dg=pinvJo*dx;
dq (8)=dq(8) *L(5) ;
end
% SR-Inverse and Projection Gradient Optimization based on Euclidean norm of errors:
elseif i==
% Calculating the variable scale factor, sf:
if detJo<wo
sf=ko* (1-detJo/wo) "2; % from eg. 9.79 page 268 of Nakamura's book.
else
sf=0;
end
% claculating the SR-Inverse of the Jacobian:
pinvJo=Jo'*inv (Jo*Jo'+sf*eye (dof));
% calculating the joint angle change optimized based on minimizing the Euclidean norm
of errors:
% Here, dg of the wheels are translated from distances travelled to radians, and back
after using the Jacobian.
if WCA==2
Sdg=pinvJo*dx+ (eye (7) -pinvJo*Jo) *dqg;
dg=pinvJo*dx+0.001* (eye (7) -pinvJo*Jo) *dH;
else
%dq (8)=dq(8)/L(5);
Sdg=pinvJo*dx+ (eye (9) -pinvJo*Jo) *dqg;
dg=pinvJo*dx+0.001* (eye (9) -pinvJo*Jo) * [dH;0;01];
dq (8)=dq(8) *L(5) ;
end
% Pseudo Inverse and Projection Gradient Optimization based on Euclidean norm of errors:
elseif i==
% claculating the Pseudo Inverse of the Jacobian:
pinvJo=Jo'*inv (Jo*Jo'") ;
% calculating the joint angle change optimized based on minimizing the Euclidean norm
of errors:
% Here, dg of the wheels are translated from distances travelled to radians, and back
after using the Jacobian.
if WCA==2
Sdg=pinvJo*dx+ (eye (7) -pinvJo*Jo) *dqg;
dg=pinvJo*dx+0.001* (eye (7) -pinvJo*Jo) *dH;
else
%dq (8)=dq(8)/L(5);

321

www.manharaa.com

Appendix B. (Continued)

Sdg=pinvJo*dx+ (eye (9) -pinvJo*Jo) *dqg;
dg=pinvJo*dx+0.001* (eye (9) ~-pinvJo*Jo) * [dH;0;01];
dg(8)=dqg(8) *L(5);

end
end
if JLO==
% A safety condition to stop the joint that reaches the joint limits in the arm:
if WCA~=3
for k=1:7
if g(k) >= gmax (k) || g(k) <= gmin (k)
dg (k) =0;
end
end
end
% A safety condition to slow the joint that exceeds the velocity limits in the WMRA:
if WCA==
dgmax=dt*[100;0.15]; % Joiny velocity limits when the time increment is dt
second.

else
dgmax=dt*[0.5;0.5;0.5;0.5;0.5;0.5;0.5;100;0.15]; % Joiny velocity limits when the
time increment is dt second.
end
for k=1l:max(size (dq))
if abs(dg(k)) >= dgmax (k)
dq (k) =sign (dq (k)) *dgmax (k) ;
end
end
end

% This function gives the Transformation Matrix of the WMRA's base on the wheelchair with
2 DOF, given the desired x,y position and z rotation angle.
% Dimentions are as supplies, angles are in radians.

5% %% 5%%%%%5%5%5%%%%5%5%5%5%%%%%
000000000000000000900000000 ©00000000000000000900000000
355555555 cc0000ssss555sss COPY RIGHTS RESERVED %%%%%3%%%%%5%%%%%%%0000000005%

% Function Declaration:

function [T]=WMRA p2T(x, y, a)

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA_WCD;

% Defining the Transformation Matrix:
T=[cos(a) -sin(a) 0 x ; sin(a) cos(a) Oy ; 0 0 1 L(4)+L(5) ; 0 0 0 11;

% This "new USF WMRA" function SIMULATES the arm going from the parking position to the
ready position with ANIMATION. All angles are in Radians.

% The parking position is assumed to be gi=[0;pi/2;0;pi;0;0;0] (Radians),

% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians).

% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

322

www.manharaa.com

Appendix B. (Continued)

% Function Declaration:

function WMRA park2ready(ini, vr, ml, arm, Tiwc, giwc)
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and
Plots windows:

if ini==
if arm==
try
WMRA ARM Motion(ini, 0, 0, 0);
end
end
if vr==
try
WMRA VR Animation(ini, 0, 0);
end
end
if ml==
try
WMRA ML Animation(ini, 0, O, O, O, 0, 0, 0, 0, 0, 0);
end
end
return;
end

% Defining the used conditions:

gqi=[0;pi/2;0;p1;0;0;0]; % Initial joint angles (Parking Position).
qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]1; % Final joint angles (Ready Position).

ts=10; % (5 or 10 or 20) Simulation time to move the arm from the parking position
to the ready position.

n=100; % Number of time steps.

dt=ts/n; % The time step to move the arm from the parking position to the ready
position.

dg=(gd-qgi)/ (0.5*n+5); % Joint angle change at every time step.

% Initializing the physical Arm:

if arm==
WMRA ARM Motion(ini, 2, [gi;qgiwc;0], dt);
ddt=0;

end

% Initializing Virtual Reality Animation:
if vr==

WMRA VR Animation(ini, Tiwc, [gi;qgiwc]);
end

% Initializing Robot Animation in Matlab Graphics:
if ml==

% Inputting the D-H Parameters in a Matrix form:
DH=WMRA DH (qi) ;

% Calculating the transformation matrices of each link:

TO1=WMRA_ rotx (DH(1,1))*WMRA transl (DH(1,2),0,0)*WMRA rotz (DH(1,4))*WMRA transl (0,0,DH (1,3
))

T12=WMRA rotx(DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(DH(2,4))*WMRA transl(0,0,DH(2,3
))

T23=WMRA rotx (DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz (DH(3,4))*WMRA transl(0,0,DH(3,3
)) i

T34=WMRA rotx(DH(4,1))*WMRA transl (DH(4,2),0,0)*WMRA rotz (DH(4,4))*WMRA transl(0,0,DH (4,3
)) i

323

www.manharaa.com

Appendix B. (Continued)

T45=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz (DH(5,4))*WMRA transl(0,0,DH(5,3
)) i

T56=WMRA rotx(DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz (DH(6,4))*WMRA transl(0,0,DH(6,3
))

T67=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz (DH(7,4))*WMRA transl(0,0,DH(7,3
)) i
% Calculating the Transformation Matrix of the initial and desired arm positions:
Ti=Tiwc*TO1*T12*T23*T34*T45*T56*T67;
Td=Tiwc*WMRA q2T (qd) ;
WMRA ML_Animation(ini, Ti, Td, Tiwc, TO1, T12, T23, T34, T45, T56, T67);
end

% Initialization:
qo=qi;
tt=0;

while tt <= (ts)

% Starting a timer:
tic;

% Calculating the new Joint Angles:
if tt==
qn=qo;
elseif tt < (dt*(0.5*n-5))
qn (1) =qo (1) +dq (1) ;
elseif tt < (dt*(0.5*n+5))
gn=go+dg;
elseif tt < (dt*(n-1))
an(2:7)=qo (2:7)+dg(2:7) ;
end

% Updating the physical Arm:

if arm==
ddt=ddt+dt;
if ddt>=0.5 || tt>=(ts)
WMRA ARM Motion (2, 1, [gn;giwc;0], ddt);
ddt=0;
end
end

% Updating Virtual Reality Animation:
if vr==1

WMRA VR Animation (2, Tiwc, [gn;giwc]);
end

% Updating Matlab Animation:
if ml==

)

% Calculating the new Transformation Matrix:

Tla=WMRA rotx(DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(gn(l))*WMRA transl(0,0,DH(1,3))

’

T2a=WMRA rotx(DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(gn(2))*WMRA transl(0,0,DH(2,3))

’

T3a=WMRA rotx (DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz(gn(3))*WMRA transl (0,0,DH(3,3))

’

T4a=WMRA rotx (DH(4,1))*WMRA transl(DH(4,2),0,0)*WMRA rotz(qgn(4))*WMRA transl (0,0,DH(4,3))

’

T5a=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz(gn(5))*WMRA transl(0,0,DH(5,3))

324

www.manharaa.com

Appendix B. (Continued)

T6a=WMRA rotx(DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz(gn(6))*WMRA transl(0,0,DH(6,3))

’

T7a=WMRA rotx(DH(7,1))*WMRA transl (DH(7,2),0,0)*WMRA rotz(gn(7))*WMRA transl(0,0,DH(7,3))
WMRA ML Animation(2, Ti, Td, Tiwc, Tla, T2a, T3a, T4a, T5a, Téa, T7a);
end

% Updating the old values with the new values for the next iteration:

qo=qn;
tt=tt+dt;

)

% Pausing for the speed sync:
pause (dt-toc) ;

end

% This function plots different animation variables for USF WMRA with 9 DOF.

©000000000000000000000

$5555%5%5%5%%5%5%5%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%5%5%%%5%%%%%%%%

)

% Function Declaration:
function WMRA Plots(st, L, r2d, dt, i, tt, gn, dg, Tn, Tnwc, detjoa, detjo)

% Declaring the global variables:

global time gl g2 g3 g4 g5 g6 g7 gll grr

global gdl gd2 gd3 gd4 gd5 gd6 gd7 gdl gdr

global x y z roll pitch yaw xc yc zc rollc pitchc yawc detJoa detJo

% Data collection at every iteration:
if st==

% Generating a time vector for plotting:
time (1)=tt;
% Joint Angles:
gl (i)=qgn (1) *r2d;
g2 (i)=gn(2) *r2d;
g3 (i)=qgn(3) *r2d;
g4 (1)=qgn (4) *r2d;
g5 (i)=qgn(5) *r2d;
g6 (i) =gn (6) *r2d;
g7 (i)=gn(7) *r2d;
gll(i)=qgn(8)-L(1)*qgn(9)/2;
grr (i)=gn(8)+L(1)*gn(9)/2;
% Joint Velocities:
qdl (i)=r2d*dqg(l) /dt;
gd2 (i) =r2d*dqg(2) /dt;
gd3 (i) =r2d*dqg(3)/dt;
gdd (i) =r2d*dqg(4) /dt;
qd5 (i) =r2d*dg (5
) 6
)
)

) /dt;
qd6 (i) =r2d*dqg(6) /dt;
qd7 (i) =r2d*dq (7) /dt;

qdl (i) =(dqg(8)-L(1)*dqg(9)/2)/dt;
qdr (1) =(dq(8) +L (1) *dq(9) /2) /dt;

)

% Hand Position and Orientation:

x(1)=Tn(1,4);
y(1)=Tn(2,4);
z(1)=Tn(3,4);
or=WMRA T2rpy (Tn);

325

www.manharaa.com

Appendix B. (Continued)

roll (i)=or (1) *r2d;
pitch(i)=or(2)*r2d;
vaw (1) =or (3) *r2d;
% Arm Base Position and Orientation on the Wheelchair:
xc (1)=Tnwc (1, 4);
yc (1) =Tnwc(2,4);
zc (1) =Tnwc (3,4) ;
orc=WMRA T2rpy (Tnwc) ;
rollc(i)=orc (1) *r2d;
pitchc (i) =orc(2) *r2d;
yawc (1)=orc (3) *r2d;
% Manipulability Measure:
detJoa (i)=detjoa;
detJo (1) =detjo;
% Plotting the data in graphas:
else

figure(2);
plot (time,qgdl, '-y',time,qgd2, '-m',time,qd3, '-c',time,gd4,'-r', time,qd5, '~
g',time,qd6, '-b',time,qd7, '-k");
grid on; title('Joint Angular Velocities vs Time');xlabel('time,
(sec)');ylabel ('joint velocoties,
(deg/s) ') ;legend('\theta 1d', '\theta_2d', '\theta 3d', '\theta 4d', '\theta 5d','\theta_6d',
'"\theta 7d',-1);

figure(3);
plot (time,gdl, '-b',time,gdr, '-g');
grid on; title('Wheels Track Velocities vs Time');xlabel ('time,
(sec) ") ;ylabel ('wheels track velocoties, (mm/s)');legend('\theta Ld','\theta Rd',-1);

figure(4);

plot (time,ql, '-y',time,g2,'-m',time, g3, '-c',time, g4, '-r',time,g5,"'-g',time, g6, '~
b',time,q7, '-k');

grid on; title('Joint Angular Displacements vs Time');xlabel ('time,

(sec) ') ;ylabel ('joint angles,
(deg) ') ;legend('\theta 1', '"\theta 2','\theta 3','\theta 4', '"\theta 5','\theta 6', '"\theta
7, =1

figure(5);

plot (time,gll,'-b',time,grr, '-g');

grid on; title('Wheels Track distances vs Time');xlabel('time, (sec)');ylabel ('wheels

track distances, (mm)');legend('\theta L', '\theta R',6-1);

figure(6);

plot (time,x, '-y',time,y, '-m',time,z, '-c');

grid on; title('Hand Position vs Time');xlabel('time, (sec)');ylabel ('position,
(mm) ") ;legend('x',"'y','z',-1);

figure(7);

plot (time, roll, '-y',time,pitch, '-m', time, yaw, " '-c');

grid on; title('Hand Orientation vs Time');xlabel('time, (sec)');ylabel('orientation,
(deg) ') ;legend('roll', 'pitch', 'vaw',-1);

figure(8);

plot (time,xc, '-y',time,yc, '-m', time,zc,'-c');

grid on; title('Arm Base Position vs Time');xlabel ('time, (sec)');ylabel('position,
(mm) ") ;legend('x','y','z',-1);

figure(9);

plot (time, rollc, '-v',time,pitchc,'-m', time, yawc, '-c');
grid on; title('Arm Base Orientation vs Time');xlabel ('time,
(sec) ') ;ylabel ('orientation, (deg)');legend('roll', 'pitch','yaw',-1);

figure (10);
plot (time,detJdoa, '-y', time,detdo, '-m');

326

www.manharaa.com

'WWMRA',-1);
given the initial and final

xlabel ('time,

’

legend('W A R M',
Algasemi

n)

Redwan M.
af,

ial(qi,

COPY RIGHTS RESERVED

S99
5o

Developed By

WMRA_Polynom

’

title('Manipulability Measure vs Time')

7.3 and 7.6 page 204,205 of Craig Book
0.001

’
’

ylabel ('Manipulability Measure')
[gt]

n

’

1

grid on

abs ((gf-gi))
if tf <

This function uses a 3rd order Polynomial with no Blending factor to find a smooth
tf/(n-1)

trajectory points of a variable "g" along a streight line,

variable values and the number of trajectory points.

The output is the variable position.
Function Declaration

See Egs.
function

(sec) ')

Appendix B. (Continued)

end
tt=0;
tf
dt
for i

-

qt (1) =g

www.manharaa.com

From Eg.7.3 and 7.6 page

o
S

’

Algasemi

327

Redwan M.

’

Developed By

’

qi+ (qf-qi) *3%tt 2/tE 2 (qf-qi) *2%tt 3/tE3

204,205 of Craig Book

’

dx=WMRA psy (portl)
19711

qt (1)
tt+dt
=pnet ('udpsocket',portl)

else
end
tt=
portl

extracts the selected row and column of the screen interface out of the sent data from
udp

the BCI 2000,
converts these row and column data to a commanded Cartesian velocities from the BCI

This function reads the BCI 2000 device output through TCP/IP port,
device

Assigning the port number in case the user did not input it

The optional input to this function is the port number.
if nargin<l

and sends it as an output.

Function declaration

function

% Openning the port

end
o
5
o
3
[
5
o
3
o
3
o
3
[
5
end
try

Appendix B. (Continued)

catch
pnet (udp, 'close');
clear udp;

end

% Initializing the loop variable:
i21;

.

)

% Starting the loop:
while (i<2)

% Trying to read the data packet from the port:
try
len=pnet (udp, 'readpacket');

% Condition to make sure that the data is read:
if len>0

% Reading a data block:
data=pnet (udp, 'read', 36, 'uint6d', 'ieee-be', 'block’");

% Condition to make sure that the read data is not blank:
if (isempty(data)~=1)

% Condition to make sure that the read data is not a blank line:
if length(data) > O

% Finding the string 'SelectedRow' out of that data line:
k1 = findstr(data, 'SelectedRow');

% Condition in case the required string is found:
if (isempty(kl)~=1)
% The length of the string:
numl = length (kl);
% Condition to ensure that the string length > 0:
if numl > 0
% Reading the string that comes right after the selected
string and converting it to a number:
mrow = str2double(data(13));
end
end

% Finding the string 'SelectedColumn' out of that data line:
k2 = findstr(data, 'SelectedColumn');

% Condition in case the required string is found:
if (isempty(k2)~=1)

% The length of the string:
num2 = length(k2);
% Condition to ensure that the string length > O:
if num2 > 0

% Reading the string that comes right after the selected
string and converting it to a number:

mcol = str2double(data(l6));
end

end

$Modifying the output to the proper format:
rc=[mrow mcol];

% Assigning the directional velocity vector based on the selected row
and column from the interface screen:
dx=[0;0;0;0;0;0;0];

if rc == [1 1]
dx=[0;0;1;0;0;0;01;
elseif rc == [1 2]

328

www.manharaa.com

Appendix B. (Continued)

dx=[1;0;0;0;0;0;0];

elseif rc == [1 3]
dx=[0;0;0;0;0;0.003;0];
elseif rc == [1 4]
dx=[0;0;0;0;0.003;0;071;
elseif rc == [1 5]
dx=[0;0;0;0;0;-0.003;01;
elseif rc == [2 1]
dx=[0;1;0;0;0;0;0]1;
elseif rc == [2 2]
dx=[0;-1;0;0;0;0;01;
elseif rc == [2 3]
dx=[0;0;0;-0.003;0;0;0];
elseif rc == [2 4]
dx=[0;0;0;0;-0.003;0;01;
elseif rc == [2 5]
dx=[0;0;0;0.003;0;0;01;
elseif rc == [3 1]
dx=[0;0;-1;0;0;0;01;
elseif rc == [3 2]
dx=[-1;0;0;0;0;0;0];
elseif rc == [3 3]
dx=[0;0;0;0;0;0;0]1;
elseif rc == [3 4]
dx=[0;0;0;0;0;0;11;
elseif rc == [3 5]
dx=[0;0;0;0;0;0;-11;
else

fprintf ('ERROR') ;

end

o°

dx=dx (1:6);
% Once we get the reading, we can get out of the loop:

.

end
end
end

catch

end
end
% Be a good citizen and cleanup your mess:
pnet (udp, 'close') ;
clear udp;

% This function gives the Transformation Matrix of the new USF WMRA with 7 DOF, given the
joint angles in Radians.

29000000000000000000 . i 2229292920000 00000000
3%%%5%5%5%%%%%5%5%5%%%%%5%% Developed By: Redwan M. Algasemi $%%%%%%5%%%%%%%5%%%%%%%
29999000000000000000000000000000 A 1 2007 $22%2222292292299299000000000000
5%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Apri 5%%%%%%%%5%%%5%%%5%5%%5%%%%%%%%%%%%%%
00 000

% Function Declaration:

function [T]=WMRA g2T (q)

% Inputting the D-H Parameters in a Matrix form:
DH=WMRA_DH (q) ;

% Calculating the transformation matrices of each link:
T1=WMRA rotx(DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz (DH(1l,4))*WMRA transl(0,0,DH(1,3)
)

’

329

www.manharaa.com

Appendix B. (Continued)

T2=WMRA rotx(DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz (DH(2,4))*WMRA transl(0,0,DH(2,3)
;;=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3)
%2=WMRA_rotx(DH(4,l))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3)
;g=WMRA_rotx(DH(5,1))*WMRA_transl(DH(B,Z),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3)
%g=WMRA_rotx(DH(6,l))*WMRA_transl(DH(G,Z),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3)
;;=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3)
)7

% Calculating the total Transformation Matrix of the given arm position:
T=T1*T2*T3*T4*T5*T6*T7;

)

% This "new USF WMRA" function SIMULATES the arm going from the ready position to any
position with ANIMATION. All angles are in Radians.

% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians).

% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

9999000
5555555555555 5%%%55555%%%55555%%5%55555%%%5555%5%5%5555%5%5%5%5555%5%5%5%5%555%5%%5%555%5%5%%%
000000000000000000900000000 ©00000000000000000900000000
3555555550000 00ss0s5555ss COPY RIGHTS RESERVED %%%%%3%%%%5%5%%%%%%5000000000%

229209000000000000000 . { 2229290000000 00000000
F55%5%5%5%%%%%5%5%5%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%%%%%%%%
2999990000000000000000000000000 A 1 2007 $22%2222292292299299000000000000
5%%%%%5%%%5%%%%%%%%%%%%%5%%%%%%%%% Apri 5%%%%%%%%5%%%5%%%5%%%5%%%%%%%%%%%%%%

cococoooo coco00o00

% Function Declaration:

function WMRA readyZ2any(ini, vr, ml, arm, Tiwc, gd)
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and
Plots windows:

if ini==
if arm==
try
WMRA ARM Motion(ini, 0, 0, 0);
end
end
if vr==
try
WMRA VR Animation(ini, 0, 0);
end
end
if ml==1
try
WMRA ML Animation(ini, O, 0, O, 0, O, O, 0, O, 0, 0);
end
end
return;
end

% Defining the used conditions:
qi=[pi/2;pi/2;0;pi/2;pi/2;p1/2;0]; % Initial joint angles (Ready Position).

ts=10; % (5 or 10 or 20) Simulation time to move the arm from the ready position to
any position.

n=100; % Number of time steps.

dt=ts/n; % The time step to move the arm from the ready position to any position.

% Initializing the physical Arm:

if arm==
WMRA ARM Motion(ini, 2, [gi;0;0;0], dt);
ddt=0;

330

www.manharaa.com

Appendix B. (Continued)

end

% Initializing Virtual Reality Animation:
if vr==

WMRA VR Animation(ini, Tiwc, [gi;0;0]);
end

% Initializing Robot Animation in Matlab Graphics:
if ml==

% Inputting the D-H Parameters in a Matrix form:
DH=WMRA DH (qi) ;

% Calculating the transformation matrices of each link:

TO1=WMRA rotx(DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(DH(1,4))*WMRA transl(0,0,DH(1,3
)) i

T12=WMRA rotx (DH(2,1))*WMRA transl (DH(2,2),0,0) *WMRA rotz (DH(2,4)) *WMRA_transl (0,0,DH (2,3
))

T23=WMRA rotx (DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz (DH(3,4))*WMRA transl(0,0,DH(3,3
))

T34=WMRA rotx(DH(4,1))*WMRA transl(DH(4,2),0,0)*WMRA rotz (DH(4,4))*WMRA transl(0,0,DH(4,3
)) i

T45=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz (DH(5,4))*WMRA transl(0,0,DH (5,3
)) i

T56=WMRA rotx(DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz (DH(6,4))*WMRA transl(0,0,DH(6,3
))

T67=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz (DH(7,4))*WMRA transl(0,0,DH(7,3
))
% Calculating the Transformation Matrix of the initial and desired arm positions:
Ti=Tiwc*TO1*T12*T23*T34*T45*T56*T67;
Td=Tiwc*WMRA q2T (qd) ;
WMRA ML_Animation(ini, Ti, Td, Tiwc, TO1, T12, T23, T34, T45, T56, T67);
end
% Check for the shortest route:
diff=qgd-qgi;
for i=1:7
if diff(i) > pi
diff(i)=diff(i)-2*pi;
elseif diff (i) < (-pi)
diff (i)=diff (i) +2*pi;
end
end
% Joint angle change at every time step.
dg=diff/n;

% Initialization:
go=qi;
tt=0;

while tt <= (ts-dt)
% Starting a timer:
tic;

% Calculating the new Joint Angles:
gn=go+dg;

% Updating the physical Arm:
if arm==

331

www.manharaa.com

Appendix B. (Continued)

ddt=ddt+dt;

if ddt>=0.5 || tt>=(ts-dt)
WMRA ARM Motion (2, 1, [gn;0;0;0], ddt);
ddt=0;

end

end

% Updating Virtual Reality Animation:
if vr==

WMRA VR Animation (2, Tiwc, [qn;0;0]);
end

% Updating Matlab Animation:
if ml==

)

% Calculating the new Transformation Matrix:

Tla=WMRA rotx(DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(gn(l))*WMRA transl(0,0,DH(L,3))

’

T2a=WMRA rotx (DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(gn(2))*WMRA transl (0,0,DH(2,3))

’

T3a=WMRA rotx (DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz(gn(3))*WMRA transl (0,0,DH(3,3))

’

T4a=WMRA rotx(DH(4,1))*WMRA transl(DH(4,2),0,0)*WMRA rotz(gn(4))*WMRA transl(0,0,DH(4,3))

’

T5a=WMRA rotx(DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz(gn(5))*WMRA transl(0,0,DH(5,3))

’

T6a=WMRA rotx (DH(6,1))*WMRA transl(DH(6,2),0,0)*WMRA rotz(gn(6))*WMRA transl (0,0,DH(6,3))

’

T7a=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz(gn(7))*WMRA transl(0,0,DH(7,3))

WMRA ML _Animation(2, Ti, Td, Tiwc, Tla, T2a, T3a, T4a, T5a, Teéa, T7a);
end
% Updating the old values with the new values for the next iteration:
qo=qn;
tt=tt+dt;
% Pausing for the speed sync:
pause (dt-toc) ;

end

% This "new USF WMRA" function SIMULATES the arm going from the ready position to the
parking position with ANIMATION. All angles are in Radians.

The parking position is assumed to be gi=[0;pi/2;0;p1i;0;0;0] (Radians),

% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians).

% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

o°

%595%%555%%5%%%%5%%%%3%%%% COPY RIGHTS RESERVED 2%33%%%33%%%33%2%33%2%35%%%

% Function Declaration:
function WMRA readyZ2park(ini, vr, ml, arm, Tiwc, giwc)

332

www.manharaa.com

Appendix B. (Continued)

)

% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and
Plots windows:

if ini==
if arm==
try
WMRA ARM Motion(ini, 0, 0, 0);
end
end
if vr==
try
WMRA VR Animation(ini, 0, 0);
end
end
if ml==
try
WMRA ML Animation(ini, 0, 0, O, 0, O, O, 0, O, 0, 0);
end
end
return;
end

% Defining the used conditions:

qi=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]; % Initial joint angles (Ready Position).
qd=[0;pi/2;0;p1;0;0;0]1; % Final joint angles (Parking Position).

ts=10; % (5 or 10 or 20) Simulation time to move the arm from the ready position to
the parking position.

n=100; % Number of time steps.

dt=ts/n; % The time step to move the arm from the parking position to the ready
position.

dg=(gd-gi) / (0.5*n+5); % Joint angle change at every time step.

% Initializing the physical Arm:

if arm==
WMRA ARM Motion (ini, 2, [gi;qgiwc;0], dt);
ddt=0;

end

% Initializing Virtual Reality Animation:
if vr==

WMRA VR Animation(ini, Tiwc, [gi;giwc]);
end

% Initializing Robot Animation in Matlab Graphics:
if ml==

% Inputting the D-H Parameters in a Matrix form:
DH=WMRA DH (qi) ;

[

% Calculating the transformation matrices of each link:

TO1=WMRA rotx(DH(1l,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(DH(1,4))*WMRA transl(0,0,DH(1,3
))

T12=WMRA rotx(DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz (DH(2,4))*WMRA transl(0,0,DH(2,3
)) i

T23=WMRA rotx(DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz (DH(3,4))*WMRA transl(0,0,DH(3,3
))

T34=WMRA rotx (DH(4,1))*WMRA transl(DH(4,2),0,0)*WMRA rotz (DH(4,4))*WMRA transl(0,0,DH (4,3
))

T45=WMRA rotx (DH(5,1))*WMRA transl(DH(5,2),0,0)*WMRA rotz (DH(5,4))*WMRA transl(0,0,DH(5,3
)) i

T56=WMRA rotx (DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz (DH(6,4))*WMRA transl(0,0,DH(6,3
)) i

333

www.manharaa.com

Appendix B. (Continued)

T67=WMRA rotx(DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz (DH(7,4))*WMRA transl(0,0,DH(7,3
));
% Calculating the Transformation Matrix of the initial and desired arm positions:
Ti=Tiwc*TO1*T12*T23*T34*T45*T56*T67;
Td=Tiwc*WMRA g2T (qd) ;
WMRA ML Animation(ini, Ti, Td, Tiwc, TO1l, T12, T23, T34, T45, T56, T67);
end

% Initialization:
go=qi;
tt=0;

while tt <= (ts)

% Starting a timer:
tic;

% Calculating the new Joint Angles:
if tt==
qn=dgo;
elseif tt < (dt*(0.5*n-5))
an (2:7)=qo (2:7)+dq(2:7) ;
elseif tt < (dt*(0.5*n+5))
an=qgo+dqg;
elseif tt < (dt*(n-1))
an (1) =qgo (1) +dq (1) ;
end

% Updating the physical Arm:

if arm==
ddt=ddt+dt;
if ddt>=0.5 || tt>=(ts)
WMRA ARM Motion(2, 1, [gn;giwc;0], ddt);
ddt=0;
end
end

% Updating Virtual Reality Animation:
if vr==

WMRA VR Animation(2, Tiwc, [gn;qgiwc]);
end

% Updating Matlab Animation:
if ml==

[

% Calculating the new Transformation Matrix:

Tla=WMRA rotx(DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(gn(l))*WMRA transl(0,0,DH(1,3))

’

T2a=WMRA rotx (DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(gn(2))*WMRA transl(0,0,DH(2,3))

’

T3a=WMRA rotx(DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz(gn(3))*WMRA transl(0,0,DH(3,3))

’

T4a=WMRA rotx (DH(4,1))*WMRA transl (DH(4,2),0,0)*WMRA rotz(gn(4))*WMRA transl (0,0,DH(4,3))

’

T5a=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz(gn(5))*WMRA transl (0,0,DH(5,3))

’

T6a=WMRA rotx (DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz(gn(6))*WMRA transl(0,0,DH(6,3))

’

T7a=WMRA rotx(DH(7,1))*WMRA transl (DH(7,2),0,0)*WMRA rotz(gn(7))*WMRA transl(0,0,DH(7,3))

’

WMRA ML Animation(2, Ti, Td, Tiwc, Tla, T2a, T3a, T4a, T5a, Téa, T7a);

334

www.manharaa.com

given the rotation angle
given the rotation angle
given the rotation angle

Algasemi
Algasemi
Algasemi

Redwan M.
000 1]1;
Redwan M.
000 1]1;
Redwan M.

’
’

Developed By
; 0scO
Developed By
-s 0 cO
Developed By

’

-s 0

’

WMRA rotx(t)
WMRA roty(t)
0100

0 c

[T]
[T]

’
’
’
’

tt+dt

Updating the old values with the new values for the next iteration
an

Pausing for the speed sync

pause (dt-toc)

end
qo
tt

This function gives the homogeneous transformation matrix,

This function gives the homogeneous transformation matrix,
about the Z axis.

This function gives the homogeneous transformation matrix,
about the Z axis.

about the X axis.

cos (t)
sin(t)
T=[1 0 0 O
cos (t)
sin(t)
T=[c 0 s O

Appendix B. (Continued)

end

o

>
function
c

s
function
c

s

o

>

o
S

o

www.manharaa.com

000 1];
335

’

0010

’

WMRA rotz(t)
s c 00

’

[T]

’
’

sin(t)
T=[c -s 0 O

cos (t)

function
c=
5=

Appendix B. (Continued)

°

5855553555555 %%%%%%%%%% Thanks to Mayur Palankar %$%%%%%%%%%%%%%%%%%%%%%%%%

function varargout = WMRA screen(varargin)

WMRA SCREEN M-file for WMRA screen.fig
WMRA SCREEN, by itself, creates a new WMRA SCREEN or raises the existing
singleton*.

o0 o de

o

H = WMRA SCREEN returns the handle to a new WMRA SCREEN or the
handle to
the existing singleton*.

o° oo

o°

o

WMRA SCREEN ('CALLBACK', hObject,eventData, handles,...) calls the local
function named CALLBACK in WMRA SCREEN.M with the given input arguments.

o° oo

o°

WMRA SCREEN ('Property', 'Value',...) creates a new WMRA SCREEN or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before WMRA screen OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to WMRA screen OpeningFcn via varargin.

o0 oo de oo

o o oo

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

oe

o° o

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help WMRA screen

o

Last Modified by GUIDE v2.5 04-Mar-2007 20:56:51

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui State = struct('gui Name', mfilename, ...
'gui Singleton', gqui_ Singleton, ...
'gui OpeningFcn', @WMRA screen OpeningFcn, ...
'gui OutputFcn', @WMRA screen_ OutputFcn, ...
'gui LayoutFecn', 1,
'gui Callback', [1):

if nargin && ischar (varargin{l})

gui_ State.gui_Callback = str2func(varargin{l});

end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before WMRA screen is made visible.
function WMRA screen OpeningFcn(hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe°

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to WMRA screen (see VARARGIN)

% Choose default command line output for WMRA_ screen
handles.output = hObject;

336

www.manharaa.com

Appendix B. (Continued)

)

% Update handles structure
guidata (hObject, handles);

global VAR DX
global VAR SCREENOPN

VAR DX=[0;0;0;0;0;0;0];
VAR_SCREENOPN = 1;

if (varargin{l} == '1")

set (handles.pushbuttonl, "Enable', 'on'");
else

set (handles.pushbuttonl, "Enable', 'off");
end

’

set (handles.togglebutton2, 'cdata',buttonll
set (handles.togglebutton3, 'cdata',buttonl2
set (handles.togglebutton8, 'cdata',buttonl3
set (handles.togglebutton9, 'cdata',buttonld) ;
set (handles.togglebuttonl5, 'cdata',buttonlb) ;
set (handles.togglebutton4, 'cdata',button2l);
set (handles.togglebutton5, 'cdata',button22);
set (handles.togglebuttonl0, 'cdata',button23) ;
set (handles.togglebuttonll, 'cdata',button24);
set (handles.togglebuttonl6, 'cdata',button25b)

set (handles.togglebutton6, 'cdata',button3l);
set (handles.togglebutton?, 'cdata',button32) ;
set (handles.pushbutton37, 'cdata',button33);

set (handles.togglebuttonl3, 'cdata',button34);
set (handles.togglebuttonl4, 'cdata',button35);

’

’

’

% UIWAIT makes WMRA screen wait for user response (see UIRESUME)
uiwait (handles.figurel);

o

function play = buttonll
play = iconize(imread('11.Jpg'));
function play = buttonl2
play = iconize (imread('12.7pg"));
function play = buttonl3
play = iconize (imread('13.Jpg'));
function play = buttonl4
play = iconize (imread('14.7pg'));
function play = buttonlb
play = iconize (imread('15.7pg'));
function play = button2l
play = iconize (imread('21.7pg'));
function play = button22
play = iconize (imread('22.7pg'));
function play = button23
play = iconize (imread('23.7pg'));
function play = button24
play = iconize (imread('24.7pg'));
function play = button25
play = iconize (imread('25.7pg'));
function play = button3l
play = iconize (imread('31.7pg'));
function play = button32
play = iconize (imread('32.7pg'));
function play = button33
play = iconize (imread('33.jpg'));
function play = button34
play = iconize (imread('34.7pg'));
function play = button35
play = iconize (imread('35.3pg'));

function out = iconize(a)

337

www.manharaa.com

Appendix B. (Continued)

[r,c,d] = size(a);

r skip = ceil(x/70);

c_skip = ceil(c/70);

out = a(l:r_skip:end,l:c_skip:end,:);

% —-- Outputs from this function are returned to the command line.
function varargout = WMRA screen OutputFcn(hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

oe°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Get default command line output from handles structure
varargout{l} = handles.output;

% —--- Executes on button press in pushbuttonl.

function pushbuttonl Callback (hObject, eventdata, handles)

hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
WMRA Main GUI;

oo

o

)

% --- Executes on button press in pushbutton2.

function pushbutton2 Callback (hObject, eventdata, handles)

hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global VAR SCREENOPN

VAR_SCREENOPN = 0;

close;

oe°

)

% --- Executes on button press in togglebutton2.

function togglebutton2 Callback (hObject, eventdata, handles)
hObject handle to togglebutton2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

oe°

o°

% handles structure with handles and user data (see GUIDATA)
global VAR_DX

$ 11

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');
set (handles.togglebutton6, 'Enable', 'off");
VAR DX (3) = 1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebutton6, 'Enable', 'on'");
VAR DX (3) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebutton2

% —--- Executes on button press in togglebutton3.

function togglebutton3 Callback (hObject, eventdata, handles)
hObject handle to togglebutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

o

% handles structure with handles and user data (see GUIDATA)
global VAR DX

S 12

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BRackgroundColor', 'red');
set (handles.togglebutton?, 'Enable', 'off");
VAR DX (1) = 1;

elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'RackgroundColor', 'white');
set (handles.togglebutton?, 'Enable', 'on'");
VAR DX (1) = 0;

end

[

% Hint: get (hObject, 'Value') returns toggle state of togglebutton3

338

www.manharaa.com

Appendix B. (Continued)

)

% --- Executes on button press in togglebuttonS8.

function togglebutton8 Callback (hObject, eventdata, handles)
hObject handle to togglebutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe°

% handles structure with handles and user data (see GUIDATA)
global VAR DX

$ 1 3

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');
set (handles.togglebuttonl5, 'Enable', 'off");
VAR DX (6) = 0.003;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebuttonl5, 'Enable', 'on');
VAR DX(6) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebutton8

% —--- Executes on button press in togglebutton9.
function togglebutton9 Callback (hObject, eventdata, handles)
hObject handle to togglebutton9 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX
$ 1 4
if (get (hObject, 'Value') == get (hObject, 'Max'))
set (hObject, 'BRackgroundColor', 'red');
set (handles.togglebuttonll, 'Enable', 'off");
VAR DX(5) = 0.003;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebuttonll, 'Enable', 'on'");
VAR _DX(5) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebutton9

o° o

o

% —--- Executes on button press in togglebuttonl5.

function togglebuttonl5 Callback (hObject, eventdata, handles)
hObject handle to togglebuttonl5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

o

% handles structure with handles and user data (see GUIDATA)
global VAR DX

$ 15

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');

set (handles.togglebutton8, 'Enable', 'off'");

VAR DX (6) = -0.003;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))

set (hObject, 'BackgroundColor', 'white');

set (handles.togglebutton8, 'Enable', 'on');

VAR DX (6) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttonl5
% —--- Executes on button press in togglebutton4.
function togglebuttond4 Callback (hObject, eventdata, handles)
hObject handle to togglebutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX
$ 21
if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');

set (handles.togglebutton5, 'Enable', 'off'");

VAR DX(2) = 1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))

339

o

o°

www.manharaa.com

Appendix B. (Continued)

set (hObject, 'BackgroundColor', 'white');

set (handles.togglebutton5, 'Enable', 'on'");

VAR DX (2) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebutton4
% --- Executes on button press in togglebuttonb5.
function togglebutton5 Callback (hObject, eventdata, handles)
hObject handle to togglebutton5 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX
% 2 2
if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BRackgroundColor', 'red');

set (handles.togglebutton4, 'Enable', 'off");

VAR DX (2) = -1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))

set (hObject, 'BRackgroundColor', 'white');

set (handles.togglebutton4, 'Enable', 'on'");

VAR DX (2) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttonb

o0 oo

o

)

% —--- Executes on button press in togglebuttonlO.
function togglebuttonl0 Callback (hObject, eventdata, handles)
hObject handle to togglebuttonlO (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX
% 23
if (get (hObject, 'Value') == get (hObject, 'Max'))
set (hObject, 'BackgroundColor', 'red');
set (handles.togglebuttonl6, 'Enable', '"off");
VAR DX (4) = -0.003;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebuttonl6, 'Enable', 'on'");
VAR DX (4) = 0;
end

)

% Hint: get (hObject, 'Value') returns toggle state of togglebuttonlO

o

o°

)

% --- Executes on button press in togglebuttonll.

function togglebuttonll Callback (hObject, eventdata, handles)
hObject handle to togglebuttonll (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

o

oe

% handles structure with handles and user data (see GUIDATA)
global VAR DX

% 2 4

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');
set (handles.togglebutton9, 'Enable', 'off");
VAR DX (5) = -0.003;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebutton9, 'Enable', 'on');
VAR DX (5) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttonll

[

% —--- Executes on button press in togglebuttonlé6.

function togglebuttonlé Callback (hObject, eventdata, handles)
hObject handle to togglebuttonl6é (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX

oe

o°

340

www.manharaa.com

Appendix B. (Continued)

%$ 25

if (get (hObject, 'Value') == get (hObject, 'Max'))
set (hObject, 'BackgroundColor', 'red');
set (handles.togglebuttonlO, 'Enable', '"off");
VAR DX (4) = 0.003;

elseif (get (hObject, 'Value') == get (hObject, 'Min'))

set (hObject, 'BRackgroundColor', 'white');

set (handles.togglebuttonl0, 'Enable', 'on'");

VAR DX (4) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttonl6
% —--- Executes on button press in togglebuttoné6.
function togglebutton6 Callback (hObject, eventdata, handles)
hObject handle to togglebutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX
$ 31
if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');

set (handles.togglebutton2, 'Enable', 'off'");

VAR DX(3) = -1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))

set (hObject, 'BackgroundColor', 'white');

set (handles.togglebutton2, 'Enable', 'on');

VAR DX(3) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttoné

o

o°

)

% --- Executes on button press in togglebutton7.

function togglebutton7 Callback (hObject, eventdata, handles)
hObject handle to togglebutton7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

o

o°

% handles structure with handles and user data (see GUIDATA)
global VAR DX

% 32

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');
set (handles.togglebutton3, 'Enable', 'off");
VAR DX (1) = -1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BackgroundColor', 'white');
set (handles.togglebutton3, 'Enable', 'on'");
VAR DX (1) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebutton?

% —--- Executes on button press in pushbutton37.

function pushbutton37 Callback (hObject, eventdata, handles)

hObject handle to pushbutton37 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR DX

% 3 3

dx = [0;0;0;0;0;0;0];

$ dx=dx (1:6) ;Redwan.

VAR DX = dx;

o

o

set (handles.togglebutton2, 'BackgroundColor', 'white')
set (handles.togglebutton3, 'BackgroundColor', 'white')
set (handles.togglebutton8, 'BackgroundColor', 'white');
set (handles.togglebutton9, 'BackgroundColor', 'white');
set (handles.togglebuttonl5, 'BackgroundColor', 'white');

set (handles.togglebutton4, 'BackgroundColor', 'white');

341

www.manharaa.com

Appendix B. (Continued)

set (handles.togglebutton5, 'BackgroundColor', 'white');
set (handles.togglebuttonl0, 'BackgroundColor', 'white');
set (handles.togglebuttonll, 'BackgroundColor', 'white');
set (handles.togglebuttonl6, 'BackgroundColor', 'white')

’

’

set (handles.togglebutton6, 'BackgroundColor', 'white')
set (handles.togglebutton?7, 'BackgroundColor', 'white')
set (handles.togglebuttonl3, 'BackgroundColor', 'white'

set (handles.togglebuttonl4, 'BackgroundColor', 'white'

)i
)
set (handles.togglebutton2, 'Value', 0)
set (handles.togglebutton3, 'vValue', 0)
set (handles.togglebutton8, 'vValue', 0);
set (handles.togglebutton9, 'vValue', 0)
set (handles.togglebuttonl5, 'Value', 0

set (handles.togglebutton4, 'Value',)
set (handles.togglebutton5, 'vValue',)
set (handles.togglebuttonl0O, 'Value', 0
set (handles.togglebuttonll, 'Value', 0
set (handles.togglebuttonl6, 'Value', 0

set (handles.togglebutton6, 'Value', 0)
set (handles.togglebutton7, 'Value', 0)
set (handles.togglebuttonl3, 'Value', 0
set (handles.togglebuttonl4, 'Value', 0

set (handles.togglebutton2, 'Enable’, 'on')
set (handles.togglebutton3, 'Enable’', 'on')
set (handles.togglebutton8, 'Enable', 'on');
set (handles.togglebutton9, 'Enable', 'on')
set (handles.togglebuttonl5, 'Enable', 'on'

set (handles.togglebutton4, 'Enable', 'on'")
set (handles.togglebutton5, 'Enable', 'on');
set (handles.togglebuttonlO, 'Enable’',’ ")
set (handles.togglebuttonll, 'Enable','on'");
set (handles.togglebuttonl6, 'Enable', 'on'")

set (handles.togglebutton6, 'Enable', 'on');
set (handles.togglebutton?, 'Enable', 'on'");
set (handles.togglebuttonl3, 'Enable', 'on'");
set (handles.togglebuttonl4, 'Enable', 'on'")

’

% —--- Executes on button press in togglebuttonl3.

function togglebuttonl3 Callback (hObject, eventdata, handles)

% hObject handle to togglebuttonl3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global VAR DX

% 3 4

if (get (hObject, 'Value') == get (hObject, 'Max'))

set (hObject, 'BackgroundColor', 'red');
set (handles.togglebuttonld, 'Enable', 'off");
VAR DX(7) = 1;
elseif (get (hObject, 'Value') == get (hObject, 'Min'))
set (hObject, 'BRackgroundColor', 'white');
set (handles.togglebuttonl4, 'Enable','on'");
VAR DX (7) = 0;
end
% Hint: get (hObject, 'Value') returns toggle state of togglebuttonl3
% —--- Executes on button press in togglebuttonlié.
function togglebuttonl4 Callback (hObject, eventdata, handles)
% hObject handle to togglebuttonl4d (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

342

www.manharaa.com

given the transformation matrix.

(see GUIDATA)

’

Taw angles,

'white');

set (handles.togglebuttonl3, 'Enable', 'on'");

VAR DX (7)

'red'")
get (hObject, 'Min'"))

returns toggle state of togglebuttonl4
Pitch,

get (hObject, 'Max'"))

'BackgroundColor',
'BackgroundColor’,

= -1;
(get (hObject, 'Value')

structure with handles and user data
= 0;

get (hObject, 'Value')

set (handles.togglebuttonl3, 'Enable', "off");

VAR DX (7)
set (hObject,

(get (hObject, 'Value')
set (hObject,
This function gives the Roll,

handles
global VAR DX

35

Hint

Appendix B. (Continued)

elseif

o
>
o
S
if
end
o
>
o
>

o
(&)
@©
d s
g a
c
@ IS
[
3 S
) g
0}
m W
o
[~
o —
d0 oo a0 o0 oo a A d0 oo a0 o0 oo
do oo a0 oo oo £ do oo o0 do o —
oo oo o0 do o o Jo a0 o0 oo oo 0
do oo a0 oo oo o do oo a0 oo oo =
d0 oo a0 oo oo < do oo a0 oo oo =
d0 oo a0 oo oo) do oo a0 oo oo
d0 oo a0 oo oo D>y d0 oo a0 do o <
d0 oo a0 o0 oo z d0 oo a0 oo oo o'
Jo a0 a0 oo oo o do oo a0 oo oo kel
d0 oo a0 oo oo & O do oo a0 oo oo
do oo a0 oo oo o d0 oo o0 do o <
do a0 o0 do o > u do oo a0 oo oo o
d0 oo a0 oo oo = -+ do oo a0 oo oo
do oo a0 oo oo © d0 oo a0 do oo <
do oo a0 o0 oo LT d0 oo a0 do o -
d0 oo a0 oo oo 0 O d0 oo a0 oo oo ~
do oo a0 oo oo D~ d0 oo a0 do o —
do oo a0 oo oo 0] do oo a0 oo oo —
do oo a0 oo oo [ONNO)] do oo a0 o0 oo ©
d0 oo a0 oo oo < G do oo a0 oo oo B
do oo a° oo oo -~ o= Jo a0 a° oo oo |
do oo oo oo P oo do oo oo M
d0 oo - oo oo —_ [(HNO) Jo a0 - oo oo
d0 oo £ oo oo o~ o c do oo] oo oo = ..
do oo) oo oo ~ i do oo) oo oo = £
do oo 9] oo oo — 9] do a0 9] oo o Il o
d0 oP © oo oo ~ [=Ia] d0 oP I oo o — o
o o' oo oe E [SNe] o o' do oe ™~ [0
® A — do oo * H ® A — oo oo [on
o° [<G o° oe 9] + o0 [< oe de X <
oo > oo oo ol © oo > do o ~ -~
o . o0 o —_— £ - o0 g . o0 oo) Y con
o0 [= oe —~ g o0 [x] = oo =] +
o W o~ o° — o~ o o o W ~ oo o]
oo [a O o° ~ N 4 T oo [a O oe N =
L4 © O oo N = %} o X © O o [Te)
oo .W [QVIRCI ml..\ [M M o .W [QVIRCI =} [}
o W a0 .. * o W ae
o M % — oo >y W x 0 4 © %VM % — oe < =]
o - oo i8] (9] 5 o0 - oo < -H
o U Y oo O + o~ ~ e U Y oo B
o° H .. Q, o° SRV EENEEIN —_—~ [ONN0] o° H .. Q, oo 0
o0 M > < oo © ~ PN -~ — ™ < o > <L oe ~ . “
o0 m o — o~~~ — [NEES FERNGS ae m ae ™ 0] 0]
Q0 > oo o 5o — N — — N al Q0 > oo o B [0} 2
o0 4 e} do oo o~ ~ ~ - - o T o0 Ay kel do oo — Q
d O [0) 90 oo [N — N ~ HH [SING] a0 O [0) 90 oo < Q £
s O Qoo oo —~ o~ == — * X Y o O Qoo oo N © ©
o [¢) oo o = 0 H BB g (o] IS oo [¢) do oo = - o
Jdo oo — do oo ~ ~ = 1 Poa do de —~ oo o Y ©
do oo 0] do oo Dy o w <. .~ —~ O A do do (0] oo o < s [a¥
o0 oo > de oo Q o Q —_— ~ —_m o de oo > de oo — >
do oo 0] do oo 9] © — ™ —_ — o~ [} do do 0] do o o o
do do s do o N 9] [< [SS] do de =) do o =] — 1
de oo de oo T_ W ™M N ~ ™ W.\ cm o de oo de oo e} Cr m]
o° ode o o° o w3 ~ ~N ~ - oe o oe oe oo -
Jdo oo o do o M) OB ~ B o o do de o o0 o o= [¢] (0]
Jdo oo o oo o & G W [H s v | 0 0 M do de o oo o m B M, um -~
o° ode o o o° o~ (0] i ~ -~ - o° ode o oe oo —
do de Q0 do oo = —~ <0 (SN N~ ~ NN ~ do de o do oo o~ o'
do oo Q0 o0 o Il ™ RV c g o - g g o do de o do oe —~ ®© [0} o~
do ope oe° oo oo — ~ — ® © M — ~— © @© [oRN0)) o oo oo oo oo (o= < oo
do de a0 do oo >N O~ e~ P P D> P - g o0 oo a0 do oo 0] i) -~ A
d0 oo a0 do oo (O 4O ©® © 0,0, © @ St Q0 de ae do oo a o~ 2|
do oo o oo o u % Soa oo [T N TR m . do oo Q0 oo o - B nnv m M
o o° o o o° — N ™ o~~~ —_ =~ ~ o° de o° oe oo —
do oo o oo o - H o W.\ — N ™ — a % o ™M cm cm do de o oo o o - m M mL W
Jo de o oo o — ~ o ~ ~ . do de o oo o -~
de oo oo de oo o N O > >y >y >0 O > > (] de oo oo de oo 2 0O © — ol
o0 o o0 o oo - RS2 BN oy oTyon [T [R o PRy o n nq a0 oo a0 a0 oo O - — Il jas
a0 o o0 o oo + I MO H Y Y 400 4 Y A A ® a° oe a° a0 oo (SRS} 0 © Il a9 A
do oo B do oo 9] T © 0] e - do de o oo o 50 0 .Q -~
a0 o o0 o oo o > = 0 kel = OO a0 oo ae o oo [ET e} [S e
do oo Q0 o0 o =] Q, 4 — =] © Jo de o o0 o = — 4y
s o o oe i Y Q0 - 0] 0] o0 e Y R S o0 o0 Q0 o

Appendix B. (Continued)

[

% Calculating the transformation matrices of each link:

T1=WMRA rotx (DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz (DH(1l,4))*WMRA transl(0,0,DH(1,3)
)i

T2=WMRA rotx (DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(DH(2,4))*WMRA transl(0,0,DH(2,3)
)i

T3=WMRA rotx(DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz (DH(3,4))*WMRA transl (0,0,DH(3,3)
)i

T4=WMRA rotx (DH(4,1))*WMRA transl (DH(4,2),0,0)*WMRA rotz (DH(4,4))*WMRA transl(0,0,DH (4,3)
)i

T5=WMRA rotx (DH(5,1))*WMRA transl (DH(5,2),0,0)*WMRA rotz (DH(5,4))*WMRA transl (0,0,DH(5,3)
)i

T6=WMRA rotx (DH(6,1))*WMRA transl(DH(6,2),0,0)*WMRA rotz (DH(6,4))*WMRA transl(0,0,DH(6,3)
)i

T7=WMRA_rotx (DH(7,1))*WMRA transl (DH(7,2),0,0)*WMRA rotz (DH(7,4)) *WMRA transl(0,0,DH(7,3)
)i

% Calculating the Transformation Matrix of the initial arm position:
Ta=T1*T2*T3*T4*T5*T6*T7;

% Calculating the Transformation Matrix of the initial WMRA system position:
T=Twc*Ta;
else
T1=WMRA rotx (DH(1,1))*WMRA transl(DH(1,2),0,0)*WMRA rotz(q(l))*WMRA transl(0,0,DH(1,3));
T2=WMRA rotx (DH(2,1))*WMRA transl(DH(2,2),0,0)*WMRA rotz(g(2))*WMRA transl(0,0,DH(2,3));
T3=WMRA rotx (DH(3,1))*WMRA transl(DH(3,2),0,0)*WMRA rotz(g(3))*WMRA transl(0,0,DH(3,3));
T4=WMRA rotx (DH(4,1))*WMRA transl (DH(4,2),0,0)*WMRA rotz(q(4))*WMRA transl(0,0,DH(4,3));
T5=WMRA rotx (DH(5,1)) *WMRA transl(DH(5,2),0,0)*WMRA rotz(g(5))*WMRA transl(0,0,DH(5,3));
T6=WMRA rotx (DH(6,1))*WMRA transl (DH(6,2),0,0)*WMRA rotz(g(6))*WMRA transl(0,0,DH(6,3));
T7=WMRA rotx (DH(7,1))*WMRA transl(DH(7,2),0,0)*WMRA rotz(g(7))*WMRA transl(0,0,DH(7,3));
Ta=T1*T2*T3*T4*T5*T6*T7;
Twc=WMRA w2T (1, Twc, dq);

T=Twc*Ta;
end

)

% This function finds the trajectory points along a streight line, given the initial and
final transformations. Single-angle rotation about a single axis is used
% See Egs. 1.73-1.103 pages 30-32 of Richard Paul's book " Robot Manipulators"

o

% Function Declaration:
function [Tt] = WMRA traj(ind, Ti, Td, n)

% Finding the rotation of the desired point based on the initial point:
R=Ti(1:3,1:3)'*Td(1:3,1:3);
344

www.manharaa.com

Appendix B. (Continued)

% Initial single-angle representation of the rotation:

a=atan2 (sqrt ((R(3,2)-R(2,3))"2+(R(1,3)-R(3,1))"2+(R(2,1)-R(1,2))"2)

(R(1,1)+R(2,2)+R(3,3)-1));
s=sin(a);
c=cos(a);
v=1l-c;
% Finding the single-vector components for the rotation:
if a<0.001
kx=1;
ky=0;
kz=0;
elseif a<pi/2+0.001
kx=(R(3,2)-R(2,3))/
=(R(1,3) R(3 1)/ (2
=(R(2,1)-)/ (2

(2)'

else
kx=sign(R(3,2)-R(2,3))*sqrt ((R(1,1)-c)/v);
ky=sign(R(1,3)-R(3,1)) *sqgrt ((R(2, 2)—c)/v),
kz=sign(R(2,1)-R(1,2)) *sqgrt ((R(3,3)-c)/v);
if kx>ky && kx>kz
=(R(2,1)+R(1,2))/ (2*kx*V) ;
=(R(1,3)+R(3,1))/ (2*kx*v) ;
elseif ky>kx && ky>kz
kX (R(2,1)+R(1,2))
=(R(3, 2)+R(2 3))

/(2*ky*v) ;
/(2*ky*v) ;
else
=(R(1,3)+R(3,1))/(2%kz*V) ;
ky=(R(3,2)+R(2,3))/ (2%kz*V) ;
end

% Runnlng the desired trajectory method:

% == Polynomial with Blending function,
% 2 == Polynomial without Blending function,
% 3 == Linear function.
if ind ==
at=WMRA Polynomial (0,a,n);
xt=WMRA Polynomial (Ti(1,4), Td(1,4), n);
yt=WMRA Polynomial (Ti(2,4), Td(2,4), n);
zt=WMRA_Polynomial(T1(3,4), Td(3,4), n);
elseif ind ==
at=WMRA Linear(0,a,n);
xt=WMRA Linear (Ti(1l,4), Td(1,4), n);
yt=WMRA Linear(Ti(2,4), Td(2,4), n);
zt=WMRA Linear(Ti(3,4), Td(3,4), n);
else
at=WMRA BPolynomial (0,a,n);
xt=WMRA BPolynomial (Ti(1,4), Td(1,4), n);
yt=WMRA BPolynomial (Ti(2,4), Td(2,4), n);
zt=WMRA BPolynomial (Ti (3,4), Td(3,4), n);

end
Tt (:,:,1)=T1i;

for i=2:n

% Single-angle Change:
da=at (i) -at (1) ;

s=sin(da) ;

c=cos (da) ;

v=1-c;

% Rotation and Position Change:

dR=[kx"2*v+c kx*ky*v-kz*s kx*kz*v+ky*s;
kx*ky*v+kz*s ky"2*v+c ky*kz*v-kx*s;
kx*kz*v-ky*s ky*kz*v+kx*s kz"2*v+c];

345

’

www.manharaa.com

000 1];

’

zt (1)]

’

yt (i)

’

[xt (1)

3) *dR

3,1

F1)=[Ti(1

IS

Finding the trajectory points along the trajectory line
Tt (

Appendix B. (Continued)

end

o
S

o
(&)
; ; =
o S ©
%) QO c
0] —]
u}] o
¥ o A e
[} = .
@] T
> (0]
N IS} 2
- [«
< — o
> a0 oe o a0 0P © o0 oo a0 d0 oo >
a0 oe o a0 oP 0] d0 oe a0 d0 oo =t
< Q0 90 o 0 oo ~ d0 oo a0 d0 oo ¢}
ke a0 oe o0 a0 oo d0 oo a0 d0 oo 0
a0 oe o a0 o — d0 oo a0 d0 oo
[0) a0 oo o0 a0 0P © a0 oo a0 d0 oo 0]
< a0 oo o a0 oe 3 d0 oo a0 do oo Y
i) a0 0P o0 a0 0P 2 d0 oo a0 d0 oo ©
a0 0P o0 a0 o o d0 oo a0 do oo
=] a0 oe o0 a0 e - d0 oo a0 do oo 0
-~) a0 oo o a0 oo > d0 oo a0 do oo =t
—_ > a0 oo o a0 oo d0 oo a0 do oo o
— - a0 oo o a0 oo o o0 oe a0 d0 oo -
o a0 oo o a0 oo =] d0 oo a° d0 oo is)
o a0 oo o0 a0 oo - d0 oo o do oo o
.. < Q0 o0 o Q0 o0 9] d0 oo o0 d0 oo 0]
0] o X a0 oo o0 a0 oo 3 d0 oo a0 d0 oo £
<] -H a0 oo o a0 oo d0 oo a0 do oo -
-~ o I a0 oo o0 a0 oo [d0 oo ae d0 oo ko]
— is) a0 oo o0 a0 oo o d0 oo ae do oo
-~ IS a0 oo o a0 oo [a] d0 oo a° do oo —
> £ a0 oo a0 oo o0 oo d0 oo —
19 — Q0 90 -~ Q0 o0 o) d0 oo - d0 oo ©
o — =] a0 oo £ a0 oo d0 oo = Jo a0
i} < [¢) a0 oo Q a0 oo e d0 oo] do oo ~
] S -~ Q0 o0 9] a0 oo i) o0 oo 9] d0 oo 9]
0] ™ is) a0 oe © a0 oo - Q0 oe © do oo =t
-~ ~ o] o o' o0 oe = a0 o' oo o° ¢}
© - £ d® A — a0 oo d® A — d0 oo - O
I =]] o0 [< a0 oo M o0 [< do oo is) <
Is) -~ o a0 > a0 oo oo > d0 oo =t
> H e . a0 oo = o . o0 a0 0] con
[0} o~ %) oo [= oo = o [= oe . £
-~ < X =] d U0 ~ oo a0 U0 ~ o° i) -
e — D — © o0 [1] =1 O oe [z o0 [=t o oe e} kel
n n O ~ 90 © O oe 9] 0 o] O o —
x x + o — + a0 k3 N oo) oo = (SIS Q, +
> x> S — d U ko] a0 a0 ko] oo =t
MMk [¢) 1 9] o H Q — o0 W o0 0] — a0 — o ©
+ I~ — - 3 de o e e - oo e} do 22 - 0P o' o] +
> 5 < © e — o d U Y oo s U g oo - 9]
X x N —~ ~< [} oo H o Q, 00 [oo H I Q, o0 ~ + a
o NN M (%) T © —~ [9 > & oo — e} do > &L oe 6] . © o}
0 MM Fe} T T N 0] ae m o0 N - o0 m o = [0} £ O
ok x 0 =t x ¥ O o oo a0 oo IS oo oo de 3]] -
[SEE -~ —_— o o Ay o] a0 oo ~ © o0 Ay ko] d0 oo — =] 0]
© MM X o — = d© O Q a0 oo >y £ d® O 0] do oo < Q © -
< A Q, [N) o0 O Q, o0 o° N - o O Q, 90 oo - © Y .
O n o0 + - H ™M < o0 ¢) Q0 00 < - =] a0 ¢) do a0 ~ A) -~ [0}
. x + > > — — . o° oo — oe oo B — © do oo — do ope =] “ < (] —
> o N > ox Y ~ — 0] o0 oo [0} o0 oo ~ o0 oo 0] oo oe o) o] ES] e} -
o O M x N o 0 g o~ < Q0 o0 > Q0 o0 —~ o 0] Q0 oo > do do - > 3] 4y
oo H ol N M) O+ m i) Q0 o0 0] Q0 o0 9] < Q0 oo 0] do de P W —
FERNeN P> <o 6] O 0 .- o oe a d0 e =} o + a° oo [a] o0 o (<] —~ o O] M
(O ok >y Dy [0) x ok (%] do e e oe © o0 e o0 o o g © 0}
0 © 0 >y MM - o o - o Q0 o0 o0 Q0 o0 “ o [} Q0 9o o do do - A Q o < s
At S O M © o O -H > . d0 e op d0 e + [0) a° de oo a0 oo £ g [¢} e} = =
© O o ANk 0o o o oK —H 0 Q0 o0 oo Q0 o0 | N o d0 oo a0 d0 oo © & — -
“ Il X %K i) NN — o Q0 o0 oo Q0 o0 M — ko] a0 oo a0 d0 oo S o) [} 0]
EH O ~ N T M N D>y + + 1 3 a0 oo o0 oo op N 20 oo ae d0 oo © o] < <
— o~ M a MM [ONEIN —_—~— o - de oo oo o° oo = o~ o de oo oe do oo — > 0] N iu] w o
— O @ O + | g < < A o ® Q0 o0 oo Q0 o0 = >y o Q0 oo o do do o] - [a)
[VEESE TN + > > P H [N > do oo oo oo oo I o~ - de oo oo de oo 0) M ER) M — o O o
ST OO e oes o> ox o Il — e is) Q0 o0 oo Q0 o0 —] is} d0 oo S do de [s) © [SEETI o)
Ol ~ I —~~ O x >N o~ o~ 0 o d0 e oe d0 e =] — 8} o0 e do a0 oo = o= - — 0 |-
H O~ > O @ H N MM S e e [SNe) Q0 o0 o0 Q0 oo — =1 Q0 oo o Jo de o= o= s T Y M =}
P = -4 X T T D<ok ox H AN BB~ S Q0 oo oo Q0 oo —~ =] a0 oo a0 d0 oo o - - © O [0}
o O = e~ @ X X X T I+ o oo o oo 00 oo [™ Lol oo oe oo o° oo -~ g] [« QP =
P S x ~g 0o DM MM a X > H © o oe a° d0 e o} ~ o e oe a0 oo 2 0 © =0 =E O
O-A N -+ O I o — - n - g oe op d0 e - [0) 0 o0 e do a° oe O -A — Il =l
[a 775 B I [B OB ol 3] el A 0 o oe oe d0 e Ee) > - a° de o a° de [SRES] O ® O 0 -H 3 e
S Xl o4 o o o Q0 oo oo Q0 oo 4] [0) < Q0 o0 S do de 50 v Q Eeppl —
d e T XM ®n O > d° T o 0] H © do oo oo do oo =1 — =] de oo oo de oo - g A o =] —
] Q0 oo o0 Q0 oo =] Il Q0 o0 o0 do de =} — 4y -
A0 00 00 A0 J° IO d0 IO J° d° AP A0 J° O° A A d° J° A I° o RS R o e 4y] o] S I S I o B £

Appendix B. (Continued)

WMRA = vrworld('\9 wmra.wrl');
open (WMRA) ;

% Changing the View Point of the simulation:
WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)];

% Calculating the wheelaxle transform instead of the arm base transform:
Twc=Twc* [eye (3) -L(2:4) ; 0 0 0 11;

% The orientation about Z of the wheelchair:

phi=qg(9);

% Calculating wheelchair's wheels' angles:

al=q(8) /L(5)-L(1)*q(9) /(2*L(5));

qr=q(8) /L(5)+L (1) *q(9) / (2*L(5));

% Updating the VRML file for the new angles and distances:
WMRA.Chair.translation=[Twc (1,4) Twc(2,4) L(5)]1;
WMRA.Chair.rotation=[0 0 1 phi];

WMRA.LWheel.rotation=[0 1 0 gl]l;
WMRA .RWheel.rotation=[0 1 0 qgr];
WMRA.ARM2.rotation=[0 0 -1 g(1)];
WMRA.ARM3.rotation=[0 1 0 g(2)];
WMRA.ARM4.rotation=[0 0 -1 g(3)];
WMRA.ARM5.rotation=[0 1 0 g(4)1;
WMRA.ARM6.rotation=[0 0 -1 g(5)];
WMRA.ARM7.rotation=[0 1 0 g(6)];
WMRA.ARM8.rotation=[0 0 -1 qg(7)]1;

% Viewing the simulation:
view (WMRA) ;
% Closing the animation plot:
elseif i==
close (WMRA) ;
delete (WMRA) ;
% Updating the animation plot:
else
WMRA.DynamicView.translation=[Twc(l,4) 0 -Twc(2,4)];
Twc=Twc* [eye (3) -L(2:4) ; 0 0 0 1];
phi=q(9);

al=q(8) /L (5)-L(1)*q(9)/(2*L(5));
qr=q(8) /L(5)+L (1) *q(9)/ (2*L(5));
WMRA.Chair.translation=[Twc(1l,4) Twc(2,4) L(5)1;
WMRA.Chair.rotation=[0 0 1 phil;
WMRA.LWheel.rotation=[0 1 0 gl];
WMRA.RWheel.rotation=[0 1 0 gr];
WMRA.ARM2.rotation=[0 0 -1 g(1)];
WMRA.ARM3.rotation=[0 1 0 g(2)]1;
WMRA.ARM4 .rotation=[0 0 -1 g(3)1;
WMRA.ARM5.rotation=[0 1 0 g(4)];
WMRA.ARM6.rotation=[0 0 -1 g(5)1;
WMRA.ARM7.rotation=[0 1 0 g(6)];
WMRA.ARM8.rotation=[0 0 -1 g(7)1;

end

% This function gives the Transformation Matrix of the wheelchair with 2 DOF (Ground to
WMRA base), given the previous transformation matrix and the required wheelchair's travel
distance and angle.

% Dimentions are as supplies, angles are in radians.

www.manharaa.com

Appendix B. (Continued)

)

% Function Declaration:
function [T]=WMRA w2T (ind, Tp, q)

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
L=WMRA_WCD;

% Deciding if the motion is in reference to the arm base (1) or the wheel axle center
(0) :

if ind == 0, L(2:4)=[0;0;0]; end

% Defining the inverse of Transformation Matrix between the wheelchair center and the
WMRA's base:

Twa=[eye(3) L(2:4) ; 0 0 0 11;

% The previous transformation matrix from the ground to the wheelchair center:
Tp=Tp*inv (Twa) ;

% Defining the Transformation Matrix between the ground and the wheelchair center and
WMRA's base:
if abs (g (2))<=eps % Streight line motion.

Tp (1:2,4)=Tp (1:2,4)+q(1)*Tp(1:2,1);

T=Tp*Twa;
else

po=atan2 (Tp(2,1),Tp(1,1));

p=q(2);

r=q (1) /p-L(1)/2;

Tgw=[cos (po+p) -sin(po+p) 0 Tp(l,4)+sin(pi/2+po+p/2)* (r+L (1) /2)*sin(p)/cos(p/2) ;
sin (po+p) cos (po+p) 0 Tp(2,4)-cos (pi/2+po+p/2)* (r+L(1)/2)*sin(p)/cos(p/2) ; 0 0 1 Tp(3,4)
; 000 17;

T=Tgw*Twa;
end

% This function gives the wheelchair dimentions matrix to be used in the program.
% Modifying the dimentons on this file is sufficient to change these dimention in all
related programs.

)

% Function Declaration:
function L=WMRA WCD ()

L=[0;0;0;0;0];

% All dimentions are in millimeters.

L(1)=560; % Distance between the two driving wheels.

L(2)=440; % Horizontal distance between the wheels axix of rotation and the arm mounting
position (along x).

L(3)=230; % Horizontal distance between the middle point between the two driving wheels
and the arm mounting position (along y).

L(4)=182; % Vertical distance between the wheels axix of rotation and the arm mounting
position (along z).

L(5)=168; % Radius of the driving wheels.

348

www.manharaa.com

Appendix B. (Continued)

B.3. Matlab Main Script and GUI Main File

% This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots for 9
DOF. All angles are in Radians.

[

% Declaring the global variables to be used for the touch screen control:
global VAR DX

global VAR SCREENOPN

global dHo

% Defining used parameters:

d2r=pi/180; % Conversions from Degrees to Radians.

r2d=180/pi; % Conversions from Radians to Degrees.

% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA WCD;

)

% User input prompts:

choice000 = input('\n Choose what to control: \n For combined Wheelchair and Arm control,
press "1", \n For Arm only control, press "2", \n For Wheelchair only control, press "3".
\n','s");
if choice000=="'2"
WCA=2;
choice00000 = input('\n Choose whose frame to base the control on: \n For Ground
Frame, press "1", \n For Wheelchair Frame, press "2", \n For Gripper Frame, press "3".
\n'r'sl);
if choice00000=="2"
coord=2;
elseif choice00000=="3"
coord=3;
else
coord=1;
end
choice0000 = input('\n Choose the cartesian coordinates to be controlled: \n For
Position and Orientation, press "1", \n For Position only, press "2". \n','s');
if choice0000=="2"
cart=2;
else
cart=1;
end
choice5 = input('\n Please enter the desired optimization method: (1= SR-I & WLN, 2=
P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s');
if choiceb=='2"
optim=2;
elseif choiceb=='3"
optim=3;
elseif choiceb=="4"
optim=4;
else
optim=1;
end
choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No)
\n','s");
if choiceb0=='2"

JLA=0;

349

www.manharaa.com

Appendix B. (Continued)

else
JLA=1;
end
choice500 = input('\n Do you want to include Joint Limit/Velocity and Obstacle Safety
Stop? (1= Yes, 2= No) \n','s');
if choice500=='2"

JLO=0;
else
JLO=1;
end
elseif choice000=="'3"
WCA=3;
choice00000 = input('\n Choose whose frame to base the control on: \n For Ground

Frame, press "1", \n For Wheelchair Frame, press "2". \n','s');
if choice00000=="2"
coord=2;
else
coord=1;
end
choice500 = input('\n Do you want to include Joint Velocity Safety Stop? (l= Yes, 2=
No) \n','s');
if choiceb500=="'2"
JLO=0;
else
JLO=1;
end
cart=2;
optim=0;
JLA=0;
else
WCA=1;
choice00000 = input('\n Choose whose frame to base the control on: \n For Ground
Frame, press "1", \n For Wheelchair Frame, press "2", \n For Gripper Frame, press "3".
\n','s");
if choice00000=="2"

coord=2;
elseif choice00000=="3"
coord=3;
else
coord=1;
end
choice0000 = input('\n Choose the cartesian coordinates to be controlled: \n For

Position and Orientation, press "1", \n For Position only, press "2". \n',6's');
if choice0000=="2"
cart=2;
else
cart=1;
end
choice5 = input('\n Please enter the desired optimization method: (1= SR-I & WLN, 2=
P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'");
if choiceb=="2"
optim=2;
elseif choiceb=='3"
optim=3;
elseif choiceb=="4"
optim=4;
else
optim=1;
end
choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No)
\n','s");
if choiceb0=='2"
JLA=0;
else

JLA=1;
end

350

www.manharaa.com

Appendix B. (Continued)

choice500 = input('\n Do you want to include Joint Limit/Velocity and Obstacle Safety
Stop? (1= Yes, 2= No) \n','s');
if choiceb500=="'2"
JLO=0;
else
JLO=1;
end
end

choice0 = input ('\n Choose the control mode: \n For position control, press "1", \n For
velocity control, press "2", \n For SpaceBall control, press "3", \n For Psychology Mask

control, press "4", \n For Touch Screen control, press "5". \n','s'):;
if choiceO=="1"
cont=1;

Td = input('\n Please enter the transformation matrix of the desired position and
orientation from the control-based frame \n (e.g. [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0
0 11) \n");

v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g.
50) \n'");

choice00 = input('\n Chose the Trajectory generation function: \n Press "1" for a
Polynomial function with Blending, or \n press "2" for a Polynomial function without
Blending, or \n press "3" for a Linear function. \n','s');

if choice00=="2"

trajf=2;

elseif choice00=='3"

trajf=3;

else

trajf=1;

end
elseif choice0=='2"

cont=2;

ts = input('\n Please enter the desired simulation time in seconds (e.g. 2) \n');

if cart==

Vd = input('\n Please enter the desired 3xl cartesian velocity vector of the
gripper (in mm/s) (e.g. [70;70;-70]) \n'");
else
Vd = input('\n Please enter the desired 6xl cartesian velocity vector of the
gripper (in mm/s, radians/s) (e.g. [70;70;-70;0.001;0.001;0.0011) \n');

end
elseif choice0=='3"

cont=3;

% Space Ball will be used for control.

v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g.
50) \n'");
elseif choicelO=="4"

cont=4;

% BCI 2000 Psychology Mask will be used for control.

v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g.
50) \n'");

portl = input('\n Please enter the desired port number (e.g. 19711) \n');
else

cont=5;

% Touch Screen will be used for control.

v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g.
50) \n");
end

choicel = input('\n Choose animation type or no animation: \n For Virtual Reality
Animation, press "1", \n For Matlab Graphics Animation, press "2", \n For BOTH
Animations, press "3", \n For NO Animation, press "4". \n','s');
if choicel=='2"

vr = 0; ml = 1;
elseif choicel=='3"

vr = 1; ml = 1;
elseif choicel=="4"

vr = 0; ml = 0;

351

www.manharaa.com

Appendix B. (Continued)

else
vr = 1; ml = 0;
end

choicelO = input('\n Would you like to run the actual WMRA? \n For yes, press "1", \n For

no, press "2". \n','s');
if choicel0O=="1"
arm=1;
else
arm=0;
end
choice2 = input('\n Press "1" if you want to start at the "ready" position, \n or press

"2" if you want to enter the initial joint angles. \n','s');
if choice2=='2"

gi = input('\n Please enter the arms initial angles vector in radians (e.g.
[pi/2;p1/2;0;p1i/2;p1i/2;p1/2;0]1) \n');

WCi = input('\n Please enter the initial x,y position and z orientation of the WMRA
base from the ground base in millimeters and radians (e.g. [200;500;0.31) \n');

ini=0;
else

qi=[90;90;0;90;90;90;0]*d2r;

WCi=[0;0;0];

ini=0;

if vr==1 || ml==1 || arm==

choice3 = input('\n Press "1" if you want to include "park" to "ready" motion, \n

or press "2" if not. \n','s');
if choice3=='2"
ini=0;
else
ini=1;
end
end
end
choice4 = input('\n Press "1" if you do NOT want to plot the simulation results, \n or
press "2" if do. \n','s');
if choice4=='2"
plt=2;
else
plt=1;
end
% Calculating the Transformation Matrix of the initial position of the WMRA's base:
Tiwc=WMRA p2T (WCi (1) ,WCi(2),WCi(3));
% Calculating the initial Wheelchair Variables:
giwc=[sqgrt (WCi (1) 2+WC1i (2)"2);WCi(3)];

% Calculating the initial transformation matrices:
[Ti, Tia, Tiwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall(l, gi, [0;0], Tiwc);

if cont==
% Calculating the linear distance from the initial position to the desired position
and the linear velocity:
if coord==2
D=sqgrt((Td(1l,4)-Tia(1l,4))"2 + (Td(2,4)-Tia(2,4))"2 + (Td(3,4)-Tia(3,4))"2);
elseif coord==3
D=sqgrt((Td(1,4))"2 + (Td(2,4))"2 + (Td(3,4))"2);
else
D=sqrt ((Td(1,4)-Ti(1,4))"2 + (Td(2,4)-Ti(2,4))"2 + (Td(3,4)-Ti(3,4))"2);
end

% Calculating the number of iteration and the time increment (delta t) if the linear
step increment of the tip is 1 mm:

dt=0.05; % Time increment in seconds.

total time=D/v; % Total time of animation.
n=round (total time/dt); % Number of iterations rounded up.
dt=total time/n; % Adjusted time increment in seconds.

352

www.manharaa.com

Appendix B. (Continued)

)

% Calculating the Trajectory of the end effector, and once the trajectory is
calculated, we should redefine "Td" based on the ground frame:
if coord==2
Tt=WMRA traj(trajf, Tia, Td, n+l);
Td=Tiwc*Td;
elseif coord==
Tt=WMRA traj(trajf, eye(4), Td, n+l);
Td=Ti*Td;
else
Tt=WMRA traj(trajf, Ti, Td, n+l);
end
elseif cont==
% Calculating the number of iterations and the time increment (delta t) if the linear
step increment of the gripper is 1 mm:

dt=0.05; % Time increment in seconds.

total time=ts; % Total time of animation.

n=round(total_time/dt); % Number of iterations rounded up.

dt=total time/n; % Adjusted time increment in seconds.

dx=vd*dt;

Td=Ti;
elseif cont==

WMRA exit(); % This is to stop the simulation in SpaceBall control when the user
presses the exit key.

dt=0.05;

dx=v*dt* [spdatal (3) /20 ; -spdatal(l)/40 ; spdatal(2)/30 ; spdatal(6)/1500 ; -
spdatal (4) /900 ; spdatal(5)/1300];
dg=spdatal (7);

Td=Ti;

n=1;
elseif cont==

WMRA exit(); % This is to stop the simulation in Psychology Mask control when the
user presses the exit key.

dt=0.05;

dx=v*dt*WMRA_ psy (portl);

dg=dx (7) ;

dx=dx (1:6) ;

Td=Ti;

n=1;
else

WMRA screen('0'); % This is to start the screen controls. Argument: '0'=BACK button
disabled, '1'=BACK button enabled.

dt=0.05;

dx=v*dt*VAR DX (1:6);
dg=VAR_DX (7) ;
Td=Ti;
n=1;
end
% Initializing the joint angles, the Transformation Matrix, and time:
dg=zeros (9,1);
dg=0;
go=[gi;giwc];
To=T1i;
Toa=Tia;
Towc=Tiwc;
tt=0;
i=1;
dHo=[0;0;0;0;0;0;0];

% Initializing the WMRA:

if ini== % When no "park" to "ready" motion required.
% Initializing Virtual Reality Animation:
if vr==
WMRA VR Animation(1l, Towc, go);
end

% Initializing Robot Animation in Matlab Graphics:

353

www.manharaa.com

Appendix B. (Continued)

if ml==
WMRA ML Animation(l, To, Td, Towc, TOl, T12, T23, T34, T45, T56, T67);
end
% Initializing the Physical Arm:
if arm==
WMRA ARM Motion(l, 2, [go;dg]l, 0);
ddt=0;
end
elseif ini==1 && (vr==1 || ml==1 || arm==1) % When "park" to "ready" motion is required.

WMRA park2ready(l, vr, ml, arm, Towc, qo(8:9));
if arm==1
ddt=0;
end
end

% Re-Drawing the Animation:
if vr==1 || ml==
drawnow;
end
% Starting a timer:
tic
% Starting the Iteration Loop:
while i<=(n+1)
% Calculating the 6X7 Jacobian of the arm in frame O:
[Joa,detJoa]=WMRA J07(TO01, T12, T23, T34, T45, T56, T67);

)

)

% Calculating the 6X2 Jacobian based on the WMRA's base in the ground frame:
phi=atan2 (Towc(2,1),Towc (1,1));
Jowc=WMRA Jga(l, phi, Toa(l:2,4));

% Changing the Jacobian reference frame based on the choice of which coordinates
frame are referenced in the Cartesian control:
% coord=1 for Ground Coordinates Control.
% coord=2 for Wheelchair Coordinates Control.
% coord=3 for Gripper Coordinates Control.
if coord==2
Joa=Joa;
Jowc=[Towc (1:3,1:3)"' zeros(3); zeros(3) Towc(l:3,1:3)']*Jowc;
elseif coord==3
Joa=[Toa(1:3,1:3)"' zeros(3); zeros(3) Toa(l:3,1:3)"']*Joa;
Jowc=[To(1:3,1:3)"' zeros(3); zeros(3) To(1l:3,1:3)"']*Jowc;
elseif coord==1
Joa=[Towc (1:3,1:3) zeros(3); zeros(3) Towc(l:3,1:3)]*Joa;
Jowc=Jowc;
end

% Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system based on the
ground frame:
if cart==
Joa=Joa (1:3,1:7);
detJoa=sqgrt (det (Joa*Joa'));
Jowc=Jowc (1:3,1:2);
Jo=[Joa Jowc];
detJo=sqgrt (det (Jo*Jo"'"));
else
Jo=[Joa Jowc];
detJo=sqgrt (det (Jo*Jo"'"));
end

% Finding the Cartesian errors of the end effector:
if cont==

% Calculating the Position and Orientation errors of the end effector, and the
rates of motion of the end effector:

if coord==2

354

www.manharaa.com

Appendix B. (Continued)

invTowc=[Towc (1:3,1:3)"' , -Towc(1:3,1:3)"'*Towc(1:3,4);0 0 0 1];
Ttnew=invTowc*Tiwc*Tt (:,:,1);
dx=WMRA delta (Toa, Ttnew);

elseif coord==3
invTo=[To(1:3,1:3)' , -To(1:3,1:3)"'*To(1:3,4);0 0 0 1];
Ttnew=invTo*Ti*Tt (:,:,1);
dx=WMRA delta(eye (4), Ttnew);

else
dx=WMRA delta(To, Tt(:,:,1));

end

elseif cont==

elseif cont==
dx=v*dt* [spdatal (3) /20 ; -spdatal(l)/40 ; spdatal(2)/30 ; spdatal(6)/1500 ; -
spdatal (4) /900 ; spdatal (5)/1300];
dg=spdatal (7);
elseif cont==
dx=v*dt*WMRA psy (portl);
dg=dx (7) ;
dx=dx (1:6);
else
dx=v*dt*VAR DX (1:6);
dg=VAR DX (7) ;
end
% Changing the order of Cartesian motion in the case when gripper reference frame is
selected for control with the screen or psy or SpaceBall interfaces:
if coord==3 && cont>=3
dx=[-dx (2);-dx(3);dx(1);-dx (5);-dx(6);dx(4)];
end

if cart==
dx=dx (1:3);
end

% Calculating the resolved rate with optimization:
% Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I

& ENE:
if WCA==2
dg=WMRA Opt (optim, JLA, JLO, Joa, detJoa, dq(l:7), dx, dt, go);
dg=1[dqg;0;0];

elseif WCA==3
dg=WMRA Opt (optim, JLA, JLO, Jowc, 1, dgq(8:9), dx(1:2), dt, 1);
dg=[0;0;0;0;0;0;0;dq];

else
dg=WMRA Opt (optim, JLA, JLO, Jo, detJo, dgq, dx, dt, go);

end

% Calculating the new Joint Angles:
gn=qgo+dg;

% Calculating the new Transformation Matrices:
[Tn, Tna, Tnwc, TO01l, T12, T23, T34, T45, T56, T67]=WMRA Tall(2, gn, dq(8:9), Towc);
% A safety condition function to stop the joints that may cause colision of the arm
with itself, the wheelchair, or the human user:
if JLO==1 && WCA~=3
dqg(1l:7)=WMRA collide(dq(1:7), TO01l, T12, T23, T34, T45, T56, T67);
% Re-calculating the new Joint Angles:
gn=go+dg;
% Re-calculating the new Transformation Matrices:
[Tn, Tna, Tnwc, TO01l, T12, T23, T34, T45, T56, T67]=WMRA Tall(2, gn, dq(8:9),
Towc) ;
end

% Saving the plot data in case plots are required:

355

www.manharaa.com

Appendix B. (Continued)

if plt==
WMRA Plots(l, L, r2d, dt, i, tt, gn, dgq, Tn, Tnwc, detJoa, detJo);
end

% Updating Physical Arm:

if arm==
ddt=ddt+dt;
if ddt>=0.5 || i>=(n+1)
WMRA ARM Motion(2, 1, [qgn;dgl, ddt);
ddt=0;
end
end

% Updating Virtual Reality Animation:
if vr==

WMRA VR Animation (2, Tnwc, gn);
end

% Updating Matlab Graphics Animation:
if ml==

WMRA ML _Animation(2, Ti, Td, Tnwc, TO1, T12, T23, T34, T45, T56, T67);
end

% Re-Drawing the Animation:
if vr==1 || ml==
drawnow;
end
% Updating the old values with the new values for the next iteration:
go=dn;
To=Tn;
Toa=Tna;
Towc=Tnwc;
tt=tt+dt;
i=i+1;

% Stopping the simulation when the exit button is pressed:

if cont==3 || cont==4 || cont==
if (VAR_SCREENOPN == 1)
n=n+1;
else
break
end
end

% Delay to comply with the required speed:
if toc < tt
pause (tt-toc);
end
end
% Reading the elapsed time and printing it with the simulation time:
if cont==1 || cont==2, fprintf('\nSimula. time is %6.6f seconds.\n' , total time); end
toc

% Plotting:

if plt==

WMRA Plots(2, L, r2d, dt, i, tt, gn, dgq, Tn, Tnwc, detJoa, detJo);
end
if vr==1 || ml==1 || arm==

)

% Going back to the ready position:

choice6 = input('\n Do you want to go back to the "ready" position? \n Press "1" for
Yes, or press "2" for No. \n','s');

if choice6=="1"

356

www.manharaa.com

Appendix B. (Continued)

WMRA anyZ2ready (2, vr, ml, arm, Tnwc, gn);
% Going back to the parking position:
choice7 = input('\n Do you want to go back to the "parking" position? \n Press
"1l" for Yes, or press "2" for No. \n','s');
if choice7=="1"
WMRA ready2park(2, vr, ml, arm, Tnwc, gn(8:9));
end
end
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation
and Plots windows:
choice8 = input('\n Do you want to close all simulation windows and arm controls? \n
Press "1" for Yes, or press "2" for No. \n','s'):;
if choice8=='"1"
if arm==1
WMRA ARM Motion(3, 0, 0, 0);
end
if vr==
WMRA VR Animation(3, 0, 0);
end
if ml==
WMRA ML Animation(3, 0, 0, 0, O, 0, O, 0, O, 0, 0);
end
if plt==
close
(figure(2),figure(3), figure (4), figure(5),figure(6), figure(7), figure(8),figure(9), figure (1
0))7

end
end
©9000
5585585585555 5855555555555 5555%555%555%555%555%555%55%%55%5%55%%5%5%5%5%5%%%
90000000000000000000000000 9900000000000000000000000000
$5%55%5%%5%%%%%%%%%%%5%5%5%5%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%

©0000000000000000000 . i £29992929000000000000000
3%%%5%5%5%%%%%5%5%5%%%%%%% Developed By: Redwan M. Algasemi $%%%%%%%%%%%%%%5%%%%%%
000000000000000000000000 0000000000000000000000000
33%555%%%%5%5%5%%%%5%5%5%%%% Thanks to Mayur Palankar %%%%%%%%%%%5%%%%%%5%5%5%%%%%%
5535553553599 33953%%933%%%% A 1 2007 %$3%%%3%9%3%%%3%%%3%%%539%%99%3%%%%%
s 555555555%52525%5%5%5%%%%% Apri LN TLTLLL5%5%5%5%%
00 0000000000000000090000900000000000000000000000000000000000000090000000000000

function varargout = WMRA Main_ GUI (varargin)

WMRA Main GUI M-file for WMRA Main GUI.fig
WMRA Main GUI, by itself, creates a new WMRA Main GUI or raises the existing
singleton*.

o° oo

o°

% H = WMRA Main GUI returns the handle to a new WMRA Main GUI or the handle to
% the existing singleton*.

% WMRA Main GUI ('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in WMRA Main GUI.M with the given input arguments.

% WMRA Main GUI ('Property','Value',...) creates a new WMRA Main GUI or raises the
% existing singleton*. Starting from the left, property value pairs

% are

% applied to the GUI before WMRA Main GUI OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to WMRA Main GUI_ OpeningFcn via varargin.

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

o°

o

See also: GUIDE, GUIDATA, GUIHANDLES

o°

Edit the above text to modify the response to help WMRA Main GUI

357

www.manharaa.com

Appendix B. (Continued)

% Last Modified by GUIDE v2.5 31-Mar-2007 16:02:05

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gqui_ Singleton,
'gui OpeningFcn', @WMRA Main GUI_OpeningFcn,
'gui_OutputFen', @WMRA Main_ GUI_OutputFcn,
'gui_LayoutFcn', 1,
'gui Callback', [1);

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_ State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before WMRA Main GUI is made visible.
function WMRA Main GUI OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

varargin command line arguments to WMRA Main GUI (see VARARGIN)

% Choose default command line output for WMRA Main GUI
handles.output = hObject;

% Update handles structure

guidata (hObject, handles);

global VAR SCREENOPN
global VAR _LOOP
global VAR WCI
global VAR QI

VAR_WCI = [0; 0; 0];

VAR QI = [1.5708; 1.5708; 0; 1.5708; 1.5708; 1.5708; 0];
VAR _SCREENOPN = 0;

VAR LOOP = 0;

% UIWAIT makes WMRA Main GUI wait for user response (see UIRESUME)
% uiwait (handles.figurel);

% —-- Outputs from this function are returned to the command line.
function varargout = WMRA Main GUI OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

)

% Get default command line output from handles structure
varargout{l} = handles.output;

)

function file menu Callback (hObject, eventdata, handles)

% hObject handle to file menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o
S

function open_menu_Callback (hObject, eventdata, handles)

358

www.manharaa.com

Appendix B. (Continued)

% hObject handle to open menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

function save menu Callback (hObject, eventdata, handles)

% hObject handle to save menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

function saveas_menu Callback (hObject, eventdata, handles)

% hObject handle to saveas menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oo

function exit menu Callback (hObject, eventdata, handles)

% hObject handle to exit menu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close;

function help menu_Callback (hObject, eventdata, handles)
hObject handle to help menu (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB

o

o

% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in popupmenul.

function popupmenul Callback (hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get (hObject, 'Value');
switch val
case 1
if (get (handles.popupmenul7, 'Value')
set (handles.edit65, "Enable', 'on")
set (handles.edit66, 'Enable','on'");
set (handles.edit67, 'Enable', 'on")
set (handles.text22, 'Enable', 'on'")
end
if (get (handles.popupmenul7, 'Value') == 1)
if (strcmp (get (handles.edit36, 'Enable'), 'off'))
set (handles.edit36, 'String', 0);

set (handles.edit37, 'String', 0);
set (handles.edit38, 'String', 1);
set (handles.edit39, 'String', -1);
set (handles.edit40, 'String', 0);
set (handles.edit4l, 'String', 0);
set (handles.edit42, 'String', 0);
set (handles.edit43, 'String', -1);
set (handles.edit44, 'String', 0);
set (handles.edit36, "Enable', 'on'");

(
(handles.edit37, "Enable', 'o
set (handles.edit38, 'Enable', '
set (handles.edit39, 'Enable', '
set (handles.edit40, 'Enable’',’

(

(

(

(

o}

set

o O
jalial

set (handles.edit4l, 'Enable', 'o
set (handles.edit42, 'Enable',’
set (handles.edit43, 'Enable', 'o
handles.edit44, 'Enable', 'o

o o
5B B8B83

set
end

359

www.manharaa.com

Appendix B. (Continued)

end
case 2

if (get (handles
set (handles
set (handles
set (handles
set (handles

.popupmenul’,
.edit65, 'Enable', 'off")
.edit66, 'Enable', "off'");
)
)

.edit67, 'Enable', 'off"
.text22, '"Enable', 'off"

'Value') == 2)

’

’

’

end

if (get (handles.popupmenul7, 'Value') == 1)
set (handles.edit36, 'String', 1);
set (handles.edit37, 'String', 0);
set (handles.edit38, 'String', 0);
set (handles.edit39, 'String', 0);
set (handles.edit40, 'String', 1);
set (handles.edit4l, 'String', 0);
set (handles.edit42, 'String', 0);
set (handles.edit43, 'String', 0);
set (handles.edit44, 'String', 1);
set (handles.edit36, 'Enable', "off");
set (handles.edit37, 'Enable', "off'");
set (handles.edit38, 'Enable', "off'");
set (handles.edit39, "Enable', "off");

)
)
)
)
.edit40, 'Enable', 'off'");
)
)
)
)

set (handles
set (handles.edit4l, 'Enable', "off"
set (handles.edit42, 'Enable', 'off"'
set (handles.edit43, "Enable', 'off");
set (handles.edit44, 'Enable', "off");
end
end
% Hints: contents = get (hObject, 'String') returns popupmenul contents as cell array
S contents{get (hObject, 'Value')} returns selected item from popupmenul
% --- Executes during object creation, after setting all properties.
function popupmenul CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenul (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

[

% —--- Executes on selection change in popupmenu3.

function popupmenu3 Callback (hObject, eventdata, handles)

hObject handle to popupmenu3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

val = get (hObject, '"Value');

switch val

case 1

if (strcmp (get (handles.popupmenul, "Enable'),
set (handles.popupmenu8, 'Enable', 'on');
set (handles.checkboxl, 'Value', 1);
set (handles.checkboxl, 'Enable', 'on'");

o°

'off"))

set (handles.popupmenul, 'Enable', 'on') ;
string list = {'Ground'; 'Wheelchair'; 'Gripper';};
set (handles.popupmenu2l, 'String', string list);
end
case 2
if (strcmp (get (handles.popupmenul, "Enable'),

360

'off'))

www.manharaa.com

Appendix B. (Continued)

set (handles.popupmenu8, 'Enable', 'on');
set (handles.checkboxl, 'Value', 1);
set (handles.checkboxl, 'Enable', 'on'");

set (handles.popupmenul, 'Enable', 'on');

string list = {'Ground'; 'Wheelchair'; 'Gripper';};
set (handles.popupmenu2l, 'String', string list);
end
case 3
if (get (handles.popupmenu2l, 'Value') == 3)
set (handles.popupmenu2l, 'Value', 2);
end

string list = get (handles.popupmenu2l, 'String');
set (handles.popupmenu2l, 'String', string list(1:2));

set (handles.popupmenu8, 'Enable', 'off'");
set (handles.checkboxl, 'vValue', 0);
set (handles.checkboxl, 'Enable', 'off');

set (handles.popupmenul, 'Value',2);
set (handles.popupmenul, 'Enable', 'off");
if (get (handles.popupmenul7, 'Value') == 2)
set (handles.edit65, 'Enable', "off");
set (handles.edit66, 'Enable', "off');
)
)

’

set (handles.edit67, 'Enable', 'off"
set (handles.text22, 'Enable', 'off"'
end
if (get (handles.popupmenul7, 'Value'

’

)
set (handles.edit36, 'String', 1);
set (handles.edit37, 'String', 0);
set (handles.edit38, 'String', 0);
set (handles.edit39, 'String', 0);
set (handles.edit40, 'String', 1);
set (handles.edit4l, 'String', 0);
set (handles.edit42, 'String', 0);
set (handles.edit43, 'String', 0);
set (handles.edit44, 'String', 1);
set (handles.edit36, "Enable', "off");
set (handles.edit37, 'Enable', 'off");
set (handles.edit38, 'Enable', "off'");
set (handles.edit39, 'Enable', "off'");

set (handles.edit4l, 'Enable', "off"'
set (handles.edit42, 'Enable', "off"
set (handles.edit43, 'Enable', 'off"'
set (handles.edit44, "Enable', "off"
end

end

Hints: contents = get (hObject, 'String') returns popupmenu3 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenu3

()
()
()
()
set (handles.edit40, 'Enable', "off");
()
()
()
()

o

o°

% —--- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn (hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

ol° o

o

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, "BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

361

www.manharaa.com

Appendix B. (Continued)

% --- Executes on selection change in popupmenud.

function popupmenud4 Callback (hObject, eventdata, handles)

% hObject handle to popupmenu4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get (hObject, 'Value');
switch val

case 1
if (get (handles.popupmenulb, 'Value') == 1)
set (handles.popupmenul6, 'Enable', 'on');
end

set (handles.popupmenull, "Enable', 'on'");
if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenul4, "Enable', 'on'");

end

set (handles.popupmenulQ, 'Enable', 'on');
case 2
if (get (handles.popupmenul5, 'Value') == 1)
set (handles.popupmenul6, 'Enable', 'on');

end

set (handles.popupmenull, "Enable', 'on'");

if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenulé4, 'Enable', 'on');

end

set (handles.popupmenulO, 'Enable', 'on');

case 3
if (get (handles.popupmenul5, 'Value') == 1)
set (handles.popupmenul6, "Enable', 'on'");
end

set (handles.popupmenull, 'Enable', 'on');

if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenul4, "Enable', 'on'");

end

set (handles.popupmenulO, "Enable', 'on'");

case 4
if (get (handles.popupmenu6, 'Value') == 1)
if (get (handles.popupmenul5, 'Value') == 1)
set (handles.popupmenul6, 'Enable', 'off");
end
set (handles.popupmenull, 'Enable', 'off");
if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenul4, "Enable', 'off'");
end
if (get (handles.popupmenu?, 'Value') == 1)
set (handles.popupmenul0, 'Enable', 'off");
end
end
end
% Hints: contents = get (hObject, 'String') returns popupmenué4 contents as cell array
% contents{get (hObject, 'Value')} returns selected item from popupmenu4
% —--- Executes during object creation, after setting all properties.
function popupmenud4 CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

362

www.manharaa.com

Appendix B. (Continued)

% Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

% —--- Executes on selection change in popupmenub6.

function popupmenu6_Callback (hObject, eventdata, handles)

% hObject handle to popupmenué6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get (hObject, '"Value');

switch val

case 1
if (get (handles.popupmenu4, 'Value') == 4)
if (get (handles.popupmenulb, 'Value') == 1)
set (handles.popupmenul6, 'Enable', 'off");
end
set (handles.popupmenull, "Enable', 'off'");
if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenulé4, 'Enable', 'off");
end
if (get (handles.popupmenu7, 'Value') == 1)
set (handles.popupmenul0, 'Enable', 'off");
end
end
case 2
if (get (handles.popupmenul5, 'Value') == 1)
set (handles.popupmenulé6, 'Enable', 'on'");
end

set (handles.popupmenull, 'Enable', 'on');

if (get (handles.popupmenull, 'Value') == 1)
set (handles.popupmenul4, "Enable', 'on'");

end

set (handles.popupmenulO, "Enable', 'on'");
end

o

Hints: contents = get (hObject, 'String') returns popupmenué6 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenub

o

% —--- Executes during object creation, after setting all properties.
function popupmenu6 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenué6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe°

% —-—- Executes on selection change in popupmenu7.

function popupmenu?7 Callback (hObject, eventdata, handles)

hObject handle to popupmenu7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

oe

o

Hints: contents = get (hObject, 'String') returns popupmenu’ contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenu’?

363

oe°

www.manharaa.com

Appendix B. (Continued)

val = get (hObject, 'Value');
switch val

case 1

if ((get(handles.popupmenud4, 'Value') == 4) && (get (handles.popupmenu6, 'Value') ==
1))

set (handles.popupmenulO, 'Enable', 'off'");

end
case 2

set (handles.popupmenulO, 'Enable', 'on');
end
% —--- Executes during object creation, after setting all properties.

function popupmenu?_CreateFcn(hObject, eventdata, handles)

hObject handle to popupmenu7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

% —--- Executes on selection change in popupmenu8.

function popupmenu8 Callback (hObject, eventdata, handles)

hObject handle to popupmenu8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

o°

o

Hints: contents = get (hObject, 'String') returns popupmenu8 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenu8

o°

% —--- Executes during object creation, after setting all properties.
function popupmenu8 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenu8 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

oe

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white'");

o

end

% --- Executes on selection change in popupmenulO.

function popupmenul(O Callback (hObject, eventdata, handles)

% hObject handle to popupmenul0O (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get (hObject, 'String') returns popupmenull contents as cell array
% contents{get (hObject, 'Value')} returns selected item from popupmenulO
% --- Executes during object creation, after setting all properties.

function popupmenulO CreateFcn (hObject, eventdata, handles)

% hObject handle to popupmenul0O (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

oe°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white');

364

oe

www.manharaa.com

Appendix B. (Continued)

end

% —--- Executes on selection change in popupmenulé.

function popupmenul4 Callback (hObject, eventdata, handles)

hObject handle to popupmenul4d (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo o

o

o°

Hints: contents = get (hObject, 'String') returns popupmenul4 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenulé

o

% —--- Executes during object creation, after setting all properties.
function popupmenul4 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenul4d (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oo o

o

o°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white');

o

end

% --- Executes on selection change in popupmenull.

function popupmenull Callback(hObject, eventdata, handles)

% hObject handle to popupmenull (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

val = get (hObject, 'Value');
switch val
case 1

set (handles.popupmenul4, "Enable', 'on'");
case 2

set (handles.popupmenul4, 'Enable', 'off'");
end

o

Hints: contents = get (hObject, 'String') returns popupmenull contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenull

o

% —--- Executes during object creation, after setting all properties.
function popupmenull CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenull (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

)

% -—- Executes on selection change in popupmenulé6.

function popupmenul6 Callback (hObject, eventdata, handles)

hObject handle to popupmenul6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

o°

o°

Hints: contents = get (hObject, 'String') returns popupmenulé contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenulé6

o°

[

% --- Executes during object creation, after setting all properties.
function popupmenul6 CreateFcn(hObject, eventdata, handles)

)

% hObject handle to popupmenulé (see GCBO)

365

www.manharaa.com

Appendix B. (Continued)

o

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o

o°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o

end

% —--- Executes on selection change in popupmenul5.

function popupmenul5 Callback (hObject, eventdata, handles)

% hObject handle to popupmenul5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global VAR WCI
global VAR QI

val = get (hObject, 'Value');
switch val

case 1
if ((get(handles.popupmenu4, 'Value') ~= 4) || (get (handles.popupmenu6, 'Value') ==
2))
set (handles.popupmenul6, 'Enable', 'on');
end

set (handles.edit49, 'String', 1.5708);
set (handles.edit50, 'String', 1.5708);
set (handles.edit51, 'String', 0);

set (handles.edit52, 'String', 1.5708);
set (handles.edit53, 'String', 1.5708);
set (handles.edit54, 'String', 1.5708);
set (handles.edit55, 'String', 0);

set (handles.edit49, 'Enable', 'off")
set (handles.edit50, 'Enable', "off")
set (handles.edit51, "Enable', 'off")
set (handles.edit52, 'Enable', "off");
set (handles.edit53, 'Enable', '"off")
set (handles.edit54, 'Enable', 'off")
set (handles.edit55, "Enable', 'off")

set (handles.pushbutton5, "Enable', 'off'");
set (handles.pushbutton6, 'Enable', 'off");

set (handles.edit56, 'String', 0);
set (handles.editb7, 'String', 0);
set (handles.edit58, 'String', 0);

set (handles.editb56, 'Enable', "off');
set (handles.edit57, 'Enable', "off'");
set (handles.edit58, 'Enable', "off');
case 2
set (handles.popupmenul6, 'Enable', "off");

set (handles.editd49, 'sString', VAR QI(1,1));
set (handles.edit50, 'String', VAR QI(2,1)
set (handles.edit51, 'String', VAR QI (3,

set (handles.edit52, 'string', VAR QI (4,1

1)
)
set (handles.edit53, 'sString', VAR QI(5,1)
)
1)

’

)
)
)
)i
);
)
)

’

set (handles.edit54, 'String', VAR QI (6,1
set (handles.edit55, 'sString', VAR QI(7,

’

’

set (handles.edit49, 'Enable', "off'");
set (handles.edit50, 'Enable', "off'");
)
)

’

set (handles.edit51, 'Enable', "off"'
set (handles.edit52, 'Enable', "off"

’

366

www.manharaa.com

Appendix B. (Continued)

set (handles.edit53, 'Enable', "off");
set (handles.edit54, 'Enable', "off");
set (handles.edit55, 'Enable', "off");

set (handles.pushbutton5, "Enable', 'off'");
set (handles.pushbutton6, 'Enable', 'off'");

set (handles.edit56, 'sString', VAR WCI(1,1));
set (handles.edit57, 'String', VAR WCI(2,1));
set (handles.edit58, 'String', VAR WCI(3,1));

set (handles.edit56, 'Enable', "off'");

set (handles.edit57, 'Enable', "off'");

set (handles.edit58, 'Enable', "off");
case 3

set (handles.popupmenul6, 'Enable', 'off");

set (handles.edit49, "Enable', 'on'
set (handles.edit50, 'Enable', 'o
set (handles.edit51, 'Enable', 'o
set (handles.edit52, 'Enable', '
set (handles.edit53, "Enable', 'o
set (handles.edit54, 'Enable', 'o
set (handles.edit55, 'Enable', 'o

3

’
1

o}

’
"

ol

’

)
)
)
")
)
)
)

e}
=}

o}

’
"

o}

’
1

ol

’

set (handles.pushbutton5, "Enable', 'on'");
set (handles.pushbuttoné6, 'Enable', 'on');

set (handles.edit56, 'Enable', 'on');
set (handles.edit57, 'Enable', 'on');
set (handles.edit58, 'Enable', 'on'");

end

% Hints: contents = get (hObject, 'String') returns popupmenul5 contents as cell array
% contents{get (hObject, 'Value')} returns selected item from popupmenulb

% —--- Executes during object creation, after setting all properties.

function popupmenul5 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenul5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

)

% -—- Executes on selection change in popupmenul9.

function popupmenul9 Callback (hObject, eventdata, handles)

hObject handle to popupmenul9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

oe

o

Hints: contents = get (hObject, 'String') returns popupmenul9 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenul?

o

% —--- Executes during object creation, after setting all properties.
function popupmenul9 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenul9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

>3
S

www.manharaa.com

Appendix B. (Continued)

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

% —--- Executes on selection change in popupmenul?.
function popupmenul?7 Callback (hObject, eventdata,

% hObject handle to popupmenul7 (see GCBO)

% eventdata reserved - to be defined in a future

% handles structure with handles and user data
global VAR SCREENOPN

val = get (hObject, 'Value');

switch val

case 1

if (get (handles.popupmenul, 'Value') == 1)
set (handles.edit36, 'Enable', 'on'")
set (handles.edit37, 'Enable', 'on'")
set (handles.edit38, "Enable', 'on")
set (handles.edit39, 'Enable', 'on'")
set (handles.edit40, 'Enable','on'");
set (handles.edit4l, 'Enable', 'on")
set (handles.edit42, "Enable', 'on")
set (handles.edit43, 'Enable', 'on'")
set (handles.edit44, 'Enable', 'on'")
else

set (handles.edit36, 'String', 1)
set (handles.edit37, 'String', 0)
set (handles.edit38, 'String', 0)
set (handles.edit39, 'String', 0)
set (handles.edit40, 'String', 1);
set (handles.edit4l, 'String', 0)
set (handles.edit42, 'String', 0)
set (handles.edit43, 'String', 0)
set (handles.edit44, 'String', 1)

set (handles.edit36, 'Enable', 'off")
set (handles.edit37, 'Enable', 'off")
set (handles.edit38, 'Enable', "off")
set (handles.edit39, "Enable', 'off")
set (handles.edit40, 'Enable', "off");
set (handles.edit4l, 'Enable', 'off")
set (handles.edit42, 'Enable', 'off")
set (handles.edit43, "Enable', 'off")
set (handles.edit44, 'Enable', 'off")
end

set (handles.editl5, 'Enable','on'");
set (handles.editl6, 'Enable', 'on'");
set (handles.editl7, 'Enable','on'");

set
set
set
set

handles.textl5, "Enable', 'on'")
handles.textl6, "Enable','on');
handles.textl7, 'Enable', 'on")
handles.textl8, "Enable', 'on")

set (handles.edit45, 'Enable','on'");
set (handles.textl4, "Enable', 'on'
set (handles.textl3, 'Enable', 'on'");

andles.pushbutton3, "Enable', 'on'");

andles.edit62, 'Enable', "off'");
andles.edit63, 'Enable', 'off");
handles.edit64, "Enable', 'off");

368

handles)

version of MATLAB
(see GUIDATA)

www.manharaa.com

Appendix B. (Continued)

set (handles.text21, 'Enable', "off');
set (handles.edit65, 'Enable', "off");
set (handles.edit66, 'Enable', "off'");
)
)

’

set (handles.edit67, 'Enable', 'off"
set (handles.text22, 'Enable', 'off"'

’

set (handles.edit4, '"Enable', 'off");
set (handles.text6, 'Enable', 'off");
set (handles.text5, 'Enable', "off'");

.editl, '"Enable', 'off'");
set (handles.textl, 'Enable', "off");
set (handles.text2, '"Enable', 'off");

set (handles.edit69, 'Enable', "off'");
set (handles.text23, 'Enable', 'off");
case 2
set (handles.edit36, 'Enable', 'off")
set (handles.edit37, 'Enable', 'off")
set (handles.edit38, "Enable', 'off")
set (handles.edit39, 'Enable', 'off")
set (handles.edit40, 'Enable', "off");
set (handles.edit4l, 'Enable', 'off")
set (handles.edit42, "Enable', 'off")
set (handles.edit43, 'Enable', 'off")
set (handles.edit44, 'Enable', 'off")

set (handles.editl5, 'Enable', "off'");
set (handles.editl6, 'Enable', "off");
set (handles.editl7, 'Enable', "off");

set (handles.textl5, 'Enable', '"off")
set (handles.textl6, 'Enable', 'off");
set (handles.textl7, 'Enable', "off")
set (handles.textl1l8, 'Enable', 'off")

set (handles.edit45, 'Enable', "off");
set (handles.textl4, 'Enable', "off'");
set (handles.textl3, 'Enable', 'off");

set (handles.pushbutton3, "Enable', 'off'");
set (handles.popupmenu20, 'Enable', "off");

’

set (handles.edit62, 'Enable', 'o
set (handles.edit63, "Enable', 'o
set (handles.edit64, 'Enable', 'o
set (handles.text21, 'Enable', 'o

=}

)
)
)
)

o}

’

o}

’

ol

if (get(handles.popupmenul, 'Value') == 1)
set (handles.edit65, '"Enable', 'on'")
set (handles.edit66, 'Enable','on'");
set (handles.edit67, 'Enable', 'on")
set (handles.text22, 'Enable', 'on'")

end

set (handles.edit4, 'Enable', 'on');
set (handles.text6, 'Enable', 'on');
set (handles.text5, 'Enable', 'on'");

andles.editl, 'Enable', 'off'");
andles.textl, 'Enable', "off'");

369

www.manharaa.com

Appendix B. (Continued)

set (handles.text2, 'Enable', "off'");

set (handles.edit69, 'Enable', "off");
set (handles.text23, 'Enable', 'off");
case 3
set (handles.edit36, "Enable', 'off")
set (handles.edit37, "Enable', 'off")
set (handles.edit38, 'Enable', 'off")
set (handles.edit39, 'Enable', 'off")
set (handles.edit40, 'Enable', "off'");
set (handles.edit4l, "Enable', 'off")
set (handles.edit42, 'Enable', 'off")
set (handles.edit43, 'Enable', 'off")
set (handles.edit44, 'Enable', 'off")

set (handles.editl5, 'Enable', "off");
set (handles.editl6, 'Enable', "off");
set (handles.editl7, 'Enable', "off');

set (handles.textl5, 'Enable', "off")
set (handles.textl6, 'Enable', 'off");
set (handles.textl7, 'Enable', 'off")
set (handles.textl8, 'Enable', '"off")

set (handles.edit45, 'Enable', "off");
set (handles.textl4, 'Enable', "off');
set (handles.textl3, 'Enable', "off'");

set (handles.pushbutton3, 'Enable', 'off");
set (handles.popupmenu20, 'Enable', 'off");

©90090000000000000000000
60000000000 S S

set (handles.edit62, "Enable', 'off")
set (handles.edit63, 'Enable', "off");
set (handles.edit64, 'Enable', '"off")
set (handles.text2l, 'Enable', 'off")

set (handles.edit65, 'Enable', "off")
set (handles.edit66, 'Enable', "off");
set (handles.edit67, 'Enable', 'off")
set (handles.text22, 'Enable', 'off")

set (handles.edit4, "Enable', 'off");
set (handles.text6, 'Enable', "off'");
set (handles.text5, 'Enable', "off");

set (handles.pu

£090000000000000000
6000000600000 00600

set (handles.editl, "Enable', 'on'");
set (handles.textl, 'Enable', 'on'");
set (handles.text2, "Enable', 'on'");

set (handles.edit69, 'Enable', 'off");
set (handles.text23, 'Enable', "off'");
case 4
set (handles.edit36, 'Enable', "off")
set (handles.edit37, 'Enable', '"off")
set (handles.edit38, 'Enable', 'off")
set (handles.edit39, 'Enable', "off")
set (handles.edit40, 'Enable', "off'");
set (handles.edit4l, 'Enable', 'off")
set (handles.edit42, 'Enable', 'off")
set (handles.edit43, 'Enable', "off")
set (handles.edit44, 'Enable', 'off")

set (handles.editl5, 'Enable', "off");
set (handles.editl6, 'Enable', "off'");

www.manharaa.com

Appendix B. (Continued)

set (handles.editl7, 'Enable', "off');
set (handles.textl5, 'Enable', "off");
set (handles.textl6, 'Enable', 'off");
)
)

’

set (handles.textl7, 'Enable', 'off"
set (handles.textl8, 'Enable', 'off"'

’

set (handles.edit45, 'Enable', 'off");
set (handles.textl4, 'Enable', "off'");
set (handles.textl3, 'Enable', "off'");

set (handles.pushbutton3, 'Enable', "off");
set (handles.popupmenu20, 'Enable', '"off");

©90090000000000000000000
50000 S S

set (handles.edit62, "Enable', 'off")
set (handles.edit63, 'Enable', "off");
set (handles.edit64, 'Enable', '"off")
set (handles.text2l, 'Enable', 'off")

set (handles.edit65, 'Enable', "off")
set (handles.edit66, 'Enable', "off");
set (handles.edit67, 'Enable', 'off")
set (handles.text22, 'Enable', 'off")

set (handles.edit4, "Enable', 'off");
set (handles.text6, 'Enable', "off'");
set (handles.text5, 'Enable', "off'");

set (handles.pushbutton4, 'Enable', 'off'");
set (handles.editl, 'Enable', 'on');
set (handles.textl, 'Enable', 'on'");
set (handles.text2, "Enable', 'on'");

set (handles.edit69, 'Enable', 'on');
set (handles.text23, 'Enable', 'on'");
case 5
set (handles.edit36, 'Enable', '"off")
set (handles.edit37, 'Enable', '"off")
set (handles.edit38, "Enable', 'off")
set (handles.edit39, 'Enable', 'off")
set (handles.edit40, 'Enable', "off");
set (handles.edit4l, 'Enable', 'off")
set (handles.edit42, '"Enable', 'off")
set (handles.edit43, 'Enable', "off")
set (handles.edit44, 'Enable', 'off")

set (handles.editl5, 'Enable', "off");
set (handles.editl6, 'Enable', "off'");
set (handles.editl7, 'Enable', 'off");

set (handles.textl5, 'Enable', "off")
set (handles.textl6, 'Enable', "off');
set (handles.textl7, 'Enable', "off")
set (handles.textl1l8, 'Enable', '"off")

set (handles.edit45, 'Enable', "off");
set (handles.textl4, 'Enable', "off'");
set (handles.textl3, 'Enable', "off'");

set (handles.pushbutton3, "Enable', 'off'");
set (handles.popupmenu20, 'Enable', 'off");

set (handles.edit62, 'Enable', "off'");
set (handles.edit63, 'Enable', "off");
set (handles.edit64, 'Enable', "off'");

371

www.manharaa.com

Appendix B. (Continued)

set (handles.text21, 'Enable', "off');
set (handles.edit65, 'Enable', "off");
set (handles.edit66, 'Enable', "off'");
)
)

’

set (handles.edit67, 'Enable', 'off"
set (handles.text22, 'Enable', 'off"'

’

set (handles.edit4, '"Enable', 'off");
set (handles.text6, 'Enable', 'off");
set (handles.text5, 'Enable', "off'");

button4, 'Enable', "off");

© g
°c
© 0

oy

set (handles.editl, 'Enable', 'on');
set (handles.textl, 'Enable', 'on');
set (handles.text2, "Enable', 'on'");

set (handles.edit69, 'Enable', "off'");
set (handles.text23, 'Enable', "off'");

if (VAR _SCREENOPN ~= 1)
WMRA screen ('1');
drawnow;

end

end

o

Hints: contents = get (hObject, 'String') returns popupmenul’7 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenul?

o°

% --- Executes during object creation, after setting all properties.
function popupmenul?7 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenul7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of editl as text
str2double (get (hObject, 'String')) returns contents of editl as a double

o°

% --- Executes during object creation, after setting all properties.
function editl CreateFcn(hObject, eventdata, handles)

% hObject handle to editl (see GCRO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

00 o

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe°

function edit4 Callback (hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

372

www.manharaa.com

Appendix B. (Continued)

handles structure with handles and user data (see GUIDATA)

o

oe°

Hints: get (hObject, 'String') returns contents of edit4 as text
str2double (get (hObject, 'String')) returns contents of edit4 as a double

o°

o

--- Executes during object creation, after setting all properties.
functlon edit4 CreateFcn(hObject, eventdata, handles)

hObject handle to edit4 (see GCRO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

functlon edit36_Callback (hObject, eventdata, handles)

hObject handle to edit36 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o0 oo

o

oe°

Hints: get (hObject, 'String') returns contents of edit36 as text
str2double (get (hObject, 'String')) returns contents of edit36 as a double

o°

% —--- Executes during object creation, after setting all properties.
function edit36_CreateFcn (hObject, eventdata, handles)

hObject handle to edit36 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

functlon edit37 Callback (hObject, eventdata, handles)

hObject handle to edit37 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

o

oe°

Hints: get (hObject, 'String') returns contents of edit37 as text
str2double (get (hObject, 'String')) returns contents of edit37 as a double

o°

> -—- Executes during object creation, after setting all properties.
function edit37 CreateFcn (hObject, eventdata, handles)

hObject handle to edit37 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

oe

functlon edit38 Callback (hObject, eventdata, handles)

hObject handle to edit38 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o0 oo

o

oe°

Hints: get (hObject, 'String') returns contents of edit38 as text

373

www.manharaa.com

Appendix B. (Continued)

o

str2double (get (hObject, 'String')) returns contents of edit38 as a double

% —--- Executes during object creation, after setting all properties.
function edit38 CreateFcn (hObject, eventdata, handles)

hObject handle to edit38 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oo o

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit39 Callback (hObject, eventdata, handles)

% hObject handle to edit39 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit39 as text
str2double (get (hObject, 'String')) returns contents of edit39 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit39 CreateFcn (hObject, eventdata, handles)

hObject handle to edit39 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oo oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit40_Callback (hObject, eventdata, handles)

% hObject handle to edit40 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit40 as text
str2double (get (hObject, 'String')) returns contents of edit40 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit40_CreateFcn (hObject, eventdata, handles)

hObject handle to edit40 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit4l Callback (hObject, eventdata, handles)

% hObject handle to edit4l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit4l as text
str2double (get (hObject, 'String')) returns contents of edit4l as a double

o

oe°

--- Executes during object creation, after setting all properties.

374

www.manharaa.com

Appendix B. (Continued)

function edit4l CreateFcn (hObject, eventdata, handles)

% hObject handle to edit4l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit42 Callback (hObject, eventdata, handles)

hObject handle to edit42 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo o

o

o°

Hints: get (hObject, 'String') returns contents of edit42 as text
str2double (get (hObject, 'String')) returns contents of edit42 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit42 CreateFcn (hObject, eventdata, handles)

hObject handle to edit42 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit43 Callback (hObject, eventdata, handles)

hObject handle to edit43 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

oe°

o

Hints: get (hObject, 'String') returns contents of edit43 as text
str2double (get (hObject, 'String')) returns contents of edit43 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit43 CreateFcn (hObject, eventdata, handles)

hObject handle to edit43 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit44_Callback (hObject, eventdata, handles)

hObject handle to edit44 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo oo

o

o

Hints: get (hObject, 'String') returns contents of edit44 as text
str2double (get (hObject, 'String')) returns contents of edit44 as a double

o

)

% —--- Executes during object creation, after setting all properties.
function edit44 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit44 (see GCRO)

% eventdata reserved - to be defined in a future version of MATLAB

375

www.manharaa.com

Appendix B. (Continued)

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

function editl6 Callback (hObject, eventdata, handles)

% hObject handle to editl6é (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of editl6 as text
str2double (get (hObject, 'String')) returns contents of editl6 as a double

o

3
S

--- Executes during object creation, after setting all properties.
functlon editl6 CreateFcn (hObject, eventdata, handles)

hObject handle to editl6é (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o0 oo

o

oe°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

function editl5 Callback (hObject, eventdata, handles)

% hObject handle to editl5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of editl5 as text
str2double (get (hObject, 'String')) returns contents of editl5 as a double

oe°

% --- Executes during object creation, after setting all properties.
functlon editl5 CreateFcn (hObject, eventdata, handles)

hObject handle to editl5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o

oe°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

functlon editl7 Callback (hObject, eventdata, handles)

hObject handle to editl7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

oe

o

Hints: get (hObject, 'String') returns contents of editl7 as text
str2double (get (hObject, 'String')) returns contents of editl7 as a double

o

5 —--- Executes during object creation, after setting all properties.
functlon editl7 CreateFcn (hObject, eventdata, handles)

hObject handle to editl7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o0 oo

o

oe°

Hint: edit controls usually have a white background on Windows.

376

www.manharaa.com

Appendix B. (Continued)

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

functlon edit49 Callback (hObject, eventdata, handles)

hObject handle to edit49 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

o

o°

Hints: get (hObject, 'String') returns contents of edit49 as text
str2double (get (hObject, 'String')) returns contents of edit49 as a double

o°

% —--- Executes during object creation, after setting all properties.
function edit49 CreateFcn (hObject, eventdata, handles)

hObject handle to edit49 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit50 Callback (hObject, eventdata, handles)

% hObject handle to edit50 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit50 as text
str2double (get (hObject, 'String')) returns contents of edit50 as a double

o°

% —--- Executes during object creation, after setting all properties.
function edit50 CreateFcn (hObject, eventdata, handles)

hObject handle to edit50 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit51 Callback (hObject, eventdata, handles)

% hObject handle to edit5l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit5l as text
str2double (get (hObject, 'String')) returns contents of edit5l1 as a double

oe

% —--- Executes during object creation, after setting all properties.
function edit51 CreateFcn (hObject, eventdata, handles)

hObject handle to edit5l (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
377

o

www.manharaa.com

Appendix B. (Continued)

set (hObject, 'BackgroundColor', 'white');
end

functlon edit52 Callback (hObject, eventdata, handles)

hObject handle to edit52 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo o

o

o°

Hints: get (hObject, 'String') returns contents of edit52 as text
str2double (get (hObject, 'String')) returns contents of edit52 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit52 CreateFcn (hObject, eventdata, handles)

hObject handle to edit52 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oo o

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit53 Callback (hObject, eventdata, handles)

hObject handle to edit53 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo oo

o

o

Hints: get (hObject, 'String') returns contents of edit53 as text
str2double (get (hObject, 'String')) returns contents of edit53 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit53 CreateFcn (hObject, eventdata, handles)

hObject handle to edit53 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit54 Callback (hObject, eventdata, handles)

hObject handle to edit54 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o

o

o

Hints: get (hObject, 'String') returns contents of edit54 as text
str2double (get (hObject, 'String')) returns contents of edit54 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit54_ CreateFcn (hObject, eventdata, handles)

hObject handle to edit54 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oo oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

378

www.manharaa.com

Appendix B. (Continued)

function edit55 Callback (hObject, eventdata, handles)

% hObject handle to edit55 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit55 as text
str2double (get (hObject, 'String')) returns contents of edit55 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit55 CreateFcn (hObject, eventdata, handles)

hObject handle to edit55 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit56 Callback (hObject, eventdata, handles)

% hObject handle to edit56 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit56 as text
str2double (get (hObject, 'String')) returns contents of edit56 as a double

o

o

--- Executes during object creation, after setting all properties.
function edit56 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit56 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe°

function edit57 Callback (hObject, eventdata, handles)

% hObject handle to edit57 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit57 as text
str2double (get (hObject, 'String')) returns contents of edit57 as a double

o

% --- Executes during object creation, after setting all properties.
functlon edit57 CreateFcn (hObject, eventdata, handles)

hObject handle to edit57 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit58 Callback (hObject, eventdata, handles)
% hObject handle to edit58 (see GCRO)
% eventdata reserved - to be defined in a future version of MATLAB

379

www.manharaa.com

Appendix B. (Continued)

handles structure with handles and user data (see GUIDATA)

o

oe°

Hints: get (hObject, 'String') returns contents of edit58 as text
str2double (get (hObject, 'String')) returns contents of edit58 as a double

o°

o

--- Executes during object creation, after setting all properties.
functlon edit58 CreateFcn (hObject, eventdata, handles)

hObject handle to edit58 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

functlon edit45 Callback (hObject, eventdata, handles)

hObject handle to edit45 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o0 oo

o

oe°

Hints: get (hObject, 'String') returns contents of edit45 as text
str2double (get (hObject, 'String')) returns contents of edit45 as a double

o°

% —--- Executes during object creation, after setting all properties.
function edit45 CreateFcn (hObject, eventdata, handles)

hObject handle to edit45 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o°

[

% —--- Executes on selection change in popupmenu20.

function popupmenu20 Callback (hObject, eventdata, handles)

hObject handle to popupmenu20 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o

o

o°

Hints: contents = get (hObject, 'String') returns popupmenu20 contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenu20

o

% —--- Executes during object creation, after setting all properties.
function popupmenu20 CreateFcn (hObject, eventdata, handles)

hObject handle to popupmenu20 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o°

oe

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit62 Callback (hObject, eventdata, handles)

% hObject handle to edit62 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

380

www.manharaa.com

Appendix B. (Continued)

o

Hints: get (hObject, 'String') returns contents of edit62 as text
str2double (get (hObject, 'String')) returns contents of edit62 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit62 CreateFcn (hObject, eventdata, handles)

hObject handle to edit62 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit63_Callback (hObject, eventdata, handles)

hObject handle to edit63 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o

o

o

Hints: get (hObject, 'String') returns contents of edit63 as text
str2double (get (hObject, 'String')) returns contents of edit63 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit63 CreateFcn (hObject, eventdata, handles)

hObject handle to edit63 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o°

functlon edit64_Callback (hObject, eventdata, handles)

hObject handle to edit64 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo o

oe°

o

Hints: get (hObject, 'String') returns contents of edit64 as text
str2double (get (hObject, 'String')) returns contents of edit64 as a double

--- Executes during object creation, after setting all properties.

function edit64_CreateFcn (hObject, eventdata, handles)

hObject handle to edit64 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

o° o o oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit65 Callback (hObject, eventdata, handles)

% hObject handle to edit65 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit65 as text
str2double (get (hObject, 'String')) returns contents of edit65 as a double

o

oe°

--- Executes during object creation, after setting all properties.

381

www.manharaa.com

Appendix B. (Continued)

function edit65 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit65 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit66_Callback (hObject, eventdata, handles)

hObject handle to edit66 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo o

o

o°

Hints: get (hObject, 'String') returns contents of edit66 as text
str2double (get (hObject, 'String')) returns contents of edit66 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit66 CreateFcn (hObject, eventdata, handles)

hObject handle to edit66 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

functlon edit67_Callback (hObject, eventdata, handles)

hObject handle to edit67 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

oe°

o

Hints: get (hObject, 'String') returns contents of edit67 as text
str2double (get (hObject, 'String')) returns contents of edit67 as a double

o

% —--- Executes during object creation, after setting all properties.
function edit67 CreateFcn (hObject, eventdata, handles)

hObject handle to edit67 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

o°

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

)

% —--- Executes on selection change in popupmenu2l.

function popupmenu2l Callback (hObject, eventdata, handles)

hObject handle to popupmenu2l (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

oe

o

Hints: contents = get (hObject, 'String') returns popupmenu?2l contents as cell array
contents{get (hObject, 'Value')} returns selected item from popupmenu2l

oe°

[

% --- Executes during object creation, after setting all properties.
function popupmenu2l CreateFcn(hObject, eventdata, handles)

)

% hObject handle to popupmenu2l (see GCBO)

382

www.manharaa.com

Appendix B. (Continued)

o

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o

o°

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit69 Callback (hObject, eventdata, handles)

% hObject handle to edit69 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

00 o

o

o

Hints: get (hObject, 'String') returns contents of edit69 as text
str2double (get (hObject, 'String')) returns contents of edit69 as a double

oo

% —--- Executes during object creation, after setting all properties.
function edit69 CreateFcn (hObject, eventdata, handles)

hObject handle to edit69 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

[

% —--- Executes on button press in pushbutton3.

function pushbutton3 Callback (hObject, eventdata, handles)

hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR MATRIX

o°

o

if (get (handles.popupmenul, 'Value') == 1)
WMRA matrix entry('(3 x 4)");
TS = str2num (VAR MATRIX) ;
[row col] = size(TS);

if ((row == 3) && (col == 4))

set (handles.edit36, 'String', TS(1,1))

set (handles.edit37, 'String', TS(1,2))

set (handles.edit38, 'String', TS(1,3))

set (handles.editlé6, 'String', TS(1,4))

set (handles.edit39, 'String', TS(2,1));

set (handles.edit40, 'String', TS(2,2));
))
))
))
))
))
))

’
’

’

’

’

set (handles.edit4l, 'String', TS(2,3
set (handles.editl5, 'String', TS(2,4
set (handles.edit42, 'String', TS(3,1
set (handles.edit43, 'String', TS(3,2
set (handles.edit44, 'String', TS(3,3
set (handles.editl7, 'String', TS(3,4

else
WMRA error_gui ('Matrix size wrong. Size (3 x 4) expected');

end

else

WMRA matrix entry('(3 x 1)");

TS = str2num (VAR MATRIX) ;

[row col] = size(TS);

’

’

’

’

’

if ((row == 3) && (col == 1))
set (handles.editl6, 'String', TS(1,1));

383

www.manharaa.com

Appendix B. (Continued)

set (handles.editl5, 'String', TS(2,1));
set (handles.editl?7, 'String', TS(3,1)):

else
WMRA error_gui ('Matrix size wrong. Size (3 x 1) expected');
end
end
% —--- Executes on button press in pushbutton4.

function pushbutton4 Callback (hObject, eventdata, handles)

hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
global VAR MATRIX

o

o

if (get (handles.popupmenul, 'Value') == 1)
WMRA matrix entry('(2 x 3)'");
TS = Str2num(VAR_MATRIX);
[row col] = size(TS);

if ((row == 2) && (col == 3))
set (handles.edit62, 'String', TS(1l,1
set (handles.edit63, 'String', TS(1,2
set (handles.edit64, 'String', TS(1,3
set (handles.edit65, 'String', TS(2,1
set (handles.edit66, 'String', TS(2,2
set (handles.edit67, 'String', TS(2,3

else
WMRA error_gui ('Matrix size wrong. Size (2 x 3) expected');

end

else

WMRA matrix entry('(l x 3)");

TS = str2num (VAR MATRIX) ;

[row col] = size(TS);

);
)i
)
).
)
)

’

’

’

if ((row == 1) && (col == 3))
set (handles.edit62, 'String', TS(1,1)):
set (handles.edit63, 'String', TS(1,2));
set (handles.edit64, 'String', TS(1,3));

else
WMRA error gui ('Matrix size wrong. Size (1 x 3) expected');

end
end
% —--- Executes on button press in pushbuttonb5.
function pushbutton5 Callback (hObject, eventdata, handles, varargin)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global VAR MATRIX

WMRA matrix entry('(3 x 1)");
TS = str2num (VAR MATRIX) ;

[row col] = size(TS);

if ((row == 3) && (col == 1))
set (handles.editb56, 'String', TS(1,1));
set (handles.edit57, 'String', TS(2,1)):
set (handles.edit58, 'String', TS(3,1));
else
WMRA error gui ('Matrix size wrong. Size (3 x 1) expected');
end
% —--- Executes on button press in pushbuttoné6.
function pushbutton6 Callback (hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

384

www.manharaa.com

Appendix B. (Continued)

)

% handles structure with handles and user data
global VAR MATRIX

WMRA matrix entry (' (7 x 1)');
TS = str2num (VAR MATRIX) ;

[row col] = size(TS);
if ((row == 7) && (col == 1))

set (handles.edit49, 'String', TS(1,1));

set (handles.edit50, 'String', TS(2,1));

set (handles.edit51, 'String', TS(3,1)):

set (handles.edit52, 'String', TS(4,1));

set (handles.editb3, 'String', TS(5,1));

set (handles.editb54, 'String', TS(6,1));

set (handles.edit55, 'String', TS(7,1)):
else

WMRA error_gui ('Matrix size wrong. Size (7 x
end
% —--- Executes on button press in pushbuttonl.
function pushbuttonl Callback (hObject, eventdata,
% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future
% handles structure with handles and user data

global VAR _STOP

VAR STOP = 1;
drawnow;

’

set (handles.pushbuttonl, 'Enable', 'off");
set (handles.pushbutton7, 'Enable', 'off")
set (handles.pushbutton8, "Enable', 'on'");
set (handles.pushbutton2, 'Enable', 'on'");
% --- Executes on button press in pushbutton2.
function pushbutton2 Callback (hObject, eventdata,
% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future
% handles structure with handles and user data
VAR_STOP

VAR_DX

VAR _SCREENOPN

VAR WCI

VAR QI

spdatal

VAR_LOOP

VAR DX = [0;0;0;0;0;0;0];
VAR_STOP = 0;

error = 0;
notfilled = 0;
td err = 0;

ts_err = 0;

set (handles.pushbuttonl, 'Enable', 'on');
set (handles.pushbutton2, 'Enable', 'off'");
set (handles.pushbutton8, 'Enable', "off")

~

if (get (handles.popupmenul7, 'Value') ==

| | (get(handles.popupmenul7, 'Value')
set (handles.pushbutton7, "Enable', 'on'
VAR_LOOP = 1;

end

cart =

get (handles.popupmenul, 'Value');

385

(see GUIDATA)

1) expected');

handles)

version of MATLAB
(see GUIDATA)

handles)

version of MATLAB
(see GUIDATA)

|| (get (handles.popupmenul?,

'Value') == 4)

www.manharaa.com

Appendix B. (Continued)

WCA = get (handles.popupmenu3, 'Value');
if WCA == 3

optim = 0;
JLA = 0;
JLO = get (handles.checkbox2, 'Value');

else
optim = get (handles.popupmenu8, 'Value');
JLA = get (handles.checkboxl, 'Value');
JLO = get (handles.checkbox2, 'Value');
end

coord = get (handles.popupmenu2l, 'Value');

tl = get (handles.popupmenu4, 'Value');

if tl == 1
vr = 1;
ml = 0;
elseif tl == 2
vr = 0;
ml = 1;
elseif tl ==
vr = 1;
ml = 1;
else
vr = 0;
ml = 0;
end

arm = get (handles.popupmenu6, 'Value');

arm = arm - 1;

plt = get (handles.popupmenu7, 'Value');
choice8 = get (handles.popupmenulO, 'Value');

drawnow;
if VAR STOP ==
stop = 1;
else
stop = 0;
end
if stop == 0
cont = get (handles.popupmenul7, 'Value');
if cont ==
if cart ==
v_str = get(handles.edit36, 'String');
v_1 = str2double(v_str);
if isnan (v_1)
error = 1;
notfilled = 1;
end
if (v.1 >1) || (v_.1 < -1)
error = 1;
td_err = 1;
end
v_str = get(handles.edit37, 'String');
v_2 = str2double(v_str);
if isnan (v_2)
error = 1;
notfilled = 1;
end
if (v.2 > 1) || (v_2 < -1)
error = 1;
td_err = 1;
end
v_str = get(handles.edit38, 'String');
v_3 = str2double(v_str);

386

www.manharaa.com

Appendix B. (Continued)

if isnan (v_3)
error = 1;
notfilled = 1;

end

if (v.3 > 1) || (v.3 < -1)
error = 1;
td err = 1;

end

v_str = get(handles.edit39, 'String');

v_5 = str2double(v_str);

if isnan (v_5)
error = 1;
notfilled = 1;

end

if (v.5 > 1) || (v.5 < -1)
error = 1;
td_err = 1;

end

v_str = get(handles.edit40, 'String');

v_6 = str2double(v_str);

if isnan (v_6)
error = 1;
notfilled = 1;

end

if (v_6 > 1) || (v_6 < -1)
error = 1;
td err = 1;

end

v_str = get(handles.edit4l, 'String');

v_7 = str2double(v_str);

if isnan (v_7)
error = 1;
notfilled = 1;

end

if (v.7 > 1) || (v.7 < -1)
error = 1;
td_err = 1;

end

v_str = get(handles.edit42, 'String');

v_9 = str2double(v_str);

if isnan (v_9)
error = 1;
notfilled = 1;

end

if (v.9 > 1) || (v_9 < -1)
error = 1;
td err = 1;

end

v_str = get(handles.edit43, 'String');

v_10 = str2double(v_str);

if isnan (v_10)
error = 1;
notfilled = 1;

end

if (v_10 > 1)
error = 1;
td_err = 1;

end

v_str = get(handles.edit44, 'String');

v_11 = str2double(v_str);

if isnan (v_11)
error = 1;
notfilled = 1;

end

if (v_11 > 1)
error = 1;

[l (v 10 < -1)

[(v 11 < -1)

387

www.manharaa.com

Appendix B. (Continued)

td err = 1;
end

else

v 1=1;

v 2 =0;

v_3 = 0;

v_5 = 0;

v_6 =1;

v_7=20;

v_9 =20;

v 10 = 0;

v_ 11 = 1;
end
v_str = get(handles.editl6, 'String');
v_4 = str2double(v_str);
if isnan (v_4)

error = 1;

notfilled = 1;
end
v_str = get(handles.editl5, 'String');
v_8 = str2double(v_str);
if isnan (v_8)

error = 1;

notfilled = 1;
end
v_str = get(handles.editl7, 'String');
v_12 = str2double(v_str);
if isnan (v_12)

error = 1;

notfilled = 1;
end

Td = [v_.1 v 2 v .3v 4; v.5v 6v_7v 8 v_9v 10 v 11 v_12; 0 0 0 1];

temp_str = get (handles.edit45, 'String');
v = str2double (temp str);
if isnan (v)
error = 1;
notfilled = 1;
end
trajf = get (handles.popupmenu20, 'Value');
elseif cont ==
v_str = get(handles.edit62, 'String');

v 1 = str2double(v_str);
if isnan (v_1)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit63, 'String');
v_2 = str2double(v_str);
if isnan (v_2)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit64, 'String');
v_3 = str2double(v_str);
if isnan (v_3)
error = 1;
notfilled = 1;
end
if (cart == 1)
v_str = get(handles.edit65, 'String');
v_4 = str2double(v_str);
if isnan (v_4)
error = 1;
notfilled = 1;
end

388

www.manharaa.com

Appendix B. (Continued)

v_str = get(handles.edit66, 'String');

v_5 = str2double(v_str);
if isnan (v_5)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit67, 'String');
v_6 = str2double(v_str);
if isnan (v_6)
error = 1;
notfilled = 1;
end
end
if (cart == 1)
vd = [v_1; v_2; v_3; v_4; v_5; v_6];
else
vd = [v_1; v_2; v_3];
end

temp str = get (handles.edit4, 'String');
ts = str2double (temp_str);
if isnan (ts)

error = 1;
notfilled = 1;
end
if ts < 0
error = 1;
ts err = 1;
end
else

temp str = get (handles.editl, 'String');
v = str2double (temp_str);
if isnan (v)

error = 1;
notfilled = 1;
end
if cont ==

temp_str = get (handles.edit69, 'String');
portl = str2double (temp str);
if isnan (portl)

error = 1;
notfilled = 1;
end
end
end
end
if stop ==
drawnow;
if VAR STOP ==
stop = 1;
else
stop = 0;
end
if stop ==
start = get(handles.popupmenul5, 'Value');
if start ==
if vr == || ml == || arm ==
if (get (handles.popupmenul6, 'Value') == 1)
ini = 1;
else
ini = 0;
end
else
ini = 0;

389

www.manharaa.com

Appendix B. (Continued)

end
gi = [90;90;0;90;90;90;0] * pi/180;
VAR QT = qi;

WCi = [0;0;01;
VAR WCI = WCi;
else
v_str = get(handles.edit49, 'String');
v_1 = str2double(v_str);
if isnan (v_1)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit50, 'String');
v_2 = str2double(v_str);
if isnan (v_2)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit5l, 'String');
v_3 = str2double(v_str);
if isnan (v_3)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit52, 'String');
v_4 = str2double(v_str);
if isnan (v_4)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit53, 'String');
v_5 = str2double(v_str);
if isnan (v_5)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit54, 'String');
v_6 = str2double(v_str);
if isnan (v_6)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit55, 'String');
v_7 = str2double(v_str);
if isnan (v_7)
error = 1;
notfilled = 1;
end

gl = [v_1; v.2; v.3; v_4; v .5 v 6; v_7];
VAR QT = qgi;

v_str = get(handles.edit56, 'String');
v_1 = str2double(v_str);
if isnan (v_1)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit57, 'String');
v_2 = str2double(v_str);
if isnan (v_2)
error = 1;
notfilled = 1;
end
v_str = get(handles.edit58, 'String');
v_3 = str2double(v_str);
if isnan (v_3)

390

www.manharaa.com

Appendix B. (Continued)

error = 1;
notfilled = 1;

end

WCi = [v_1; v_2; v_3];

VAR WCI = WCi;

ini = 0;
end

choice6 = get (handles.popupmenull, 'Value');
if (choice6 == 1)
choice7 = get (handles.popupmenuld, 'Value');
end
end
end

if (error == 1)
if notfilled ==

WMRA error gui ('One or more required inputs are not filled or filled wrongly');
end
if td_err ==
WMRA_error_gui ('Elements of Rd (Rotation Matrix) should be in between -1 to
+11)
end
if ts_err ==
WMRA_error_gui ('Ts should be greater than zero');
end
end
if cont ==
if (VAR SCREENOPN ~= 1)
WMRA screen ('1'");
drawnow;
end
end

% Declaring a global variable for Optimization in WMRA Opt():

global dHo
if (stop == 0) && (error == 0) %Redwan's Code Entry
drawnow;
if VAR STOP ==
stop = 1;
else
stop = 0;
end
if stop == 0 % lst point

% This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots
for 9 DOF. All angles are in Radians.

% Defining used parameters:
d2r=pi/180; % Conversions from Degrees to Radians.
r2d=180/pi; % Conversions from Radians to Degrees.
% Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:

L=WMRA_WCD;

)

% Calculating the Transformation Matrix of the initial position of the WMRA's

base:

Tiwc=WMRA p2T (WCi (1),WCi (2),WCi(3));

)

% Calculating the initial Wheelchair Variables:
giwc=[sqrt (WCi (1) "2+WCi (2)~2) ;WCi(3)];

% Calculating the initial transformation matrices:

391

www.manharaa.com

Appendix B. (Continued)

[Ti, Tia, Tiwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall(l, gi, [0;0], Tiwc);

if cont==
% Calculating the linear distance from the initial position to the desired
position and the linear velocity:
if coord==
D=sqrt((Td(1l,4)-Tia(1,4))"2 + (Td(2,4)-Tia(2,4))"2 + (Td(3,4)-
Tia(3,4))"2);
elseif coord==3
D=sqrt((Td(1,4))"2 + (Td(2,4))"2 + (Td(3,4))"2);
else
D=sqgrt((Td(1,4)-Ti(1,4))"2 + (Td(2,4)-Ti(2,4))"2 + (Td(3,4)-Ti(3,4))"2);
end
% Calculating the number of iteration and the time increment (delta t) if the
linear step increment of the tip is 1 mm:

dt=0.05; % Time increment in seconds.

total time=D/v; % Total time of animation.

n=round (total_ time/dt); % Number of iterations rounded up.
dt=total time/n; % Adjusted time increment in seconds.

)

% Calculating the Trajectory of the end effector, and once the trajectory is
calculated, we should redefine "Td" based on the ground frame:
if coord==2
Tt=WMRA traj(trajf, Tia, Td, n+l);
Td=Tiwc*Td;
elseif coord==3
Tt=WMRA traj(trajf, eye(4), Td, n+l);
Td=T1i*Td;
else
Tt=WMRA traj(trajf, Ti, Td, n+l);
end
elseif cont==
% Calculating the number of iteration and the time increment (delta t) if the
linear step increment of the gripper is 1 mm:

dt=0.05; % Time increment in seconds.
total time=ts; % Total time of animation.
n=round (total time/dt); % Number of iterations rounded up.
dt=total time/n; % Adjusted time increment in seconds.
dx=vd*dt;
Td=Ti;

elseif cont==
dt=0.05;

dx=v*dt* [spdatal (3) /20 ; -spdatal(l)/40 ; spdatal(2)/30 ; spdatal(6)/1500 ; -
spdatal (4) /900 ; spdatal(5)/1300];

dg=spdatal (7);
Td=Ti;
n=1;

elseif cont==4
dt=0.05;
dx=v*dt*WMRA psy (portl);
dg=dx (7) ;
dx=dx (1:6) ;
Td=Ti;
n=1;

else
dt=0.05;
dx=v*dt*VAR DX (1:6);
dg=VAR DX (7);
Td=Ti;
n=1;

end

drawnow;

if VAR STOP == 1
stop = 1;

else

stop = 0;

392

www.manharaa.com

Appendix B. (Continued)

end
if stop == % 2nd point

% Initializing the joint angles, the Transformation Matrix, and time:
dg=zeros(9,1);

dg=0;

go=[qgi;qgiwc];

To=Ti;

Toa=Tia;

Towc=Tiwc;

tt=0;

i=1;

dHo=[0;0;0;0;0;0;01;

% Initializing the WMRA:

)

if ini== % When no "park" to "ready" motion required.
% Initializing Virtual Reality Animation:
if vr==
WMRA VR Animation(l, Towc, go);
end
% Initializing Robot Animation in Matlab Graphics:
if ml==
WMRA ML Animation(l, To, Td, Towc, TOl1l, T12, T23, T34, T45, T56,
T67) ;
end
% Initializing the Physical Arm:
if arm==
WMRA ARM Motion(1l, 2, [go;dgl, 0);
ddt=0;
end
elseif ini==1 && (vr==1 || ml==
is required.

[

| arm==1) % When "park" to "ready" motion

WMRA park2ready(l, vr, ml, arm, Towc, go(8:9));
if arm==
ddt=0;
end
end

% Re-Drawing the Animation:
if vr==1 || ml==

drawnow;
end

% Starting a timer:

tic
drawnow;
if VAR STOP ==
stop = 1;
else
stop = 0;
end

)

% Starting the Iteration Loop:

while (i<=(n+l)) && (stop == 0) % 3rd point

% Calculating the 6X7 Jacobian of the arm in frame O:
[Joa,detJoa]=WMRA J07(TO1, T12, T23, T34, T45, T56, T67);

[

)

% Calculating the 6X2 Jacobian based on the WMRA's base in the ground
frame:

phi=atan2 (Towc(2,1),Towc (1,1));

Jowc=WMRA Jga (1, phi, Toa(l:2,4));

% Changing the Jacobian reference frame based on the choice of which
coordinates frame are referenced in the Cartesian control:

393

www.manharaa.com

Appendix B. (Continued)

% coord=1 for Ground Coordinates Control.
% coord=2 for Wheelchair Coordinates Control.
% coord=3 for Gripper Coordinates Control.
if coord==2
Joa=Joa;
Jowc=[Towc (1:3,1:3)"' zeros(3); zeros(3) Towc(l:3,1:3)"']*Jowc;
elseif coord==
Joa=[Toa(1:3,1:3)"' zeros(3); zeros(3) Toa(l:3,1:3)"']*Joa;
Jowc=[To(1:3,1:3)"' zeros(3); zeros(3) To(1l:3,1:3)"']*Jowc;
elseif coord==
Joa=[Towc (1:3,1:3) zeros(3); zeros(3) Towc(l:3,1:3)]*Joa;
Jowc=JowcC;
end

% Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system based
on the ground frame:
if cart==
Joa=Joa (1:3,1:7);
detJoa=sqrt (det (Joa*Joa')) ;
Jowc=Jowc (1:3,1:2);
Jo=[Joa Jowc];
detJo=sqgrt (det (Jo*Jo')) ;
else
Jo=[Joa Jowc];
detJo=sqgrt (det (Jo*Jo"'")) ;
end

% Finding the Cartesian errors of the end effector:
if cont==
% Calculating the Position and Orientation errors of the end
effector, and the rates of motion of the end effector:
if coord==
invTowc=[Towc(1:3,1:3)"' , -Towc(1:3,1:3)"'*Towc(1:3,4);0 0 0 1];
Ttnew=invTowc*Tiwc*Tt (:, :,1);
dx=WMRA delta(Toa, Ttnew);
elseif coord==
invTo=[To(1:3,1:3)"' , -To(1:3,1:3)"*To(1:3,4);0 0 0 1];
Ttnew=invTo*Ti*Tt (:, :,1);
dx=WMRA delta(eye (4), Ttnew);
else
dx=WMRA delta(To, Tt(:,:,1));
end
elseif cont==

elseif cont==

dx=v*dt* [spdatal (3) /20 ; -spdatal(l)/40 ; spdatal(2)/30 ;
spdatal (6) /1500 ; -spdatal(4)/900 ; spdatal(5)/1300];

dg=spdatal (7);

elseif cont==
dx=v*dt*WMRA_ psy (portl);
dg=dx (7) ;
dx=dx (1:6) ;

else
dx=v*dt*VAR DX (1:6);
dg=VAR DX (7) ;

end

% Changing the order of Cartesian motion in the case when gripper
reference frame is selected for control with the screen or psy or SpaceBall interfaces:
if coord==3 && cont>=3
dx=[-dx (2);-dx (3);dx (1) ;-dx (5);-dx (6);dx(4)];
end

if cart==
dx=dx (1:3);
end

394

www.manharaa.com

Appendix B. (Continued)

% Calculating the resolved rate with optimization:
% Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= SR-I &
ENE, 4= P-I & ENE:

if WCA==2
dg=WMRA Opt (optim, JLA, JLO, Joa, detJoa, dq(l:7), dx, dt, qgo);
dg=[dqg;0;0];

elseif WCA==3
dg=WMRA Opt (optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 1);
dg=10;0;0;0;0;0;0;dq];

else
dg=WMRA Opt (optim, JLA, JLO, Jo, detJo, dq, dx, dt, qgo);

end

drawnow;
if VAR STOP ==
stop = 1;
else
stop = 0;
end

)

if stop == % 4nd point
% Calculating the new Joint Angles:
an=qgo+dqg;

% Calculating the new Transformation Matrices:
[Tn, Tna, Tnwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall(2, gn,
dg(8:9), Towc);
% A safety condition function to stop the joints that may cause
colision of the arm with itself, the wheelchair, or the human user:
if JLO==1 && WCA~=3
dg(1l:7)=WMRA collide(dq(1:7), TO01, T12, T23, T34, T45, T56, T67);
% Re-calculating the new Joint Angles:
gn=qgo+dg;
% Re-calculating the new Transformation Matrices:
[Tn, Tna, Tnwc, TO1l, T12, T23, T34, T45, T56, T67]=WMRA Tall (2,
an, dg(8:9), Towc);
end

% Saving the plot data in case plots are required:
if plt==
WMRA Plots(l, L, r2d, dt, i, tt, gn, dgq, Tn, Tnwc, detJoa,

detJo) ;
end
% Updating Physical Arm:
if arm==
ddt=ddt+dt;
if ddt>=0.5 || i>=(n+1)
WMRA ARM Motion (2, 1, [gn;dg], ddt);
ddt=0;
end
end
% Updating Virtual Reality Animation:
if vr==
WMRA VR Animation (2, Tnwc, gn);
end
% Updating Matlab Graphics Animation:
if ml==
WMRA ML_Animation(2, Ti, Td, Tnwc, TO1, T12, T23, T34, T45, T56,
T67) ;

end

395

www.manharaa.com

Appendix B. (Continued)

% Re-Drawing the Animation:
if vr==1 || ml==

drawnow;
end

% Updating the old values with the new values for the next iteration:
go=dn;

To=Tn;

Toa=Tna;

Towc=Tnwc;

tt=tt+dt;

i=i+1;

% Stopping the simulation when the exit button is pressed:

if cont==3 || cont==
if (VAR _LOOP == 1)
n=n+1;
else
break
end
end
if cont==
if (VAR SCREENOPN == 1) && (VAR LOOP == 1)
n=n+1;
else
break
end
end

% Delay to comply with the required speed:
if toc < tt
pause (tt-toc) ;

end
end
drawnow; % 5th point
if VAR STOP ==
stop = 1;
else
stop = 0;
end
end
drawnow; % 6th point
if VAR STOP ==
stop = 1;
else
stop = 0;
end
if stop == % 7th point
% Reading the elapsed time and printing it with the simulation time:
if cont==1 || cont==2, fprintf('\nSimulation time is %$6.6f seconds.\n' ,
total time); end
toc

% Plotting:

if plt==

WMRA Plots(2, L, r2d, dt, i, tt, gn, dgq, Tn, Tnwc, detJoa, detJo);
end
if vr==1 || ml==1 || arm==

% Going back to the ready position:
if choiceéb==
WMRA any2ready (2, vr, ml, arm, Tnwc, gn);

396

www.manharaa.com

Appendix B. (Continued)

% Going back to the parking position:
if choice7==
WMRA ready2park(2, vr, ml, arm, Tnwc, gn(8:9));
end
end

[

% Closing the Arm library and Matlab Graphics Animation and Virtual

Reality Animation and Plots windows:or press "2" for No. \n','s'");
if choice8==
if arm==
WMRA ARM Motion(3, 0, 0, 0);
end
if vr==
WMRA_ VR Animation(3, 0, 0);
end
if ml==
WMRA ML _Animation(3, 0, 0, O, O, 0, O, 0, O, 0, 0);
end
if plt==
close
(figure (2),figure(3), figure (4), figure(5),figure(6), figure (7), figure(8),figure(9), figure (1
0));
end
end
end
end
end
end
end

VAR QI = gn(1:7);
VAR WCI = [Tnwc(1l,4); Tnwc(2,4); phil;

if (get (handles.popupmenul5, 'Value') == 2)
set (handles.edit49, 'string', VAR QI(1,1))
set (handles.edit50, 'string', VAR QI(2,1))
set (handles.edit5l, 'String', VAR QI(3,1));
set (handles.edit52, 'String', VAR QI(4,1));

))
))
))

’

’

set (handles.edit53, 'String', VAR QI(5,1));
set (handles.edit54, 'sString', VAR QI(6,1

set (handles.edit55, 'String', VAR QI (7,1

’

’

set (handles.edit56, 'sString', VAR WCI(1,1));

set (handles.edit57, 'sString', VAR WCI(2,1));

set (handles.edit58, 'String', VAR WCI(3,1));
end

’

set (handles.pushbuttonl, "Enable', 'off'");
set (handles.pushbutton7, 'Enable', 'off")
set (handles.pushbutton2, "Enable', 'on'");
set (handles.pushbutton8, 'Enable', 'on'");

% —--- Executes on button press in pushbutton7.

function pushbutton7 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global VAR LOOP

VAR _LOOP = 0;
drawnow;

set (handles.pushbuttonl, "Enable', 'off'");
set (handles.pushbutton7, "Enable', 'off'");

397

www.manharaa.com

Appendix B. (Continued)

set (handles.pushbutton2, 'Enable', 'on'");
set (handles.pushbutton8, "Enable', 'on'");
% —--- Executes on button press in checkboxl.

function checkboxl Callback (hObject, eventdata, handles)

hObject handle to checkboxl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

o

o

Hint: get (hObject, 'Value') returns toggle state of checkboxl

% —--- Executes on button press in checkbox2.

function checkbox2 Callback (hObject, eventdata, handles)

hObject handle to checkbox2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o

o

o

Hint: get (hObject, 'Value') returns toggle state of checkbox2
% —--- Executes on button press in pushbutton8.

function pushbutton8 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
55%5%5%%%%%5%%%%%%%1lst coll
set (handles.popupmenul, 'Enable', 'on') ;

set (handles.popupmenul, 'Value', 1) ;

set (handles.popupmenu3, 'Enable', 'on');
set (handles.popupmenu3, 'Value', 1) ;

set (handles.popupmenu2l, 'Enable', 'on');
set (handles.popupmenu2l, 'Value',1);

set (handles.popupmenu4, 'Enable', 'on') ;
set (handles.popupmenu4, 'Value', 1) ;

set (handles.popupmenu6, 'Enable', 'on') ;
set (handles.popupmenu6, 'Value', 1) ;

set (handles.popupmenu7, 'Enable', 'on');
set (handles.popupmenu7, 'Value', 1) ;

set (handles.popupmenu8, 'Enable', 'on');
set (handles.popupmenu8, 'Value', 1) ;

set (handles.checkboxl, 'Enable', 'on'");
set (handles.checkboxl, 'Value', 1);
set (handles.checkbox2, 'Enable', 'on') ;
set (handles.checkbox2, 'Value', 1);

set (handles.popupmenulO, 'Enable', 'on');
set (handles.popupmenulO, 'Value',1);

$%%%%%5%%5%%%%%%%%%%2nd coll

set (handles.popupmenul?, 'Enable', 'on');
set (handles.popupmenul?, 'Value',1);

set (handles.edit36, 'String', 0
set (handles.edit37, 'String', 0
set (handles.edit38, 'String', 1
set (handles.edit39, 'String', -
set (handles.edit40, 'String', 0

398

www.manharaa.com

Appendix B. (Continued)

set (handles.edit4l, 'String', 0
set (handles.edit42, 'String', 0
set (handles.edit43, 'String', -
set (handles.edit44, 'String', 0

set (handles.edit36, "Enable', 'on")
set (handles.edit37, "Enable', 'on")
set (handles.edit38, 'Enable', 'on'")
set (handles.edit39, 'Enable', 'on'")
set (handles.edit40, 'Enable', 'on');
set (handles.edit4l, "Enable', 'on")
set (handles.edit42, 'Enable', 'on'")
set (handles.edit43, 'Enable', 'on'")
set (handles.edit44, 'Enable', 'on'")

set (handles.editl5, 'String', 369);
set (handles.editl6, 'String', 1455);
set (handles.editl7, 'String', 999);

set (handles.editl5, 'Enable','on'");
set (handles.editl6, 'Enable','on'");
set (handles.editl7, 'Enable', 'on');

set (handles.textl5, 'Enable', 'on")
set (handles.textl6, 'Enable','on'");
set (handles.textl7, 'Enable', 'on'")
set (handles.textl8, 'Enable', 'on'")

set (handles.edit45, 'String', 100);
set (handles.edit45, 'Enable', 'on'");
set (handles.textl4, 'Enable', 'on');
set (handles.textl3, 'Enable', 'on'");

set (handles.pushbutton3, 'Enable', 'on'");
set (handles.popupmenu20, 'Enable', 'on'");
set (handles.popupmenu20, 'Value', 1) ;

set (handles.edit62, 'String', 70)
set (handles.edit63, 'String', 70);
set (handles.edit64, 'String', -70);
set (handles.edit62, 'Enable', "off');
set (handles.edit63, "Enable', 'off")
set (handles.edit64, 'Enable', "off")
set (handles.text21, 'Enable', "off")

set (handles.edit65, 'String', 0.001);
set (handles.edit66, 'String', 0.001);
set (handles.edit67, 'String', 0.001);
set (handles.edit65, 'Enable', "off'");

set (handles.edit66, 'Enable', "off");
set (handles.edit67, 'Enable', "off'");
set (handles.text22, 'Enable', "off")

’

set (handles.edit4, 'String', 2);
set (handles.edit4, "Enable', 'off")
set (handles.text6, 'Enable', "off");
set (handles.text5, "Enable', 'off")

set (handles.pushbutton4, 'Enable', 'off'");

set (handles.editl, 'String', 50);
set (handles.editl, 'Enable', "off");

399

www.manharaa.com

Appendix B. (Continued)

set (handles.textl, 'Enable', "off'");
set (handles.text2, 'Enable', "off");

set (handles.edit69, 'String', 19711);
set (handles.edit69, 'Enable', "off'");
set (handles.text23, 'Enable', "off'");

set (handles.pushbutton7, "Enable', 'off'");
25%%%5%%%5%%%5%%%5%%%%3rd coll

set (handles.popupmenul5, "Enable', 'on'");
set (handles.popupmenul5, 'Value', 1) ;

set (handles.popupmenul6, 'Enable', 'on'");
set (handles.popupmenul6, 'Value',1);

set (handles.edit49, 'String', 1.5708);
set (handles.edit50, 'String', 1.5708);
set (handles.editbl, 'String', 0);

set (handles.edit52, 'String', 1.5708);
set (handles.edit53, 'String', 1.5708);
set (handles.edit54, 'String', 1.5708);
set (handles.editb5, 'String', 0);

set (handles.edit49, 'Enable', "off")
set (handles.edit50, "Enable', 'off")
set (handles.edit51, 'Enable', 'off")
set (handles.edit52, 'Enable', 'off");
set (handles.edit53, 'Enable', 'off")
set (handles.edit54, 'Enable', 'off")
set (handles.edit55, "Enable', 'off")

set (handles.pushbutton5, "Enable', 'off'");
set (handles.pushbutton6, 'Enable', 'off");

set (handles.edit56, 'String', 0);
set (handles.editb7, 'String', 0);
set (handles.edit58, 'String', 0);

set (handles.edit56, 'Enable', "off");
set (handles.edit57, 'Enable', "off");
set (handles.editb58, 'Enable', "off'");

set (handles.popupmenull, "Enable', 'on'");
set (handles.popupmenull, 'Value', 1) ;

set (handles.popupmenul4, 'Enable', 'on'");
set (handles.popupmenul4, 'Value', 1) ;

set (handles.pushbutton2, 'Enable', 'on'");
set (handles.pushbuttonl, "Enable', 'off'");

400

www.manharaa.com

Appendix C. C++ Programs and DLL Library

C.1.

DLL Library Functions

Return Type
int32

int32

[int32, int32Pt
int32

int32

int3z2

int3z2

[int32, int32Pt
int3z2

int3z2

int3z

[int32, int32Pt
uinta

[int32, int32Pt
int3z

[int32, int32Ptr
int32

[int32, int32Ptr
int32

[int32, int32Ptr
int32

int32

cstring

int32

int32

[int32, int32Pt

Function Mame
bk

brkAll
hrkSelect

changeBaudR ate
changeCommPart

clear

clearAll
clearSelect
close

enable
enableAll
enableSelect
et
oethdAll
etHm
getHmAll
getPos
getPosAll
getvel
getvealsll

init
lastErorCode
lastErrorstring
off

affAll
offselect

401

Arguments
{int32)

fint32Pr)
fint32)
fint32)
fint32)

(int32P1r)

(int32)

(int32P1r)

(int32)

(int32P1r)

(int32)

(int22P1r)

(int22)

(int22P1r)

(int22)

(int22P1r)

(int22, int32, int32)

(int22)

{int32P1r)

www.manharaa.com

Appendix C. (Continued)

Return Type

int32

inta2

[int32, int32Ptr, uint32Ptr, Lint32Ptr, Uint32Ptr, int32P1
[int32, int32Ptr]

inta2

int32

[int32, int32Ptr, uintaPtr, int32P]
[int32, int32P1tr]

int32

inta2

[int32, int32P1tr]

int32

inta2

int32

int32

inta2

int32

int32

inta2

int32

int32

inta2

int32

[int32, int32Ptr, uint32P1tr, int32Ptr]
[int32, int32Ptr]

[int32, int32Ptr]

[int32, int32Ptr]

inta2

int3z2

[int32, int32Ptr]

inta2

int32

[int32, int32Ptr, uint32Ptr, wint32Ptr, int32Ptr]
[int32, int32Ptr]

Function Name
pos

pasall

posSelect
posSelectall
pm

[Qggt]]
mwmSelect
mivmSelectall
reset

resetall
reset3elect
setParams
setParamsall
setParamsILEL
setParamsILELAN
setParamsLIMIT
setParamsLIMITAI
setParamsPID
setParamsPIDAI
setParamsRCM
setParamsRCMAIN
setPos

setPasAll
setPosSelect
setPosSelectall
status

statusaAll

stop

stapall
stopSelect

wvel

welAll

velSelect
velSelectAll

402

Arguments
{int32, uint32, wint3z2, uint32, int32)
{uint32, uint32, wint32, int32)

{int32P1r, uint32Ptr, uint32Ptr, uint32Ptr, int32Ptr

(intazPtr, uint32, uint3z, uintaz, int32)
(int32, vintd, int32)

fuints, int32)

{intazPtr, uintgPtr, iInt32Pt)

(int32Ptr, uintd, inta2)

{intaz

(int32P1r)

(nt32, int16, int16, int16, int1 6, int1 6, uints, vints, wints, uintd, vinta)
(int1&, int1 6, int1 6, int1 &, int1 &, uintd, wintd, wintd, Lint8, uintd)

{int32, int16, int16)
{int16, int16)

(int32, uintd, wintd)
{uintd, uinta)

{int32, int16, int16, int16)
{int16, int16, int16)
(int32, uintd, uint8, uints)
[uintd, uint8, uinta)
{int32, uint32, int32)
{uint32, int32)

(int32Ptr, uint32P1tr, int32Ptr)
{int32Ptr, uint32, int32)
{int32, int32Ptr)
({int32Pir)

{int32)

(int32Pt)
{int32, uint32, uint32, int32)

{uint32, uint32, int32

(int32Pr, uint32Ptr, wint3 2P, int32Ptr)
(int32P1r, uint32, uint32, int32)

www.manaraa.com

Appendix C. (Continued)

C.2. DLL Library Documentation

controlMotor.dll is a Windows DLL that includes functions for communicating with PIC-
SERVO (v.4, v.5 and v.10) modules. It can be used with almost all Windows
programming languages. This DLL was created using Microsoft Visual Studio 2003, and
the source code is included with the DLL. This portion is being developed by Mayur
Palankar.

Initialization/Closing

1) Initialize PIC-SERVO Modules
Opens the COM port and initializes the PIC-SERVO modules.

Command:
init

Syntax:
int init (int CommPort, long BaudRate, int fileOpen);

Return Value:

Negative number or zero: Error or Failure (Corresponds to a unique error number) or zero
if no modules found

Positive number: Success. Number corresponds to the number of modules found in the
system.

Arguments:

CommPort: COM port number (1 to 8)

BaudRate: Communication rate (19200, 57600, 115200 or 230400)

fileOpen: Set PIC-SERVO modules based on the last stored configuration.(0 or 1)

Description:

Opens the COM port specified by CommPort at the specified BaudRate, and initializes
the network of motor controllers. Controller addresses are dynamically assigned, starting
with the furthest controller with address 1. All group addresses are set to OxFF. Returns
the number of controllers found on in the network. The PIC-SERVO modules are
initialized to the last saved configuration if the fileOpen argument is passed a positive
number else they are initialized to zero. Please note that this doesn’t mean the arm will
move; this means the modules is assumed to be at the initial configuration that was saved
previously.

CommPort and BaudRate: These arguments tell which communication port and the rate
at which it should communicate to it.

403

www.manaraa.com

Appendix C. (Continued)

fileOpen: If a positive number is passed, the old configuration last stored (when close() is
executed) will be restored. This is done using a file ‘configuration.txt’ which is local to
this dIl. If the file is not found, initial position are used. Any changes manually made to
the file will also be reflected if the option is chosen.

Examples:

init(4, 19200, 0)

This command will try to initialize the PIC-SERVO modules at COMM port 4 with a
baud rate 19200 and they will be initialized at their start position (fileOpen = 0).

2) Close communication
Saves the current configuration, resets all the buffers and gracefully closes the COMM
port.

Command:
close

Syntax:
int close ();

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success.

Description:

This command saves the current configuration in the ‘configuration.txt’ file which is
local to the dll. This file is used to open the PIC-SERVO modules in the previous
configuration. It resets all the PIC-SERVO modules and shuts it down.

NOTE: Any functions of this dll can’t be executed unless the init function is executed.
After that, all functions (except init) can be executed. A new init function can only be
executed unless the old connection is closed first.

CAUTION: The init command creates threads for internal usage for each of the PIC-
SERVO modules found. For graceful shutdown, the close() should be executed. If the
parent process using the dll doesn’t execute the close() before exiting, the lock on the
PIC-SERVO modules still exist causing the system to behave unpredictably. This
responsibility rests solely on the programmer using this dIl.

404

www.manaraa.com

Appendix C. (Continued)

Reset/Clear Motor

1) Reset
Resets a particular PIC-SERVO module or group of modules.

Commands included:
reset

resetAll

resetSelect

Syntax:

int reset (int module);

int resetAll ();

int resetSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:
This command resets a PIC-SERVO motor module to its start up status.

module: This argument describes the PIC-SERVO module address which has to be
reseted. The number sent should be less than or equal to the number of modules present
else it will result in an error (error code: -1). When an array of module number is passed,
the index is used to address the module and its value decides if the motor module will be
reseted or not. For ex. [1 0 1 1] when passed, will reset the motor module numbers 1, 3
and 4; while the motor module number 2 wont be affected. The length of the array (in this
case 4) should be less than or equal to the modules present in the circuit.

Types:

reset: This command is used to reset one PIC-SERVO module.

resetAll: This command resets all the PIC-SERVO modules.

resetSelect: Using this command, individual PIC-SERVO modules can be reseted. This
command has the highest flexibility and the others are a special case of this command.

Examples:
reset(1)
Resets the PIC-SERVO module 1 to its start up state.

405

www.manaraa.com

Appendix C. (Continued)

2) Clears
Clears a particular PIC-SERVO module or group of modules.

Commands included:
clear

clearAll

clearSelect

Syntax:

int clear (int module);

int clearAll ();

int clearSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:
This command clears a PIC-SERVO motor module’s status bits.

module: This argument describes the PIC-SERVO module address whose status bits have
to be cleared. The number sent should be less than or equal to the number of modules
present else it will result in an error (error code: -1). When an array of module number is
passed, the index is used to address the module and its value decides if the motor module
will be cleared or not. For ex. [1 0 1 1] when passed, will clear the motor module
numbers 1, 3 and 4; while the motor module number 2 wont be affected. The length of
the array (in this case 4) should be less than or equal to the modules present in the circuit.

Types:

clear: This command is used to clear one PIC-SERVO module.

clearAll: This command clears all the PIC-SERVO modules.

clearSelect: Using this command, individual PIC-SERVO modules can be cleared. This
command has the highest flexibility and the others are a special case of this command.

Examples:
clear(1)
Clears the PIC-SERVO module 1’s status bits.

406

www.manaraa.com

Appendix C. (Continued)

Enable/Disable Motors

1) Enable
Enables a particular PIC-SERVO module or group of modules.

Commands included:

enable

enableAll

enableSelect

Syntax:

int enable (int module);

int enableAll ();

int enableSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:
This command enables a PIC-SERVO motor module. Any move command can’t be
executed if the motor modules are disabled.

module: This argument describes the PIC-SERVO module address which has to be
enabled. The number sent should be less than or equal to the number of modules present
else it will result in an error (error code: -1). When an array of module numbers is passed,
the index is used to address the module and its value decides if the motor module will be
enabled or not. For ex. [1 0 1 1] when passed, will enable the motor module numbers 1, 3
and 4; while the motor module number 2 wont be affected. The length of the array (in this
case 4) should be less than or equal to the modules present in the circuit.

Types:

enable: This command is used to enable one PIC-SERVO module.

enableAll: This command enables all the PIC-SERVO modules.

enableSelect: Using this command, individual PIC-SERVO modules can be enabled. This
command has the highest flexibility and the others are a special case of this command.

Examples:
enable(1)
Enables the PIC-SERVO module 1.

407

www.manaraa.com

Appendix C. (Continued)

2) Off

Disables a particular PIC-SERVO module or group of modules.
Commands included:

off

offAll

offSelect

Syntax:

int off (int module);

int offAll ();

int offSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:
This command disables a PIC-SERVO motor module. Any move command can now be
executed.

module: This argument describes the PIC-SERVO module address which has to be
disabled. The number sent should be less than or equal to the number of modules present
else it will result in an error (error code: -1). When an array of module number is passed,
the index is used to address the module and its value decides if the motor module will be
disabled or not. For ex. [1 0 1 1] when passed, will disable the motor module numbers 1,
3 and 4; while the motor module number 2 wont be affected. The length of the array (in
this case 4) should be less than or equal to the modules present in the circuit.

Types:

off: This command is used to disable one PIC-SERVO module.

offAll: This command disables all the PIC-SERVO modules.

offSelect: Using this command, individual PIC-SERVO modules can be disabled. This
command has the highest flexibility and the others are a special case of this command.

Examples:
off(1)
Disables the PIC-SERVO module 1.

408

www.manaraa.com

Appendix C. (Continued)

Move Commands

1)Position Control
Loads a motion trajectory to move to a certain position.

Commands included:
pos

posAll

posSelect
posSelectAll

Syntax:

int pos (int module, unsigned long pos, unsigned long vel, unsigned long acc, int rev);

int posAll (unsigned long pos, unsigned long vel, unsigned long acc, int rev);

int posSelect (int module[], unsigned long pos[], unsigned long vel[], unsigned long
acc[], int rev[]);

int posSelectAll (int module[], unsigned long pos, unsigned long vel, unsigned long acc,
int rev);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)
pos / pos|] : positive 32 bit position data
(0 to +2,147,483,647)
vel / vel[] : positive 32 bit velocity data
(0 to +83,886,080)
acc / acc[] : positive 32 bit acceleration data
(0 to +2,147,483,647)
rev / rev[] : reverse motion (0 or 1)
Description:

This command sends the position, velocity and acceleration data needed for a particular
motion to the appropriate PIC-SERVO motor module.

module: This argument describes the PIC-SERVO module address where the

corresponding trajectory information has to be sent. The number sent should be less than

or equal to the number of modules present else it will result in an error (error code: -1).

When an array of module number is passed, the index is used to address the module and

its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when

passed, will load the corresponding trajectory information to the module numbers 1, 3
409

www.manaraa.com

Appendix C. (Continued)

and 4; while the module number 2 wont be affected. The length of the array (in this case
4) should be less than or equal to the modules present in the circuit. Array elements
greater then the number of modules present will be discarded. Care should be taken so
that the corresponding entries of module array matches with the pos, vel and acc
arguments and is left solely on the user.

pos, vel and acc: Data for the motion trajectory.

rev: This argument determines the direction in which the motor moves. When its value is
1 or a positive number, the direction will taken as reverse and the sign of the position
field will be reversed. When 0 the direction will be taken as forward.

Types:

pos: This command is used to control one PIC-SERVO module.

posAll: This command controls all the PIC-SERVO modules and moves all of them to
the same position with the same velocity and acceleration in the same direction.
posSelect: Using this command, individual PIC-SERVO modules can be controlled to
move to their corresponding positions with their own corresponding velocity,
acceleration and direction. This command has the highest flexibility and the others are a
special case of this command.

posSelectAll: Similar to the above one but the trajectory for all selected modules will the
same.

Examples:

pos(1, 100000, 10000, 100, 1)

Moves the PIC-SERVO module 1 to the position 100000 with velocity 10000 and
acceleration 100. The direction is reverse.

posSelect([1 0 0 1], [200000 100 100000 100000], [10000 0 0 300000], [100 0 100 300],
[0111])

Moves the PIC-SERVO module 1 to the position 200000 in the forward direction
(velocity 100000 and acceleration 100) and moves the PIC-SERVO module 4 to the
position 100000 in the reverse direction (velocity 300000 and acceleration 300). The
PIC-SERVO module 2 and 3 won’t have any effect and its entries will be discarded.

2)Velocity Control
Loads a motion trajectory to move with a certain velocity.

Commands included:
vel
velAll
velSelect
velSelectAll
410

www.manaraa.com

Appendix C. (Continued)

Syntax:

int vel (int module, unsigned long vel, unsigned long acc, int rev);

int velAll (unsigned long vel, unsigned long acc, int rev);

int velSelect (int module[], unsigned long vel[], unsigned long acc[], int rev[]);
int velSelectAll (int module[], unsigned long vel, unsigned long acc, int rev);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:

module/modulel[]: module address (1 to 32)

vel / vel[] : positive 32 bit velocity data
(0 to +83,886,080)

acc / acc[] : positive 32 bit acceleration data
(0 to +2,147,483,647)

rev / rev[] : reverse motion (0 or 1)

Description:

This command sends the velocity and acceleration data needed for a particular motion to
the appropriate PIC-SERVO motor module.

module: This argument describes the PIC-SERVO module address where the
corresponding trajectory information has to be sent. The number sent should be less than
or equal to the number of modules present else it will result in an error (error code: -1).
When an array of module number is passed, the index is used to address the module and
its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when
passed, will load the corresponding trajectory information to the module numbers 1, 3
and 4; while the module number 2 wont be affected. The length of the array (in this case
4) should be less than or equal to the modules present in the circuit. Array elements
greater then the number of modules present will be discarded. Care should be taken so
that the corresponding entries of module array matches with the vel and acc arguments
and is left solely on the user.

vel and acc: Data for the motion trajectory.

rev: This argument determines the direction in which the motor moves. When its value is
1 or a positive number, the direction will taken as reverse. When 0 the direction will be
taken as forward.

Types:

vel: This command is used to control one PIC-SERVO module.
411

www.manaraa.com

Appendix C. (Continued)

velAll: This command controls all the PIC-SERVO modules and moves all of them with
the same velocity and acceleration in the same direction.

velSelect: Using this command, individual PIC-SERVO modules can be controlled to
move with their own corresponding velocity, acceleration and direction. This command
has the highest flexibility and the others are a special case of this command.

velSelectAll: Similar to the above one but the trajectory for all selected modules will the
same.

Examples:

vel(1, 10000, 100, 1)

Moves the PIC-SERVO module 1 with velocity 10000 and acceleration 100. The
direction is reverse.

velSelect([1 0 0 1], [10000 1000 30 300000], [100 1 100 300],[0 1 1 1])

Moves the PIC-SERVO module 1 in the forward direction with velocity 100000 and
acceleration 100 and moves the PIC-SERVO module 4 in the reverse direction with
velocity 300000 and acceleration 300. The PIC-SERVO module 2 and 3 won’t have any
effect and its corresponding entries will be discarded.

3)PWM Control
Loads a motion trajectory to move with certain PWM information.

Commands included:
pwm

pwmAll

pwmSelect
pwmSelectAll

Syntax:

int pwm (int module, unsigned char pwm, int rev);

int pwmAll (unsigned char pwm, int rev);

int pwmSelect (int module[], unsigned char pwm[], int rev([]);
int pwmSelectAll (int module[], unsigned char pwm, int rev);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:

module/module[]: module address (1 to 32)
pwm/pwm[] : positive 8 bit PWM data (0 to +255)
rev / rev[] : reverse motion (0 or 1)

412

www.manaraa.com

Appendix C. (Continued)

Description:
This command sends the PWM data needed for a particular motion to the appropriate
PIC-SERVO motor module.

module: This argument describes the PIC-SERVO module address where the
corresponding PWM information has to be sent. The number sent should be less than or
equal to the number of modules present else it will result in an error (error code: -1).
When an array of module number is passed, the index is used to address the module and
its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when
passed, will load the corresponding trajectory information to the module numbers 1, 3
and 4; while the module number 2 wont be affected. The length of the array (in this case
4) should be less than or equal to the modules present in the circuit. Array elements
greater then the number of modules present will be discarded. Care should be taken so
that the corresponding entries of module array matches with the vel and acc arguments
and is left solely on the user.

pwm: Data for the motion trajectory.

rev: This argument determines the direction in which the motor moves. When its value is
1 or a positive number, the direction will taken as reverse. When 0 the direction will be
taken as forward.

Types:

pwm: This command is used to control one PIC-SERVO module.

pwmAll: This command controls all the PIC-SERVO modules and moves all of them
with the same PWM information.

pwmSelect: Using this command, individual PIC-SERVO modules can be controlled to
move with their own PWM information. This command has the highest flexibility and the
others are a special case of this command.

pwmSelectAll: Similar to the above one but the trajectory for all selected modules will
the same.

Examples:
pwm(1, 100, 1)
Moves the PIC-SERVO module 1 with PWM 100. The direction is reverse.

pwmSelect([1 00 1], [100 1 100 200], [0 1 1 1])
Moves the PIC-SERVO module 1 in the forward direction with PWM 100 and moves the

PIC-SERVO module 4 in the reverse direction with PWM 200. The PIC-SERVO module
2 and 3 won’t have any effect and its corresponding entries will be discarded.

413

www.manaraa.com

Appendix C. (Continued)

Stop Commands

1)Stop
De-acceleratesa PIC-SERVO module to a complete stop.

Commands included:
stop

stopAll

stopSelect

Syntax:

int stop (int module);

int stopAll ();

int stopSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:

This command de-accelerates a moving PIC-SERVO motor module to a complete stop.
The de-acceleration will be the same amount with which the motor was moving at the
time of execution. If the motor is already stopped, the command will have no effect.
module: This argument describes the PIC-SERVO module address which has to be
stopped. The number sent should be less than or equal to the number of modules present
else it will result in an error (error code: -1). When an array of module number is passed,
the index is used to address the module and its value decides if the motor module will be
stopped or left to run. For ex. [1 0 1 1] when passed, will stop the motor module numbers
1, 3 and 4; while the motor module number 2 wont be affected. The length of the array
(in this case 4) should be less than or equal to the modules present in the circuit.

Types:

stop: This command is used to stop one PIC-SERVO module.

stopAll: This command stops all the PIC-SERVO modules.

stopSelect: Using this command, individual PIC-SERVO modules can be stopped. This
command has the highest flexibility and the others are a special case of this command.

Examples:

stop(1)
De-accelerates the PIC-SERVO module 1 to a complete stop.
414

www.manaraa.com

Appendix C. (Continued)

stopAll()

De-accelerates all the PIC-SERVO modules to a complete stop.

stopSelect([1 0 1 0])

De-accelerates the PIC-SERVO modules 1 and 3 to a complete stop. PIC-SERVO
modules 2 and 4 won’t be affected.

2)Break
Immediately stops a PIC-SERVO module.

Commands included:
brk

brkAll

brkSelect

Syntax:

int brk (int module);

int brkAll ();

int brkSelect (int module[]);

Return Value:
Negative number or zero: Error or Failure (Corresponds to a unique error number)
Positive number: Success

Arguments:
module/module[]: module address (1 to 32)

Description:
This command Immediately stops a moving PIC-SERVO motor module. If the motor is
already stopped, the command will have no effect.

module: This argument describes the PIC-SERVO module address which has to be
stopped. The number sent should be less than or equal to the number of modules present
else it will result in an error (error code: -1). When an array of module number is passed,
the index is used to address the module and its value decides if the motor module will be
stopped or left to run. For ex. [1 0 1 1] when passed, will stop the motor module numbers
1, 3 and 4; while the motor module number 2 wont be affected. The length of the array
(in this case 4) should be less than or equal to the modules present in the circuit.

Types:

brk: This command is used to stop one PIC-SERVO module.

brkAll: This command stops all the PIC-SERVO modules.

brkSelect: Using this command, individual PIC-SERVO modules can be stopped. This

command has the highest flexibility and the others are a special case of this command.
415

www.manaraa.com

Appendix C. (Continued)

Examples:

brk(1)

Immediately stops the PIC-SERVO module 1.
brkAll()

Immediately stops all the PIC-SERVO modules.

brkSelect([1 0 1 0])
Immediately stops the PIC-SERVO modules 1 and 3. PIC-SERVO modules 2 and 4
won’t be affected.

416

www.manharaa.com

Appendix C. (Continued)

Status Commands

1)Individual Parameters per PIC-SERVO
Returns the status of the individual parameter for a particular PIC-SERVO module.

Commands included:
getPos
getVel
getAd
getHm

Syntax:

long getPos (int module);

long getVel (int module);
unsigned char getAd (int module);
long getHm (int module);

Return Value:
Negative number: Error or Failure (Corresponds to a unique error number)
Positive number or zero: Corresponding status.

Arguments:
module/module[]: module address (1 to 32)

Description:
This command returns the specific status parameter that was asked for the particular PIC-
SERVO module.

module: This argument describes the PIC-SERVO module address whose status has to be
read. The number sent should be less than or equal to the number of modules present else
it will result in an error (error code: -1).

Types:

getPos: This command returns the current position of the PIC-SERVO module.

getVel: This command returns the current velocity of the PIC-SERVO module.

getAd: This command returns the current A/D value of the PIC-SERVO module.

getHm: This command returns the current motor home position of the PIC-SERVO
module.

Examples:
getPos(1)
Returns the current position of PIC-SERVO module 1.

417

www.manaraa.com

Appendix C. (Continued)

2)Individual Parameters

Returns the status of the individual parameter for all PIC-SERVO modules.
Commands included:

getPosAll

getVelAll

getAdAll

getHmAIl

Syntax:

int getPosAll (long * x);
int getVelAll (long * x);
int getAdAll (long * x);
int getHmALII (long * x);

Return Value:
Negative number: Error or Failure (Corresponds to a unique error number)
Positive number or zero: Success.

Arguments:
(*) x: A pointer to the array which has the status values.

Description:
This command returns the specific status parameter for all PIC-SERVO modules.

X: A pointer to the array which has the status values for all the PIC-SERVO modules. The
size of the array will be equal to the modules present in the system.

Types:

getPosAll: This command returns the current position of all the PIC-SERVO modules.
getVelAll: This command returns the current velocity of all the PIC-SERVO modules.
getAdAll: This command returns the current A/D value of all the PIC-SERVO modules.
getHmAIlL: This command returns the current motor home position of all the PIC-SERVO
modules.

Examples:

getPosAll(1)

Returns the current position of all PIC-SERVO modules.
getVelAll(1)

Returns the current velocities of all PIC-SERVO modules.

3)Complete Status
Returns the status of all parameters for all or one PIC-SERVO modules.

418

www.manaraa.com

Appendix C. (Continued)

Commands included:
status
statusAll

Syntax:
int status (int module, long * x);
int statusAll (long * x);

Return Value:
Negative number: Error or Failure (Corresponds to a unique error number)
Positive number or zero: Success.

Arguments:
module: module address (1 to 32)

(*) x: A pointer to the array which has the status values.

Description:
This command returns the all status parameters for all or one PIC-SERVO modules.

x: A pointer to the array which has the status values for all the PIC-SERVO modules. The
size of the array will be either 4 or 4 * (modules present in the system).

Types:
status: This command returns all the parameters for a particular PIC-SERVO module.
statusAll: This command returns all the parameters for all PIC-SERVO modules.

419

www.manharaa.com

Appendix C. (Continued)

Set Motor
Changes the position value of the PIC-SERVO modules.

Commands included:
setPos

setPosAll
setPosSelect
setPosSelectAll

Syntax:

int setPos (int module, unsigned long pos, int rev);

int setPosAll (unsigned long pos, int rev);

int setPosSelect (int module[], unsigned long pos[], int rev[]);
int setPosSelectAll (int module[], unsigned long pos, int rev);

Return Value:
Negative number: Error or Failure (Corresponds to a unique error number)
Positive number or zero: Success.

Arguments:

module/module[]: module address (1 to 32)

pos / pos[] : positive 32 bit position data
(0 to +2,147,483,647)

rev / rev[] : reverse motion (0 or 1)

Description:

This command sets the position variable for a specific PIC-SERVO module or a set of
modules.

module: This argument describes the PIC-SERVO module address whose position
variable has to be changed. The number sent should be less than or equal to the number
of modules present else it will result in an error (error code: -1). When an array of module
number is passed, the index is used to address the module and its value decides if the
motor module’s position will be changed or not. For ex. [1 0 1 1] when passed, the
position variable for the module numbers 1, 3 and 4 will be changed; while of the module
number 2 wont be affected. The length of the array (in this case 4) should be less than or
equal to the modules present in the circuit. Array elements greater then the number of
modules present will be discarded. Care should be taken so that the corresponding entries
of module array matches with the pos argument and is left solely on the user.

420

www.manaraa.com

Appendix C. (Continued)

pos: New data.

rev: This argument determines the direction in which the motor is present. When its value
is 1 or a positive number, the direction will taken as reverse and the sign of the position
field will be reversed. When 0 the direction will be taken as forward.

Types:

setPos: This command sets the position variable of one PIC-SERVO module.

setPosAll: This command sets the position variable of all PIC-SERVO modules with the
same position and direction.

setPosSelect: Using this command, individual PIC-SERVO modules can be controlled to
change to their corresponding positions and direction. This command has the highest
flexibility and the others are a special case of this command.

setPosSelectAll: Similar to the above one but the position variable changed for the
selected modules is the same.

Examples:
setPos(1, 100000, 1)
Sets the position of the PIC-SERVO module 1 to 100000.

setPosSelect([1 0 0 1], [200000 100 100000 100000], [0 1 1 1])

Sets the position variable of PIC-SERVO module 1 to position 200000 in the forward
direction and sets the position of PIC-SERVO module 4 to position 100000 in the reverse
direction. The PIC-SERVO module 2 and 3 won’t have any effect and its corresponding
entries will be discarded.

421

www.manaraa.com

About the Author

Redwan M. Algasemi graduated with honor from King Abdulaziz University in
Jeddah, Saudi Arabia with his Bachelor degree in Mechanical Engineering in 1995. He
was awarded the Best University Student award for achievements during his
undergraduate studies. He worked at the Pepsi, and then moved to Wichita, Kansas in
1996 and got his Master’s degree from Wichita State University in 2001. He taught
several labs, and was awarder the best project award by Boeing and Raytheon aircraft
companies for building a wall-climbing robot for aircraft maintenance.

Redwan moved to Tampa, Florida in 2001 to pursue his Ph.D. degree in the field
of Rehabilitation Robotics. He taught several courses and labs, and worked in the Center
for Rehabilitation Engineering and Technology as the leader of their research group. He
completed his Ph.D. degree in the field of combining mobility and manipulation of
wheelchair-mounted robotic arms in 2007.

Redwan is a member of Tau-Beta-Pi and Phi-Kappa-Phi honor societies. He is
also a member of ASME and IEEE societies. He has been actively involved in research

and has published many papers in many prestigious journals and conferences.

www.manaraa.com

	University of South Florida
	Scholar Commons
	3-29-2007

	Maximizing Manipulation Capabilities of Persons with Disabilities Using a Smart 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm System
	Redwan M. Alqasemi
	Scholar Commons Citation

	tmp.1298569684.pdf.VOQvf

