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Maximizing Manipulation Capabilities of Persons with Disabilities Using a Smart 9-
Degree-of-Freedom Wheelchair-Mounted Robotic Arm System 

 
Redwan M. Alqasemi 

 
ABSTRACT 

 

Physical and cognitive disabilities make it difficult or impossible to perform 

simple personal or job-related tasks. The primary objective of this research and 

development effort is to assist persons with physical disabilities to perform activities of 

daily living (ADL) using a smart 9-degrees-of-freedom (DOF) modular wheelchair-

mounted robotic arm system (WMRA).  

The combination of the wheelchair’s 2-DoF mobility control and the robotic 

arm’s 7-DoF manipulation control in a single control mechanism allows people with 

disabilities to do many activities of daily living (ADL) tasks that are otherwise hard or 

impossible to accomplish. Different optimization methods for redundancy resolution are 

explored and modified to fit the new system with combined mobility and manipulation 

control and to accomplish singularity and obstacle avoidance as well as other 

optimization criteria to be implemented on the new system. The resulting control 

algorithm of the system is tested in simulation using C++ and Matlab codes to resolve 

any issues that might occur during the testing on the physical system. Implementation of 

the combined control is done on the newly designed robotic arm mounted on a modified 

power wheelchair and with a custom designed gripper.  
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The user interface is designed to be modular to accommodate any user preference, 

including a haptic device with force sensing capability, a spaceball, a joystick, a keypad, 

a touch screen, head/foot switches, sip and puff devices, and the BCI 2000 that reads the 

electromagnetic pulses coming out of certain areas of the brain and converting them to 

control signals after conditioning.  

Different sensors (such as a camera, proximity sensors, a laser range finder, a 

force/torque sensor) can be mounted on the WMRA system for feedback and intelligent 

control. The user should be able to control the WMRA system autonomously or using 

teleoperation. Wireless Bluetooth technology is used for remote teleoperation in case the 

user is not on the wheelchair. Pre-set activities of daily living tasks are programmed for 

easy and semi-autonomous execution.  
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Chapter 1: 
 

Introduction 

 

1.1.  Motivation 

According to the latest data from the US Census Bureau Census Brief of 1997 [1], 

one of every five Americans had difficulty performing functional activities (about 53 

million), half of them were considered to have severe disabilities (over 26 million). 

Robotic aides used in these applications vary from advanced limb orthosis to robotic 

arms [2]. Persons that can benefit from these devices are those with severe physical 

disabilities (such as cerebral palsy resulting in loss of sensation or loss of ability to 

control movement), acquired disabilities (such as spinal cord injury, multiple sclerosis 

and stroke), and mobility disabilities (such as osteoporosis and arthritis due to chronic 

disorders) that result in a limited or no upper extremity mobility which limit their ability 

to manipulate objects. These devices increase self-sufficiency, and reduce dependence on 

caregivers. In the case of spinal cord injury or dysfunction these aids are most appropriate 

for individuals with spinal deficiencies ranging from cervical spine vertebrae 3 through 

cervical spine vertebrae 5. Individuals with neuromuscular deficiencies, such as muscular 

sclerosis, or other motor dysfunctions due to accidents, disease, aging, or genetic 

predispositions, can benefit from these robotic devices as well. 
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A wheelchair mounted robotic arm (WMRA) can enhance the manipulation 

capabilities of individuals with disabilities that are using power wheelchairs, and reduce 

dependence on human aides. Individuals that require mobility assist devices such as a 

power wheelchair can benefit from various robotic devices because the power wheelchair 

provides a platform with which to mount the device as well as a power supply, using the 

wheelchair’s batteries. There have been several attempts in the past to create 

commercially-viable wheelchair mounted robotic arms. Currently there are only two 

commercially available WMRAs available, the Manus (Exact Dynamics, Inc., 

Netherlands) and the Raptor (Applied Resources, Inc, NJ USA). 

Unfortunately, most WMRAs have had limited commercial success due to poor 

usability and low payload. It is often difficult to accomplish many of the Activities of 

Daily Living (ADL) tasks with the WMRAs currently on the market due to its physical 

and control limitations and its control independence of the wheelchair’s control system. 

This project attempts to surpass available commercial WMRA devices by offering an 

intelligent system that combines the mobility of the wheelchair and the manipulation of a 

newly designed arm in an effort to improve performance, usability, control and reduce 

mental load on the user while maintaining cost competitiveness. 

The two commercially available WMRAs lack the integration of the robotic arm 

controller with the wheelchair controller, and that leads to an increased mental load on 

the user. Combining the control of both the power wheelchair and the robotic arm would 

decrease this mental burden on the user and improve the combined system usability.  

It is desired to fulfill the need of such integrated systems to be used for many 

ADL tasks such as opening a spring-loaded door autonomously and go through it, 
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interactively exchange objects with a companion on the move, avoid obstacles by going 

around them while maneuvering objects, conveniently handle food and beverage between 

the fridge, Microwave oven, stove, etc. without the need to switch between the 

wheelchair controller and the robotic arm controller, and avoid singularities in a small 

working environment, such as an office, where wheelchair motion can be slightly utilized 

to maneuver objects while avoiding singularities (similar to a person sitting on an office 

chair and handling objects around him by moving his/her arm while slightly moving the 

chair to get closer to an object that is otherwise unreachable). 

 

1.2.  Dissertation Objectives 

1- The main objective of this work is to develop and optimize a control system that 

combines the manipulation of the newly designed 7-DoF robotic arm and the mobility 

of a modified 2-DoF wheelchair in a smart 9-DoF control algorithm. 

2- Redundancy resolution is to be optimally solved to avoid singularities, joint limits, 

obstacles and to allow larger wheelchair or manipulator motion depending on the user 

proximity to the goal.  

3- This WMRA is to utilize an optimized controller that is expandable to control both 

WMRA and the power wheelchair.  

4- A complex and flexible simulation program is to be developed to simulate the 9-DoF 

WMRA in Virtual Reality. 

5- A 7-DoF Robotic arm is to be developed and integrated to a modified power 

wheelchair to include PC based control and sensory feedback. 
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6- High-level control of the 9-DoF WMRA system is to be designed to combine the 

WMRA’s 7 DoF and the wheelchair’s mobility in the new redundant 9-DoF system.  

7- Redundancy is to be used and optimized to improve manipulation capabilities for 

activities of daily living (ADLs) and avoid singularities.  

8- The new system is to be capable of executing complex pre-set tasks autonomously as 

well as in teleoperation mode.  

9- The user interface in the WMRA system’s teleoperation mode should be capable of 

using a force-reflecting haptic interface, a keypad, a Spaceball, a touch screen, a BCI 

2000 brain-wave sensor device or other user interface devices that can be used as 

modular user interfaces with different capabilities to fit the individual user needs.  

10- Higher level control algorithms are to be developed to interface the sensory data and 

the user input for an easy control of the system.  

11- The system should be capable of future modification to use Bluetooth wireless 

technology for remote teleoperation so that the user can also perform some ADL 

tasks while not seated on the wheelchair.  

12- A sensory suite can be in the control algorithm for feedback purposes.  

 

1.3. Dissertation Outline 

This dissertation will give a background in chapter 2 on previous work done in the 

field of mobile robots and redundant manipulators as well as assistive devices that can be 

used by individuals with disabilities. Chapter 3 will focus the redundant manipulator 

control theories and methods, and chapter 4 will discuss the control theory of differential 

drives that produce non-holonomic motion. In chapter 5, the combination of both the 
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redundant manipulator control and the differential drive non-holonomic mobility control 

theory will be discussed. Mathematical relationships and augmentation of the Jacobian to 

combine the mobility and manipulation will also be generated in this chapter along with 

the optimization methods used for this application. Chapter 6 will show the different user 

interfaces used for this application and some clinical studies conducted with human 

subjects. Chapter 7 will show the application of combined manipulation and mobility 

control using simulation, and the results of the simulation will be shown and discussed in 

chapter 8. Testbed design for experimental application of the control theory on physical 

WMRA system will be described in chapter 9 along with the experimental results. 

Chapter 10 concludes the dissertation with summary and discussion with 

recommendations, and chapter 11 will discuss future work that can be conducted on the 

WMRA system. 
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Chapter 2: 
 

Background 

 

2.1. History of Rehabilitation Robotics 

The development of robots started in the 1960’s with manipulators which were 

used for manufacturing purposes [3]. Planetary rovers and vision embedded systems took 

the attention of researchers in the early 1970’s and were developed along side with the 

industrial manipulators. Starting in the past decade, researchers have focused on artificial 

intelligence in robotics in order to widen the use of robots and make them more 

intelligent in their applications. One such use is in the area of rehabilitation, where people 

with disabilities can take control of some of their daily needs without the need for human 

assistance. A key problem in robotic arms that are mounted on a mobile platform is the 

combination of the manipulation and mobility of these systems while they move in space, 

especially when redundancy is introduced. There have been various attempts over the 

years to create robotic assistants for individuals with various levels of disabilities. For 

over 30 years, research has progressed in this field with only partial commercial success.  

One of the first attempts at rehabilitation robotics included the Rancho “Golden” 

arm [4] designed in 1969 at Rancho Los Amigos Hospital in Downy, California. The arm 

was an electrically-driven 6 Degree Of Freedom (DOF) robotic arm which mounted to a 

powered wheelchair and was controlled at the joint level by an array of tongue-operated 
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switches. Discussions on the topic of the controllability of the arm commented on both 

successes and failures of the design. The successes of the project can be attributed to the 

important role that proprioceptive feedback plays in the control of a persons own 

extremities [5]. These pioneering research projects provided a framework for future 

development.  

 

2.2. Rehabilitation Robotics Classification 

Assistive robotics can be grouped into one of five categories: Workstation robots 

which operate in stationary and well-structured environments, wheelchair-mounted 

robotic arms which operate on power wheelchairs to assist in activities of daily living, 

mobile assistive robots which travel about the room and have a manipulator arm, 

therapeutical robots which are used for different kinds of therapy, and smart wheelchairs 

and walkers.  

 

2.2.1. Workstation Robotic Arms 

The very first rehabilitation robotics applications focused on using commercially-

available industrial manipulators and modifying them for rehabilitation applications.  An 

example of these manipulators is the PUMA 250 shown in figure 2.1. A factor which 

limits the use of industrial robotic arms in rehabilitation is the basic difference in 

operational requirements. Industrial arms are designed to work at high speed in an 

environment where there are no humans. This reason alone would limit their use for 

reasons of safety of the operator. For applications in a human-intensive workspace, 
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assistive robotic arms need to be mechanically limited to low velocities and accelerations 

for the safety of the operator and the human subjects around these devices. 

 

Figure 2.1: Puma 250 Arm. 

The Robotic Aid Project [6] was an attempt to create a system for users with 

quadriplegia. The project was an integration of a PUMA 250 industrial manipulator arm, 

microprocessor, multi-line monochrome display and speech synthesis and recognition 

systems. Limitations with the speech-recognition systems and computational power of 

the day restricted the success of the program. The processing ability of the contemporary 

computers did not allow for real-time inverse kinematics of the arm. This limited the arm 

to merely replaying preprogrammed actions. Individual joints of the arm could be 

manipulated but coordinated real-time multi-joint maneuvers were impossible.   

As more application-specific robotic arms and computers with increased 

computational power became available, arms with controllers could now be mounted 

onto mobile platforms. At first these systems were simply rolling bases which then 

increased in complexity and degrees of freedom to include powered mobile robots. 
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Handy-1 [7] is a robotic arm mounted to a non-powered wheeled base to assist in 

very specific activities of daily living (ADL). Handy-1 was developed in 1988 to provide 

persons with severe disabilities assistance at mealtimes. Since its initial introduction the 

unit has expanded capabilities and is now capable of providing assistance in a broader 

number of activities of daily living (ADL). Handy-1 is capable of assisting individuals 

with personal hygiene, eating and drinking, and the application of make-up. During user 

trials, women specifically asked if the unit would be capable of applying cosmetic 

products. Shortly after the trial, the design was upgraded with a new tray and gripper 

accessory. Each ADL task has a specific tray to accomplish its goal. Handy-1 is shown in 

figure 2.2 and is based on a 5 DOF lightly modified industrial manipulator. 

 

Figure 2.20: Handy-1. 

 In the feeding mode the operator controls the robot through an interface that uses 

lights which move across the available food trays, and a button that selects the item 

desired. Once the button is pressed, the robot scoops up the selected food and brings it to 

a predetermined place near the operator’s mouth. Once the user has consumed the food, 

the operator presses the button again and the robot returns to the food selection mode. 

This process is repeated until the operator is finished. An advancement of the technology 
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of Handy-1 is being explored with the Robotic Aid to Independent Living [8] (RAIL) 

project. RAIL improves upon the Handy-1 design by incorporating a new controller for 

better manipulator control, a 3D simulation tool for modeling virtual scenarios and 

attachment of sensors to assist set up and position error determination. 

The RAID workstation [9] shown in figure 2.3 was designed to be a workstation 

assistive robot system. It is comprised of a 6 DOF robotic arm mounted onto a linear 

track in a well-controlled environment.  In the figure the manipulator can be seen near the 

top of the shelf in the center of the cabinet.  

 

Figure 2.3: RAID Workstation. 

The RAID system provides benefits that are enhanced by the formal structure 

provided by a workstation environment. This organization allows the manipulator arm to 

repeatedly move and acquire items needed by the operator using preprogrammed 

functions and routines. At this time the RAID system is currently under evaluation in 

Europe.  

The Robotic Assistive Device [10], shown in figure 2.4, is a robotic arm 

developed by the Neil Squire Foundation in Vancouver, Canada. The RAD is a 6 DOF 

workspace mountable manipulator that uses a serial port computer interface. The 
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manipulator is controlled through a graphical user interface (GUI) utilizing icons to 

symbolize predefined tasks. The system consist of several modules which when 

combined create an arm with a cylindrical reach of approximately 55” and a height of 

110”.  The arm can be mounted on various surfaces and has good repeatability at 0.12” 

and relatively large payload capacity of 9.5 lbs. Most rehabilitation specific manipulators 

have maximum payloads of 5 pounds or less. 

 

Figure 2.4: Robot Assistive Device. 

The ProVAR [11] shown in figure 2.5 is a system based on a Puma 260 robotic 

arm designed to operate in a vocational environment.  

 

Figure 2.5: ProVAR System. 
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The ProVAR system uses a web-based virtual environment to model the 

functionality of the manipulator. In this way the operator can examine potential arm 

movements for a given task, and if the simulation is successful, the action can be 

initiated. In this way, the actions of the arm and its interactions within its workspace can 

be seen before any action is taken. The primary goals for ProVAR are more functionality 

per dollar, easier operator control, and higher system reliability compared with the 

previous generation of vocational assistive robots. 

 

2.2.2. Wheelchair-Mounted Robotic Arms 

Wheelchair mounted robotic arms (WMRAs) combine the idea of a workstation 

and a mobile robot, which mounts a manipulator arm onto a power wheelchair. In the 

past, industrial manipulators have been too large and heavy to be mounted onto a power 

wheelchair. An industrial manipulator mounted onto the wheelchair would have 

excessively hindered the operator’s ability to maneuver the chair through doors and 

hallways. Several design considerations must be met before deciding on where, on a 

power wheelchair, to mount a robotic arm. The foremost design consideration is the 

safety of the operator [12]. The mount must be sturdy and rigid and not compromise the 

structural integrity or the functionality of the chair in any way.  Next the robotic arm 

must be mounted in such a way that it has a minimum footprint outside the footprint of 

the chair itself. There are several possible mounting locations for a WMRA [13]. The 

mount may be in the front, side or rear of the wheelchair.  
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Helping Hand system [14] is a 5DOF robotic arm that can be mounted to the side 

of a power wheelchair. The Helping Hand operates by joint control and is manipulated by 

using switches to control individual joints. 

The Weston robotic arm [15], shown in figure 2.6, utilizes a vertical actuator 

mounted to a wheelchair with the main rotary joints (shoulder, elbow, and wrist) 

constrained to move in the horizontal plane. This is the continuation of the trolley 

mounted Wessex robot arm research. A prismatic joint moves in a linear sliding motion 

along a track.  

 

Figure 2.6: Weston Arm. 

Another arm WMRA is the Asimov [16], which is a modular manipulator 

designed with the motors and controls distributed throughout the arm. A computer 

rendering of the Asimov is shown in figure 2.7. The modularity of the design allows for 

multiple mounting locations on a wheelchair or stationary application with various 

workspace geometries. The concept of a modular manipulator has several benefits. This 

provides the opportunity for one manipulator that can be used in either a mobile or 
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workstation environment. Different link geometries can be explored to create the 

optimum design for any given application. Asimov models have been shown with all 

three possible mounting positions: front, side and rear. Without physical models to test 

the efficacy of the design, it is unknown how well the design would integrate into real-

world applications.  

 

Figure 2.7: Asimov Arm. 

The FRIEND [17] robotic system is a Manus arm mounted onto a wheelchair and 

integrated with stereo vision, dedicated computer control, and specialized software. 

Besides programming with a keypad or joystick, the FRIEND system, shown in figure 

2.8, is capable of being programmed via a haptic interface glove. The haptic glove allows 

the operator / programmer to feel what the robot feels through feedback to the user. A 

Haptic glove is put on and the action, such as pouring a glass, is completed and stored 

into the computer for future use. The action can then be replayed at a later time as a pre-

defined user function. The operator may also control the arm through verbal commands 

using an integrated voice recognition system. 
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Figure 2.8: FRIEND Robotic System. 

 

2.2.3. Mobile / Assistant Robots 

Mobile systems are capable of assisting individuals with disabilities. These 

systems include a mobile base, various sensors and a manipulator arm. An early version 

of one such system is the Mobile Vocational Assistant Robot (MoVAR) [18]. This 

system, shown in figure 2.9, utilizes an omni-directional mobile platform mounting a 

PUMA-250 robotic arm as well as several sensors including a remote viewing camera, 

force and gripper proximity sensors.  

MoVAID [18] is an advanced version of the MoVAR system, designed 

specifically for home use. MoVAID improves upon the previous model by applying the 

lessons learned in laboratory testing to assist in common tasks around the home such as 

cleaning and food preparation.  MoVAID incorporates a variety of sensing devices both 

mounted to the manipulator and the base. In figure 2.10, MoVAID can be seen along with 

the various sensors that are located on the manipulator arm. Sensors mounted to the first 
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link of the arm include a pair of cameras used for stereo vision and a laser localization 

system used in task execution.   

 

Figure 2.9: MoVAR. 

The MoVAID system uses active beacons positioned within the room that provide 

reference data to determine its location and orientation.  In addition to position detection, 

the unit also has ultrasonic range detectors and an active bumper that disables the device 

should an impact occur.  

 

Figure 2.10: MoVAID. 



www.manaraa.com

 17

The robotic arm used by MoVAID has 8 DOF and a three-fingered gripper with 

two degrees of freedom. The gripper was originally designed as a prosthetic device 

specifically to have excellent dexterity. The increased agility provided by the gripper 

over more traditional end-effectors allows MoVAID to be very effective in the 

unstructured home environment. 

Another design is the TAURO [19] that is an integrated robotic system using off-

the-shelf components such as a power wheelchair, Manus manipulator, ultrasonic 

sensors, camera and computers. TAURO is a mobile service robot being developed for 

inspection, stocktaking and documentation tasks in indoor environments. The TAURO 

system integrates the movement of the wheelchair and the operation of the manipulator. 

In this way if the goal is out of reach of the manipulator, the wheelchair will move on a 

path toward the goal until the manipulator can reach its goal. This coordinated control is a 

significant advance in the use of WMRAs. Although not specifically designed for 

rehabilitation robotics tasks, it would be readily adaptable to the task. The TAURO 

system can be seen in figure 2.11.  

 

Figure 2.11: TAURO Robotic System. 
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2.2.4. Robots in Therapy 

Assistive robotics can enhance the capability of people with disabilities by 

assisting them to do different activities of daily living. On the other hand, therapeutical 

robots can exercise the user’s muscles to keep it alive or to increase its ability to function 

with time. One of these systems is the MIT Manus [20] shown in figure 2.12, which uses 

impedance control to move, guide or perturb the hand motion of the user in training. It 

records the position, velocity and applied forces during therapy sessions for analysis.  

 

Figure 2.12: MIT Manus System. 

Another therapeutical robot is the mouth-opening and closing devices conducted 

by Takanobu et al in 2001 [21] that is used in training as shown if figure 2.13. This 

robotic device uses 6 linear actuators to manipulate the U-shaped end effector. Each joint 

carries displacement and velocity sensors for feedback. 
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Figure 2.13: Mouth Opening and Closing Device. 

 

2.2.5. Smart Wheelchairs / Walkers 

The iBOT and Segway mobility systems [22] are unique gyro-balanced mobility 

devices that have been designed to operate on four wheels or two wheels, stabilizing the 

user by automatically adjusting and balancing. The iBOT offers five operating functions: 

a remote function that allows the user to detach the joystick, and via cable wire 

connection, drive the empty iBOT into the back of a vehicle for easy transporting. The 

stair climbing function allows the user to climb up and down stairs with or without 

assistance. The wheel function that allows it to climb curbs as high as 4 inches and travel 

over grass, gravel, sand and other forms of uneven terrain. The standard function is 

similar to standard power chairs. The balance function allows the user to reach high 

places independently in a similar manner to the Segway. Figure 2.14 shows both the 

iBOT and the Segway. 
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Figure 2.14: iBOT (Left) and Segway (Right) Devices. 

 

2.3. Commercial Wheelchair-Mounted Robotic Arms 

Currently there are two production wheelchair mounted robotic arms (WMRAs): 

the Manus, manufactured by Exact Dynamics, and the Raptor, manufactured by Applied 

Resources.  

 

2.3.1. The Manus 

The Manus manipulator [23] arm (or as recently been called ARM for Assistive 

Robotic Manipulator) is a fully deterministic manipulator. A fully deterministic arm can 

be programmed in a manner comparable to industrial robotic manipulators. The Manus 

has been under development since the mid 1980’s and entered into production in the early 

1990’s. A picture of the Manus mounted onto a Permobil Max90 wheelchair is shown in 

figure 2.15.  
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Figure 2.15: Manus Arm. 

This arm utilizes a front mounting location to the left of the operator’s left knee, 

which allows for good manipulation of objects that are above the plane of the wheelchair 

seat, and most importantly the operator’s face and lap. Manus carries 6 revolute joints 

with encoders, a 1-DoF gripper and a vertical lift. The Manus manipulator is controlled 

by a joystick and a keypad, and can perform a single-joint control or coordinated control 

of multiple joints.  

 

2.3.2. The Raptor 

Another production WMRA is the Raptor [24], which mounts the robotic arm to 

the right side of the wheelchair. This manipulator carries 4 revolute joints plus a planar 

gripper and can be seen mounted to a power wheelchair in figure 2.16. The arm is 

directly controlled by the user by either a joystick or 10-button controller. Because the 

Raptor does not have encoders to provide feedback to the controller, the manipulator 

cannot be pre-programmed in the fashion of industrial robots, and can not have Cartesian 

control.  
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Figure 2.16: Raptor Arm. 

The Raptor is a side-mounted arm that is partially hidden underneath the chair. 

When the arm is not in use, the Raptor arm can be stowed relatively inconspicuously. 

Robotic arms with joint control require higher levels of concentration and eye-hand 

coordination from the operator than Cartesian control systems.  

 

2.4. Robot Control 

The controller design of the robotic device is as important as the design of the 

robotic device itself. Many researchers have explored different ways of controlling the 

robotic devices both in simulation and in physical systems. 

 

2.4.1. Redundant Robot Control 

When controlling a robotic device, it is essential to compare the work space 

capability of the robot and the task space required in operation. In general, a minimum of 
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6 degrees-of-freedom are required in a robot in order to accomplish a total manipulation 

control of objects in the workspace. In the case of planar workspace, a minimum of 3 

joints are required in a robot to achieve full manipulation of that workspace. When the 

number of joints exceeds the number of controlled coordinates in the workspace, 

redundancy is introduced, and the conventional inverse kinematics for a close-form 

solution is no longer applicable. Redundancy resolution and optimization have been the 

subject of many researchers, where the use of the extra joints is employed to execute 

additional tasks and optimize the motion based on certain performance criteria. 

Chang [25] has proposed a closed-form solution formula for inverse kinematics of 

redundant manipulators using Lagrange multiplier. He proposed an additional set of 

equations to resolve the redundancy at the inverse kinematic level in such a way that a 

given criteria function may be minimized or maximized. The additional equations were 

set in a similar way to the homogeneous solution term of the resolved rate method which 

uses the null space to resolve the redundancy. He used the manipulability index as the 

criteria function, but any criteria function can be used as long as the function can be 

reduced to an expression in terms of joint variables only.  

Khadem et al [26] used a global optimization scheme to avoid round obstacles 

using the resolved rate method. Their simulation of a three-revolute-joint planar robotic 

arm has shown good performance in following a path while the specified robot link was 

avoiding a specified obstacle throughout the simulation. Figure 2.17 shows the simulation 

mechanism with and without the obstacle avoidance optimization criteria. 
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Figure 2.17: Redundancy Resolution without (Left) and with (Right) Obstacle Avoidance. 

Chan et al [27] have proposed a new method to resolve the redundancy and 

optimize for joint limit avoidance. They used a symmetric positive definite weight matrix 

that carries different weights for each individual joint of the redundant robot to be 

included in the least-norm solution they were using to control the 7-DoF robotic arm. The 

weighted-least norm solution was implemented, and showed a good combination between 

reaching the goal with the specified trajectory accurately and avoiding the joint limits of 

the robotic arm. McGhee et al [28] used the weight matrix to avoid joint limits, 

singularities, and obstacles using the probability-based weighting of the performance 

criteria. 

Beiner et al [29] have improved the velocity norms and the kinetic energy of their 

planar 3-DoF robotic crane with hydraulic actuators by using an improved Pseudo inverse 

solution control scheme. They used the initial manipulator configuration as an 

optimization parameter, and were able to reduce the actuator velocities obtained by a 

pseudoinverse solution and simultaneously avoid the actuators limits.  

Zergeroglu et al [30] have designed a model-based nonlinear controller that was 

able to achieve exponential link position and subtask tracking. Their control strategy used 
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the pseudoinverse of the manipulator Jacobian and did not require the computation of the 

positional inverse kinematics. Their control strategy did not place any restriction on the 

self-motion of the manipulator, and hence, the extra DoF were available for their 

manipulability maximization, obstacle avoidance, and joint limits subtasks.  

Kwon et al [31] have introduced a new method to optimize and resolve 

redundancy considering joint-limit constraint functions. Their Dual QCQP method used 

the quadratic inequality constraints to approximate linear inequality constraints which 

represent joint position, velocity and torque bounds. Using their method, they were able 

to reduce the size of the problem by reducing the number of constraints and variables. 

They formulated the quadratic objective function and then converted the problem into 

two problems by eliminating linear equality constraints and by applying the duality 

theory. This method was used in their simulation of a 4-joint planar robotic arm, and they 

were able to cut the computation time to about a tenth of that when the problem was not 

reduced. 

Ellekilde et al [32] have introduced a new scheme for controlling robots in visual 

servoing applications. They employed quadratic optimization techniques to solve the 

inverse kinematics problem and explicitly handle both joint position, velocity and 

acceleration limits by incorporating these as constraints in the optimization process. 

Contrary to other techniques that use the redundant degrees of freedom to avoid joint 

limits, in their method, they incorporated the dynamic properties of the manipulator 

directly into the control system to use redundancy to avoid joint velocity and acceleration 

limits. They used the joint position limits, velocity limits and acceleration limits by 

converting them into the velocity domain and choosing the best case of these limits (that 



www.manaraa.com

 26

satisfies all of them) at every time step to be used for the optimization function. Figure 

2.18 shows the application of their method in the example of the RoboCatcher visual 

servoing application using the QP controller. The robot was trying to track the car which 

moves in a circle in the playing area. The QP control system was robust with respect to 

singularities which enables the robot to track the car as “good as possible” even if it is out 

of reach. 

 

Figure 2.18: The Robot Visual Servoing Application Using the QP Controller. 

  

2.4.2. Mobile Robot Control 

In the past decade, mobile manipulators that combine the manipulation of a 

manipulator and the mobility of a mobile platform have been paid much attention by 

many researchers. Most of the works for the mobile manipulators have reported on the 

coordination of the mobile platform and the manipulator and the obstacle avoidance in 
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their environments. Recently, the importance of human-robot coexistent systems which 

perform cooperative works with humans and provide convenience such as house cleaning 

and washing has been raised. 

Perrier et al [33] have proposed a method to determine a feasible path between 

two fixed configurations for a mobile manipulator whose vehicle is non-holonomic. For 

this purpose, they wrote the global displacement of the system in a symbolic way, using 

two representation tools: homogeneous matrices and dual quaternions. The corresponding 

joint parameters are computed to make the desired displacement coincide with the 

computed symbolic displacement. Figure 2.19 shows the frames of reference used in their 

robotic simulation. 

 

Figure 2.19: Reference Frames Used for the Manipulation LIRMM. 

The simulation results about motion generation of a mobile manipulator with a 

non-holonomic vehicle and a six Degree-of-Freedom (DoF) arm using a global method 

was shown. They represented the non-holonomy of the vehicle as a constrained 

displacement. The method tries to make the global feasible displacement of the system 

correspond to the desired one. Two kinds of displacement representations were used: 

homogeneous matrices and dual quaternions. Trajectories obtained with the two 

representations were given. Both representations allowed them to compute feasible 

trajectories, although different.  
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At Chuo University in Japan [34], researchers have proposed a simple method for 

carrying a large object by cooperation of multiple mobile manipulators with position 

controllers. Manipulators on mobile platforms are used as free joint mechanisms by 

locking some joints and making the rest of the joints free. These free joints play the role 

of mechanical compliance in order to avoid excessive inner forces due to the mutual 

positioning errors. They found that compliance is needed for cooperation among position-

controlled robots, and three feedback control laws for platforms moving on uneven 

ground are studied and they looked at their control performance. As shown in figure 2.20, 

they proposed the control laws to be used for a prototype cooperative system consisting 

of three moving tables driven by ball screws. 

 

Figure 2.20: Cooperative Control System Setup. 

When multiple robots hold single object at the same time, geometrical constraints 

by closed loop structures are imposed on each robot. Thus compliance is needed for each 

robot to avoid excessive inner forces caused by the mutual positioning errors.  

Huang et al [35] have developed a small-sized platform as shown in figure 2.21. 

The problem they faced is the fact that for a small scale platforms, the mobile 

manipulator may fall down when moving at high speed or executing tasks in the presence 
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of disturbances. Therefore, it is necessary to consider both stabilization and manipulation 

simultaneously while coordinating vehicle motion and manipulator motion. They propose 

a method for coordinating vehicle motion planning considering manipulator task 

constraints, and manipulator motion planning considering platform stability. Specifically, 

first, the optimal problem of vehicle motion is formulated, considering vehicle dynamics, 

manipulator workspace and system stability.  

 

Figure 2.21: Mobile Manipulator Model. 

They derived the manipulator motion considering stability compensation and 

manipulator configuration. Then, simulation is conducted to demonstrate effectiveness of 

their method. These researchers tried to derive coordinated motion so that the mobile 

manipulator can move stably and follow a given desired end-point trajectory (path, 

velocity) at an optimal configuration. They derived the redundant manipulator motion, 

considering stability compensation and manipulator configuration, and provided 

simulation results. When considering the compatibility of stabilization and manipulation, 
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it is first necessary to maintain system stability. Then, based on the assurance of system 

stability, the mobile manipulator should execute tasks with an optimal configuration. 

The researchers in Noval Postgraduate School, and Tokai University [36] have 

presented a unified approach to the task space analysis of a wheeled mobile manipulator 

interacting with the environment as shown in figure 2.22. The system considered is a 

double- articulated manipulators atop a wheeled mobile platform handling a common 

object.  

 

Figure 2.22: Wheeled Mobile Manipulator with Two Arms. 

They derived the task space ellipsoid, both kinematic and dynamic, for a wheeled 

mobile manipulator which takes into account manipulation and locomotion. The ellipsoid 

is able to visualize how the manipulator and the platform can contribute to a task 

execution by integrating the mobility of the platform with the manipulability of the arms 

as one unified measure. This measure can be useful not only for the task space analysis of 
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a single mobile manipulator, but also for the coordination of multiple-arms mobile robots 

or mobile manipulators. 

Separating manipulation from mobility makes control and planning problems 

easier, but it will be much more effective and efficient if the manipulator can execute a 

given task while the platform is moving. These researchers have proposed a coordination 

algorithm of mobile manipulators which utilizes manipulability measure of the arm. They 

treated both locomotion and manipulation in the same framework from the view-point of 

task space. Contribution of the manipulator and platform is represented by the task space 

ellipsoid at the end effecter point or at the center of the object to be handled. The 

ellipsoid not only displays how a given task is contributed by the arm and the platform, 

but also the shape of the ellipsoid, kinematic or dynamic, naturally reflects constraint 

equations to which the platform is subjected. They also derived the motion equations of 

the two-arm mobile manipulator and the object separately. Motion equations of the 

mobile manipulator which itself consists of multiple subsystems are obtained by adding 

dynamic interaction terms to pre-existing motion equations to get the global equations of 

motion for the whole system. 

Royal Institute of Technology researchers [37] have proposed a platform-

independent control approach for mobile manipulation and coordinated trajectory 

following. Given a path for the gripper to follow, another path is planned for the base in 

such a way that it is feasible with respect to manipulability. The base and the end-effector 

then follow their respective reference trajectories according to error-feedback control 

algorithms, while the base is placed in such a way that the end-effector trajectory always 

is within reach for the manipulator. The experimental platform that they have used for 
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this is a Nomadic XR4000 base platform together with a Puma560 manipulator arm, as 

shown in figure 2.23.  

 

Figure 2.23: Nomad XR4000 with the Puma560 Mounted on Top. 

Given a path for the gripper to follow, the idea is to plan another path for the base, 

online, in such a way that the end-effector trajectory always lies in the dextrous 

workspace. These two paths are then tracked using a virtual vehicle approach, where the 

motions of the reference points on the desired base and gripper paths are governed by 

their own dynamics, containing both position error feedback as well as coordination 

terms.  

Researchers in Kyushu University [38] have studied the planning method of a 

trajectory of a mobile manipulator such as shown in figure 2.24. They derived the 

dynamics of the mobile manipulator considering it as the combined system of the 

manipulator and the mobile platform. The planning problem is formulated as an optimal 

control problem. To solve the problem, they used the concept of the order of priority. A 

gradient-based iterative algorithm which synthesizes the gradient function in a 

hierarchical manner based on the order of priority is used. The simulation results of the 2-

link planar non-holonomic mobile manipulator are given to show the effectiveness of 

their algorithm. A mobile manipulator composed of a manipulator and a mobile platform 
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has a much larger workspace than a fixed-base manipulator due to the mobility provided 

by the platform. The trajectory planning problem of the non-holonomic mobile 

manipulator dynamics has been taken into consideration.  

 

Figure 2.24: Mobile Manipulator. 

Researchers in LAAS-CNRS in France [39] have extended the standard definition 

of manipulability to the case of a nonholonomic mobile manipulator built from an n joint 

robotic arm and a nonholonomic mobile platform as shown in figure 2.25. The effects of 

mounting the arm on a nonholonomic platform are shown through the analysis of the 

manipulability.  

 

Figure 2.25: Mobile Manipulator H2BIS. 
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Applications of criteria inherited from manipulability considerations are given to 

justify design and to generate the controls of their system. Their study was motivated by 

the generation of the mobile manipulator velocities to execute a given operational path. 

The inversion of the direct instantaneous kinematic model of the mobile manipulator 

allowed them to solve the problem and to take into account some additional criteria. As a 

usual criterion, they considered the manipulability measure, which is very useful to 

characterize the instantaneous kinematics of a given system. These researchers showed 

how the notion of manipulability can be extended in that case to represent the possible 

operational motions in a given configuration of the system. Some simulations gave an 

idea of the effects of the platform on the shape of manipulability ellipsoids, with an 

obvious dependence on nonholonomy.  

Those same researchers [40] have also proposed a generic scheme to solve the 

kinematic control problem of wheeled mobile manipulators when the operational motion 

is imposed. They generalized the Additional Task Method to solve the control problem of 

these redundant nonholonomic systems. They integrated any number of additional user-

defined constraints to the operational task and proposed a generic approach to control a 

large class of mobile manipulators as well as other methods to express the additional 

tasks corresponding to real experimental constraints. Thus the control designer can use 

purposely redundancy, particularly to avoid obstacles. They illustrated the Additional 

Task Method by a collision free simulation. This simulation is done in a 3D environment 

and uses an efficient collision detector. Figure 2.26 represents the mobile manipulator of 

LAAS.  
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Figure 2.26: LAAS Mobile Manipulator. 

Figure 2.26 (a) represents the collision in motion of the mobile manipulator 

without taking into account the additional collision avoidance constraint. Figure 2.26 (b) 

shows the achievement of the motion with the use of the proposed method.  

Researchers at Okayama University [41] have conducted research to realize the 

motion planning for an intelligent mobile manipulator shown in figure 2.27. To plan a 

mobile manipulator’s motion, it is popular that the base robot motion is regarded as 

manipulator’s extra joints, and the whole system is considered as a redundant 

manipulator. In this case, the locomotion controller is a part of the manipulator controller. 

However it is difficult to implement both controllers as one controller in the 

implementation because of the difference of actuators character. In this research they 

have focused on a path planning algorithm for a mobile base with keeping manipulability 

at the tip of the mounted manipulator. In this case, the locomotion controller is 

independent from the manipulator controller and a cooperative motion is realized by the 

communication between both controllers. 
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Figure 2.27: Mobile Manipulator. 

One of their general approaches is to consider the locomotion as extra joints of the 

manipulator. Manipulability was defined as a valuation of difficulty of manipulator’s 

operation. The goal of these researchers is to draw large objects on a wall by a mobile 

manipulator based on the above approach. Figure 2.27 shows an overview of the mobile 

manipulator considered for their research task. To realize the above task, one of the 

biggest problems is that an accumulated error of estimated base robot’s position affects 

position accuracy at the end effector. Therefore, the manipulator should have the 

capability to adjust its pose when the base robot detects positioning errors. The motion 

planning approach is reasonable enough to cope with above conditions because 

manipulability is considered. Each pose of the manipulator is calculated by inverse 

kinematics at each layer. To verify the result, they have executed the program in the 
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motion simulator. The end effector traces the desired slope segment while the mobile 

base moves.  

Seraji [42] has simulated the motion control of a mobile 2-link planar manipulator 

mounted on a non-holonomic mobile platform. He combined the Jacobian of the mobile 

manipulator with that of the robotic arm. To resolve the redundancy, he added two 

additional variables to the task space, the platform angle, and the elbow angle between 

the forearm and the wrist. Accordingly, he augmented the Jacobian to include these two 

variables’ Jacobian in his control equations. This kind of redundancy resolution increases 

the need for trajectory planning for these extra task variables and makes it 

computationally expensive. 

Chung et al [43] have approached the control problem of non-holonomic mobile 

manipulators in special workspace by decomposing the mobile manipulator into two 

subsystems, the mobile platform and the manipulator. According to their redundancy 

resolution scheme, the manipulator was commanded to follow the desired trajectory 

given in task space and the platform was responsible for positioning the manipulator at a 

specified point in the workspace to avoid singular configurations of the manipulator. To 

coordinate the two separate motions together, they developed an interaction control 

algorithm, as shown in figure 2.28, in which two nonlinear controllers were designed for 

the subsystems, based on the redundancy resolution scheme. The interaction controller 

consisted of a robust adaptive controller for the manipulator and an input-output 

linearizing controller for the mobile platform. Their simulation results demonstrated a 

good performance of the interaction controller based on their trajectory-following task. 
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Figure 2.28: Interaction Control of the Mobile Manipulator. 

Gardner et al [44] and Bayle et al [45] presented a systematic unified kinematic 

analysis for manipulator arms mounted on mobile platforms. They extended the 

definition of manipulability by scaling joint velocities by their maximum values. To find 

the best possible mounting location of the mobile platform, they simulated a mobile 

manipulator with differential drive that carries a variable placement of the arm base on 

the mobile platform. They were able to illustrate the manipulability measure based on the 

manipulator mounting position on the overall mobility of the system. 

Xu et al [46] have proposed a new strategy to deal with the mobility and 

manipulation combination problem in a mobile manipulator that has redundant DoF. In 

their control, they decomposed the position and orientation of the end-effector into two 

parts. The position and orientation of the sub-vectors of the manipulator projected on the 

global z-axis was defined, then the mobile base and the manipulator were moved along 



www.manaraa.com

 39

the main direction of the desired path and the sub-vectors on axes x-axis and y-axis in the 

world frame. The simulation results showed that the small working ranges of the joints of 

the manipulator have seriously limited the application.  

Luca et al [47] have tested the extension of conventional redundancy resolution 

methods to include non-holonomic mobile platforms at the base of the redundant arm 

using an augmented Jacobian. They have used the singularity analysis and redundancy 

resolution methods available for standard manipulators to compare the reduced gradient 

method and the projected gradient method. Their simulation has shown the superior 

optimization performance of the reduced gradient over the projected gradient method. 

The desired tasks for the robotic system were executed by the combined motion of all the 

configuration variables. Figure 2.29 shows the simulation of their implementation using 

the reduced gradient method on a 4-DoF planar system following a circular path while 

keeping the end-effector pointing to certain direction. 

 

Figure 2.29: Trajectory Tracking for a Planar 2-DoF Robot on a Differential Mobile Base. 
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Papadopoulos et al [48] have tested their control algorithm on mobile 

manipulators mounted on differential-drive platforms as well as car-like platform. Both 

system platforms were equipped with a two link manipulator. The differential kinematics 

for the two mobile systems were written so as to map platform and end-effector velocities 

to the driven wheel velocities, without violation of the non-holonomic constraints. This 

allowed specification of trajectories for both the platform and the end-effector and 

computation of actuator commands. Orthogonal complements and the Lagrangian 

methodology were used to obtain the reduced equations of motion for the differentially-

driven system. Figure 2.30 shows the desired path of the end effector and that of the front 

point on the platform along with the actual trajectory-following simulation.  

 

Figure 2.30: Animation of the Motion of the End-Effector and the Platform Front Point. 

Based on these equations, a model-based controller was designed to eliminate 

tracking errors. The controller was applied successfully to a simple crack-sealing 

example, and showed accurate simulation. 
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Chapter 3: 
 

Control Theory of Redundant Manipulators 

 

3.1. Introduction 

Control issues in simple robotic systems can be resolved easily when we try to 

control Cartesian coordinates using a robotic system that has the same number of joints as 

these coordinates to be controlled. For instance, a robotic arm with two revolute joints 

can be used to control the x-axis and y-axis coordinates of the end-effector in a planar 

workspace using simple mathematical relations that relate the joint motion to the end-

effectors’ motion. Trying to control a third variable, such as the angle of approach in a 

planar workspace will be difficult and some times impossible if we use the same 2-DoF. 

This is because the manipulator carries less DoF than the workspace. On the contrary, 

when we try to control the two variables mentioned above using a manipulator with three 

or more joints, then we will face control problems since the solution to the equations of 

motion carries an infinite number of solutions. This is because the manipulator carries 

more DoF than the workspace.  

In this chapter, we will look at different ways to control a robotic arm that carries 

more DoF than the workspace, and we will provide different solution choices that can be 

chosen from these infinitely many solutions.  
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3.2. Terminology 

When talking about the degrees of freedom (DoF), Craig [49] defines it as the 

number of independent position variables which would have to be specified in order to 

locate all parts of the mechanism. For example, a 4-bar mechanism has a single DoF even 

though there are three moving members of the mechanism. In a typical manipulator, the 

number of DoF is the same as the number of joints since it is an open kinematic chain. 

Degrees of redundancy, on the other hand, are referred to when the number of joints is 

greater than the dimension of the manipulation variable [50].  

The end-effector, or sometimes referred to as the “gripper” defined as the free end 

of the chain of links that make the manipulator [49]. A work space is referred to as the 

space of which the manipulator’s end-effector can reach, or as Craig [49] defines it, it is 

the existence or non-existence of a kinematic solution of a given manipulator.     

 

3.3. Redundant Manipulators Problem Formulation 

Redundant manipulators can be of any size and shape that use revolute or 

prismatic joints among others, but in this chapter, we will limit our research on a seven 

DoF redundant robotic arm that has a full six DoF Cartesian workspace. By definition, 

this robotic arm has one degree of redundancy. The six controlled Cartesian variables in 

this case are the three positions in the x, y and z coordinates, and the three orientations or 

angles about the x, y and z axes. To be compatible with the test bed and the simulation 

that we will discuss in details in the coming chapters, a complete description of the 

manipulator’s physical characteristics will be discussed.  
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3.3.1. Frames of References 

The first step in studying the kinematics of any robotic manipulator is to assign 

coordinate frames of references according to one of the known conventions and generate 

the kinematic parameters based on the selected convention. The most widely used 

convention is the standard convention used by Paul [51], but in our case, we will use the 

modified convention by Craig [49]. The results will still be the same, but it is only a 

matter of preference. Referring to figure 3.1, frames of each link should be attached in the 

following manner: 

1- Assign the Zi axis pointing along the ith joint axis. If that link has no joints, 

such as the ground or the end-effector, any direction is permitted. 

2- Assign the Xi axis pointing along the Zi-Zi+1 common perpendicular. If the 

axes intersect, then Xi can be normal to the plane containing Zi-Zi+1 axes. 

3- Assign the Yi axis according to the right-hand coordinate system. 

 

Figure 3.1: Joint-Link Kinematic Parameters. 
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3.3.2. Denavit-Hartenberg Parameters 

There are four parameters that fully describe the kinematic relations between 

every neighboring joints and links in a manipulator, as shown in figure 3.1. These four 

parameters are: 

1- Two neighboring joint relations: 

a. The link length (parameter a). 

b. The link twist angle (parameter α). 

2- Two neighboring link relations: 

a. The link offset (parameter d). 

b. The joint angle (parameter θ). 

These kinematic parameters are called the Denavit-Hartenberg parameters, or for 

short, D-H parameters. Gathering these parameters for all coordinate frames in a table 

allows a better view of the kinematic characteristics of the robotic arm. Assigning the 

frames as shown in the above steps will allow us to define the neighboring joint-link 

parameters as follows: 

1- The value of “ai” is defined as the distance from Zi to Zi+1 measured along Xi. 

2- The value of “αi” is defined as the angle from Zi to Zi+1 measured about Xi. 

3- The value of “di” is defined as the distance from Xi-1 to Xi measured along Zi. 

4- The value of “θi” is defined as the angle from Xi-1 to Xi measured about Zi. 

The robotic arm at hand consists of seven revolute joints of which the rotation 

axes of every two immediate joints intersect. Figure 3.2 shows a Solid Works drawing of 

the new robotic manipulator that was designed and built at the University of South 
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Florida from the ground up [52]. For that manipulator, frame assignment for each link is 

shown in figure 3.3, and the D-H parameters are pointed out. 

 

Figure 3.2: Solid Works Model of the New 7-DoF Robotic Arm Built at USF. 

 

Figure 3.3: Frame Assignments and Dimensions of the New 7-DoF Robotic Arm. 

Note that the rotational axes of the last three joints intersect at one point, this 

setup gives a mechanical advantage to the wrist both in calculations and in manipulation. 

The D-H parameters of the above manipulator are shown in table 3.1. Note that the value 

assigned to d6 is zero since X5 and X6 are at the same axis line and the distance between 

them is zero. More details on this particular joint design will be discussed in a later 

chapter. 
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Table 3.1: The D-H Parameters of the New 7-DoF Robotic Arm Built at USF. 

 

 

3.4. Forward Kinematics Equations 

The aim of the forward kinematics is to solve the transformation equations for the 

end-effectors’ Cartesian position and orientation or velocities when the joint angles and 

velocities are given. Even though this kind of control is not practical if used for task 

execution, but it is a step that has to be done before thinking of doing the inverse 

kinematic control. 

 

3.4.1. Link Transformation Matrices 

Homogeneous transformation matrices that transform the motion from one 

coordinate frame reference to the other can be easily obtained from the D-H parameters 

using the conventional equations [49] that relate every two consecutive frames to each 

other as follows: 

i αi-1 
(degrees) 

ai-1 
(mm) 

di 
(mm) 

θi 
(degrees) 

1 -90 0 110 θ1 
2 90 0 146 θ2 
3 -90 0 549 θ3 
4 90 0 130 θ4 
5 -90 0 241 θ5 
6 90 0 0 θ6 
7 -90 0 179 θ7 
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Where “s” is sine, and “c” is cosine of the angle. Applying the above formula to 

all seven reference coordinate frames gives the following homogeneous transformations: 
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These homogeneous transformations describe the kinematic behavior of the 

robotic system at any instance of time. For instance, to find where frame 4 lies based on 

frame 3 when joint 4 is at certain angle, substituting that angle in the specified 

transformation matrix gives the position and orientation of frame 4 based on frame 3. The 

first 3x3 rows and columns of the homogeneous transform describes frame 4’s unit 
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vectors projection on frame 3, and the first three rows of the last column of the 

homogeneous transform describes the position of frame 4’s center based on frame 3. 

Propagating these matrices from one frame to the other gives us the forward kinematics 

of the robotic arm that describes the end-effectors’ frame based on the base frame as 

follows: 

TTTTTTTT 6
7

5
6

4
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3
4
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1
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0
7 ⋅⋅⋅⋅⋅⋅=  (3.3) 

From this point on, we will use these transformation matrices as noted above. The 

rotation matrices and the frame’s center coordinates extracted from these homogeneous 

transformation matrices will also be used as follows: 
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Where “R” is the 3x3 rotation matrix representation of the transform, and “P” is 

the vector containing the X, Y and Z coordinates of the origin of the frame. 

 

3.4.2. Velocity Propagation and the Jacobian 

Forces and velocities acting on the joints are crucial for the control of robotic 

manipulators. When a manipulator is controlled by sending a torque value to its joint 

motors, precise knowledge of the acting torques and forces on each joint is needed. The 

same is true when velocities are used to control the manipulators, each joints’ velocity 

need to be determined so that the task can be executed as desired by the operator. Figure 

3.4 shows the linear (ν) and angular (ω) velocity vectors acting on neighboring links. 

These velocities are related together by the physical dimensions of the link that holds 

these two neighboring joints, and these dimensions are the same ones we obtained in the 
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previous sub-heading in the form of homogeneous transformation. The angular velocity 

of link “i+1” with respect to frame “i+1” can be defined as: 

1
1

1
1

1
1

+
+

+
+

+
+ ⋅+⋅= i

i
ii

ii
ii

i ZR θωω &  (3.5) 

Where “θ&” is the joint angular velocity, and “Z” is the projection of the Z-axis on 

its own frame of reference. This Z is usually [0, 0, 1]T. Similarly, the linear velocity of 

the origin of frame “i+1”  with respect to frame “i+1” can be defined as: 
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Propagating these velocities throughout the joints will result in a full description 

of all velocities acting on every joint at any moment of time when the joint angles are 

provided. 

 

Figure 3.4: Velocity Vectors of Neighboring Links. 
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The same way we found the velocities at each joint, we can derive these relations 

in general using the Jacobian. The end-effectors’ Cartesian coordinates are direct 

functions of the joint angles along the manipulator as follows: 

),,,,,,( 7654321 θθθθθθθFX =  (3.7) 

Where X is the 6x1 vector contains the 3 position and 3 orientation dimensions of 

the end-effector with respect to the base frame. To convert the dimentions into velocities, 

we can partial differentiate each of the Cartesian variables with respect to each of the 

joint angles. That gives: 
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 (3.8) 

Or these can be re-written as: 

δθ
θ

δ
∂
∂

=
FX  (3.9) 

Note that we only have six equations, which are the Cartesian positions and 

orientations, and seven unknowns, which are the seven joint angles. This gives us an 

over-defined system, and we will talk about this in more details later in the chapter. 

Dividing both sides of (3.9) by the time increment (δt) gives the velocities as: 
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Where “J(θ)” is the Jacobian matrix that relates the joint angular velocities to the 

end-effectors’ Cartesian velocities based on the base frame. At any time step, knowing 

the joint velocities and joint angles allows us to translate directly to the end-effector’s 

Cartesian velocities using the Jacobian. This Jacobian can also be used to relate the acting 

forces and moments at each joint to the end-effectors’ acting forces and moments. 

 

3.5. Inverse Kinematic Equations 

The aim of the inverse kinematics is to solve the transformation equations for the 

joint angles or velocities when the end-effectors’ Cartesian position and orientation or 

velocities are given. Most industrial robotic manipulators implement this kind of control 

for its practical use. In order to read the joint angles while the robot is running and supply 

it to the controller, encoders are necessary to be mounted at each joint for joint feedback. 

The solution of such equations can vary from a close-form solution to different numerical 

solutions depending on the size of the joint domain as compared to the size of the task 

domain. 

 

3.5.1. Closed Form Solutions 

A close form solution is an exact solution to the set of equations that relates the 

joint rates to the Cartesian velocities. This is possible when the number of joints in the 

manipulator is equal to the number of Cartesian variables to be controlled in the task 

space. In that case, the transformation matrix in the left-hand side of (3.3) is given, and 

we need to find the joint angles included in the right-hand side of that equation. This can 
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be done easily for simple robotic systems. For instance, it can be easy to find the joint 

angles of a two-link planar robotic manipulator when the X and Y coordinates of the tip 

of the arm are given by solving the two equations for the two unknowns. Doing so for 

more complex manipulator can result in very lengthy equations that will require extensive 

calculations and can be time consuming, which might be costly in terms of real-time 

control.  

Another way of finding a close-form solution is by using the Jacobian given in 

equation (3.10). Inverting the Jacobian when it exists can directly give the joint rates if 

the Cartesian velocities and the current joint angles are given as follows: 

VJ )(1 θθ −=&  (3.11) 

A solution does not exist when the Jacobian is not at full rank, or when 

redundancy is introduced since the Jacobian in that case will not be a square matrix. 

When the number of joints exceeds the number of controlled coordinates in the 

workspace, the conventional inverse kinematics for a close-form solution is no longer 

applicable. Redundancy resolution and optimization schemes have been the subject of 

many researchers, where the use of the extra joints is employed to serve additional task 

executions and optimize the motion based on certain criterion.  

Some researchers have altered these equations by adding more constraints based 

on certain criterion so that the number of equations matches the number of joint variables 

as Chang [25] did. He proposed a closed-form solution formula for inverse kinematics of 

redundant manipulators using Lagrange multiplier by proposing an additional set of 

equations to resolve the redundancy at the inverse kinematic level in such a way that a 

given criterion function may be minimized or maximized. The additional equations were 
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set in a similar way to the homogeneous solution term of the resolved rate method which 

uses the null space to resolve the redundancy. Although he used the manipulability index 

[53] as the criterion function, but any criterion function can be used as long as the 

function can be reduced to an expression in terms of joint variables only.  

 

3.5.2. Manipulability Ellipsoid 

For a Cartesian coordinate solution of the end-effector to exist, it is important to 

stay away from singular configurations of the robotic arm. A good way to ensure that a 

singular configuration in not reached is to find the determinant of the Jacobian matrix and 

make sure it is as far away from zero as possible. The closer the determinant to zero, the 

higher the joint velocities required to produce the desired Cartesian motion.  

In the case where the Jacobian is not at full rank due to the fact that the matrix is 

not square, a different measure is required to ensure a smooth motion of the arm with no 

singularities along the way. Yoshikawa [53] have proposed a method that measures the 

manipulability measure for any manipulator with any size Jacobian. Consider the set of 

end-effectors’ velocities X& that are accomplishable by the set of joint velocities such that 

the Euclidean norm satisfies: 
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This set is an ellipsoid in the 6-dimentional Euclidean space shown in figure 3.5. 

The end-effector can move at high speed along the direction of the major axis of the 

ellipsoid, and only at low speed along the minor axis of the ellipsoid. Also, the larger the 

ellipsoid is, the faster the end-effector can move. A representative measure of how the 
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manipulator is able to move at a certain configuration is the volume of the ellipsoid at 

that particular configuration, and that can be represented by a scalar value as follows: 

))()(det( TJJw θθ ⋅=  (3.13) 

Where “w” is the manipulability measure at the configuration specified by the set 

of joint angles “θ”. This measure represents how far the manipulator is from singularities, 

the larger this measure is, the farther away from singularity the manipulator is. When this 

measure reaches zero, a manipulator is said to be at a singular configuration. 

 

Figure 3.5: Manipulability Ellipsoid for a 7-DoF Manipulator in a 6-DoF Euclidean Space. 

 

3.5.3. Numerical Solutions 

Numerical solutions, such as Gauss’ elimination method, are less computationally 

expensive than the inverse solutions of the Jacobian [54]. These solutions can be 

implemented using the Jacobian to follow the user’s directional motion commands or to 

follow the desired trajectory. In the case of redundancy, the Jacobian is not a square 



www.manaraa.com

 55

matrix any more, and that makes it un-invertible and not at full rank. Since the Jacobian 

is the key relation that relates the Cartesian space and the joint space variables, it is 

important to use different methods to invert this kind of non-square matrix. One of the 

most used methods in redundant manipulator controls is the Pseudo inverse, which can be 

used for numerical solutions as follows: 

1* )( −⋅⋅= TT JJJJ  (3.14} 

To use the above equation, it is required that the rank of the jacobian matrix “J” is 

equal to the number of rows of that matrix. Redundancy can then be resolved using 

Pseudo inverse of the Jacobian to obtain a numerical solution of the joint angle rates 

using the following equation: 

VJ ⋅= )(* θθ&  (3.15) 

This is one of the numerical solutions adopted in the earlier versions of the control 

system of the arm, which minimizes the Euclidean norm of errors as the optimization 

criterion. Other numerical solutions and optimization methods will be discussed later in 

this chapter and in chapter 5. 

 

3.5.4. Redundancy Resolution 

One of the first problems that needs to be taken care of in robotic manipulators is 

the singularity problem, which is the case when a solution does not exist at certain parts 

of the trajectory due to an odd configuration of the arm. Even with redundant 

manipulators, singular configurations may be reached along the process of following 

certain pre-specified trajectories. As mentioned earlier, manipulability measure is used as 

a factor to measure how far the current configuration is from singularity. In the case when 
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we have a redundant manipulator, achieving the same point in the work space can be 

done in an infinitely many configurations of the arm. Choosing one of these 

configurations can be done using different optimization criteria to be satisfied in case 

multiple solutions exist. When the trajectory is satisfied, and there exists a null space that 

can be used to select one of the infinite solutions that satisfy the trajectory, and at the 

same time satisfy a chosen criterion function, a valid configuration is selected that is 

solved based on both original requirement and the criteria constraints. One of these 

criterion functions or restrictions can be the maximization of the manipulability measure 

since it is crucial to the task execution.  

Optimizing the solution can be achieved by adding an additional term to equation 

(3.15) that carries a sub-task to be considered in case more than one solution to the basic 

task exists. This secondary task term is added as follows: 

fJJIVJ ⋅⋅−+⋅= ))()(()( *
7

* θθθθ&  (3.16) 

Where “f” is a 7x1 vector representing the secondary task, “J*” is a 7x6 inversion 

of the Jacobian matrix, and I7 is the identity matrix of size 7. The choice of the criterion 

function can range from a scalar quantity, such as the manipulability measure, or can be a 

set of functions, such as joint limit avoidance conditions. 

 

3.5.5. Optimization Criteria 

As mentioned earlier, optimization can take the form of a scalar or a set of 

equations to be considered in the optimization process. When an exact solution does not 

exist, equation (3.16) covers all the least square solutions that minimize the Euclidean 

norm of errors while maintaining minimum joint velocity norms as follows: 
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Fulfil ( θθ &⋅− )(min JV ) while maintaining ( θ&min ) (3.17) 

At many instances, the main objective function to follow a certain trajectory does 

not require the use of all available joints of the manipulator, For instance, rotating the 

wrist around the end-effector’s rotation axis requires only the last joint (joint 7) to move. 

This leaves all 6 other joints available for optimization, and at that moment, the arm 

would have six degrees of redundancy. The null space in this case containing the other 

six joints can be used to optimize for more than one criterion. Some of these criteria are: 

1- Maximizing the manipulability measure. 

2- Minimizing the joint velocities. 

3- Minimizing the energy. 

4- Avoiding obstacles. 

5- Avoiding joint limits. 

6- Pointing at certain point while moving along a required trajectory. 

Some of the above criteria can be used together in a priority-based level that will 

realize the higher priority criterion while the main task is being executed, and then go on 

to the lower priority tasks if null space still exists until all joints are being used or all 

criteria have been realized.  

 

3.6. Summary 

In this chapter, a mathematical model of a 7-DoF redundant robot is described. 

The arm consists of seven revolute joints with intersecting axes of rotation between every 

two neighboring joints. The problem was formulated by assigning coordinate frames to 

each one of the links according the modified convention of frame assignments. The D-H 
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parameters of the system were generated to calculate the relations between every two 

consecutive joints and links. The forward kinematic equations were generated, and the 

total homogeneous transformation matrix of the robotic arm was created. The velocity 

relations between the links were propagated to find the end-effectors’ Cartesian velocity 

relations to the joint velocities, and these relations lead to the Jacobian matrix that relates 

the work space and the joint space together. Inverse kinematic equations were generated 

to find the joint positions or velocities in case the required Cartesian coordinates are 

given. Different methods of doing the inverse kinematics were discussed, and the 

optimized redundancy resolution scheme used in the control was shown. 
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Chapter 4: 
 

Mobility Control Theory 

 

4.1. Introduction 

“Mobile Manipulator” is a widespread term that refers to robots that combine 

capabilities of locomotion and manipulation. When these systems are devoted to indoor 

tasks, they are often equipped with powered wheels. The arrangement of the wheels and 

their actuation device determine the holonomic or non-holonomic nature of this 

locomotion system. Some wheeled mobile manipulators built from an omni-directional 

platform are holonomic, and many of them are non-holonomic. The tasks assigned to 

these systems are often translated in terms of end-effectors’ motion. Although this 

concept is well known for robotic arms, it is quite different in the case of non-holonomic 

systems [50, 54]. A distinction between the two types of motion is that the holonomic 

motion can sufficiently move in any direction of its workspace, whereas the non-

holonomic motion can not move in arbitrary directions of its workspace. 

In this chapter, we will deal with the non-holonomic motion, which is the 

opposite problem of redundancy discussed in chapter three. Different control methods 

will be discussed, and the chosen motion planning strategy will be derived so that the lost 

degree-of-freedom can be compensated by using trajectory planning. 
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4.2. Terminology 

Holonomic motion refers to the relationship between the controllable and total 

number of degrees of freedom of a given platform. If the controllable DoF is greater than 

or equal to the total DoF in the workspace, then the platform is said to be holonomic [55]. 

If the controllable DoF is less than the total DoF in the workspace, then the platform is 

said to be non-holonomic [56]. Examples of non-holonomic platforms are cars, power 

wheelchairs and other mobile platforms that can, at any given moment, move in two 

dimensions out of the three planar dimensions (i.e. motion along the X-axis, Y-axis and 

rotation about the Z axis). In contrast, holonomic platforms are platforms that can move 

at any moment of time in all three planar dimensions, such as platforms that are equipped 

with three power omni-directional wheels. 

Three different variables are available for the planar motion of the mobile 

platform moving on the ground, two positional variables along the X-axis and Y-axis, 

and one rotational variable about the Z-axis. The power wheelchair used in this work is a 

non-holonomic wheelchair that can move along the X-axis and rotate about the Z-axis. 

 

4.3. Mobility Problem Formulation 

The wheelchair used in this work is an “Action Ranger X Storm Series” power 

wheelchair. This wheelchair accomplishes its non-holonomic motion using a differential 

drive that carries two independently-driven wheels in the back of the power wheelchair. 

The front of the wheelchair has two passive castors that are placed to support the 

wheelchair’s motion. This makes the wheelchair a 2-DoF system that moves in plane 
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[48]. A full description of the wheelchair and its important dimensions will be discussed 

in this section. 

 

4.3.1. Frame Assignment 

Three important points of interest were assigned on and around this wheelchair, 

and coordinate frames were assigned on these three points. These three frames are the 

wheelchair’s coordinate frame assigned at the center of the driving wheels’ axle, the 

ground frame assigned at an arbitrary location on the ground floor, and another frame 

called frame “A” assigned at the point where the 7-DoF robotic arm will be mounted. 

Figure 4.1 shows two-dimensional top and side views of the Solid WorksTM model of the 

wheelchair with the key dimensions and the frame assignments. Note that these three 

frames are independent and the frame assignment rules discussed in chapter 3 do not 

apply. For simplicity, the orientation of the wheelchair’s frame and the “A” frame were 

assigned such that the rotation matrix between the two is identity. 

Throughout the development of the equations in this section and in the subsequent 

sections, these assigned frames will be used to define the relationships between the 

ground, the wheelchair, the arm base and the end-effector (gripper). The assignment of 

the ground frame is arbitrary because it doesn’t change any of the kinematics of the 

WMRA system. The wheels’ axle frame is assigned because of its importance in the 

generation of equations between the ground and the arm base. The arm base coordinate 

frame is assigned to link the end of the wheelchair kinematics to the robotic arm 

kinematics as it is mounted on the wheelchair. The end-effector’s frame is the frame that 

will carry on the assigned tasks in the Cartesian space. 
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Figure 4.1: Wheelchair Coordinate Frames and Dimensions of Interest. 

 

4.3.2. Wheelchair’s Important Dimensions 

There are five important dimensions that will be used in the derivation of 

coordinate relations in the next section. These dimensions are shown in figure 4.1, and 

they represent the physical dimensions of the wheelchair as well as the coordinate frame 

distances. These dimensions can be described as follows: 
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1- The distance between the centers of the two driving wheels along the 

differential drive axle. This distance is noted as “L1” and its value is 560 mm. 

2- The offset distance from the center of the differential drive to the center of 

frame “A” along the wheelchair’s X-axis. This distance is noted as “L2” and 

its value is 440 mm. 

3- The offset distance from the center of the differential drive to the center of 

frame “A” along the wheelchair’s Y-axis. This distance is noted as “L3” and 

its value is 230 mm. 

4- The offset distance from the center of the differential drive to the center of 

frame “A” along the wheelchair’s Z-axis. This distance is noted as “L4” and 

its value is 182 mm. 

5- The offset distance from the center of the differential drive to the center of the 

ground frame along the wheelchair’s Z-axis, which is the same as the 

wheelchair’s driving wheels’ radius. This distance is noted as “L5” and its 

value is 168 mm. 

An important note to mention at this point is that the transformation between the 

wheelchair’s coordinate frame and the “A” coordinate frame is constant since both 

frames were attached to the power wheelchair independently from its wheels’ motion. On 

the other hand, the transformation between the ground frame and the wheelchair’s frame 

depends on three variables, the distance along the X-axis and Y-axis and the orientation 

of the wheelchair about the Z-axis, denoted by “Φ”. These variables represent the 

mobility of the wheelchair on the planar ground surface. 
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4.4. Homogeneous Transformation Relations 

The homogeneous transformations between the coordinate frames assigned to the 

wheelchair, the ground and the robotic arm base depend on the motion of the two 

differentially-driven wheels. The details of generating these relations will be discussed 

thoroughly in this section. 

 

4.4.1. Driving Wheels’ Motion and the Turning Angle 

In the application of mobile robots, wheel slippage can be considered when the 

wheels’ characteristics are constant, but in our application, we will assume that slip is 

compensated by the user. The classical way of obtaining the distance travelled from an 

initial position to the final position of a wheel that is turning with angle “θ” as shown in 

figure 4.2 can be written as: 

θ⋅= 5Ld  (4.1) 

Where “d” is the travelled distance, and “L5” is the wheel’s radius. This is the 

case when the wheel moves in a straight motion with no turning. 

 

Figure 4.2: Traveled Distance of a Turning Wheel. 

In our case, the wheelchair is equipped with two wheels, and the above motion is 

a special case that commands the wheelchair to move in a straight forward fashion. In 

general, each independent wheel moves independently at its own velocity, and a turning 
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angle is introduced. To approach the formulation of the turning angle, let’s assume that 

the left wheel is stationary and the right wheel is turning as shown in figure 4.3.   

 

Figure 4.3: Traveled Distance with Turning Angle. 

The curved blue line in the figure is the actual traveled distance of the right wheel 

when the left wheel is stationary. The angle of rotation in this case is: 

rL
L

L
d θφ ⋅==

1

5

1

 (4.2) 

Where “L1“ is the wheelbase width and “θr” is the right wheel turning angle. In 

the case when the left wheel is moving while the right wheel is stationary, the turning 

angle would be the same as in (4.2) with a negative sign. When both wheels are turning at 

different amplitude, the turning angle would be directly related to the difference between 

the two angles as follows: 
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1

5
lrL

L
θθφ −⋅=  (4.3) 

Where “θl” is the rotation angle of the left wheel. The above relation is not 

enough to describe consecutive motion steps that will be implemented in the Virtual 

Reality simulation and in the implementation of the physical system. We need to relate 

the previous step to the current step at any moment of time to relate all steps together. If 

we have the turning angle from the previous step, we can assume that that angle was the 

starting angle, and that the coming step will carry the translation through next turning 

angle increment. This can be realized as follows: 

)(
1

5
0 lrL

L
θθφφ −⋅+=  (4.4) 

Where “ 0φ ” is the resultant turning angle from all previous steps added together. 

This gives us a continuous angle tracking throughout the motion of the power wheelchair 

even when the turning angle was fluctuating. 

 

4.4.2. The Radius of Curvature 

The turning angle is not the only factor needed in this non-holonomic motion of 

the platform. The radius of curvature “r” is also needed [61], and it is critical to the 

calculations of the transformation matrices. Four cases are to be considered for the radius 

of curvature. These cases are as follows: 

1- When 0≥r : 

As shown in figure 4.4, this case happens when the left wheel is turning less 

than the right wheel. In this case, the radius of curvature is defined as: 
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φ
θ lLr ⋅= 5    (4.5) 

 

Figure 4.4: Radius of Curvature in Case 1. 

2- When 01 ≤≤− rL : 

As shown in figure 4.5, this case happens when the left wheel is turning in the 

opposite direction of the right wheel. In this case, the radius of curvature is 

negative since the left wheel is moving in the negative direction. The radius of 

curvature in this case is defined as: 

φ
θ lLr ⋅= 5    (4.6) 

 

Figure 4.5: Radius of Curvature in Case 2. 
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3- When 1Lr −≤ : 

As shown in figure 4.6, this case happens when the right wheel is turning less 

than the left wheel. In this case, the radius of curvature will be negative since 

the turning angle of the wheelchair is in the negative direction. The radius of 

curvature in this case is defined as: 

15 LLr r −⋅=
φ
θ

   (4.7) 

 

Figure 4.6: Radius of Curvature in Case 3. 

4- When ±∞≅r  

As shown in figure 4.7, this case happens when the left wheel is turning in the 

same direction and amplitude as that of the right wheel. In this case, the radius of 

curvature will be infinity since there is no turning angle involved in this kind of motion.  

The above four cases cover all motion possibilities the wheelchair is capable of. 

At this point, we have all the necessary information to generate the transformation 

matrices along all the points of interest that were pointed out earlier in the chapter.  
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Figure 4.7: Radius of Curvature in Case 4. 

 

4.4.3. Point-to-Point Transformation of the Wheelchair 

To transform the wheelchair’s coordinate frame during motion, we assume that 

the initial position and orientation of the frame is known, and we need to find the new 

position and orientation for the next time step. Let the initial coordinate frame of the 

wheelchair be “W0” and the next coordinate frame after moving one step is “W1” as 

shown in figure 4.8. Lets also define point “O” as the point where the extension of the 

two Y-axes intersect on plane XY.  

Knowing the transformation between “W0” and “W1” gives us the perspective that 

we were looking for when the wheelchair is in motion. To accomplish this 

transformation, three sub-transformations are to be performed: 

1- Transformation along “Y0” by the amount of 
2

1L
r + to reach point “O”. 

2- Rotation about ”ZO” by the amount of “ 1φ ” to reach the orientation of “W1”. 

3- Transformation along “Y1” by the amount of 
2

1Lr −− to reach point “W1”. 

These three transformations define coordinate frame “W1” based on coordinate 

frame “W0”, which is: 
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Figure 4.8: Point-to-Point Transformation of Frames. 

)
2

()()
2

( 1
1

10

1

LrDRLrDT yzy
W
W −−⋅⋅+= φ , or 























+⋅−

+⋅−

=

1000
0100

)
2

()1(0

)
2

(0

1
111

1
111

0

1

L
rCCS

L
rSSC

TW
W φφφ

φφφ

 (4.8) 

If we assume that the initial coordinate frame of the wheelchair “W0” was a result 

of previous transformation from the ground origin “G” as illustrated in figure 4.1, the 
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resulting homogeneous transformation from the ground frame “G” to the wheelchair’s 

initial frame “W0” can be expressed as: 
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Multiplying (4.8) and (4.9) together results in the relation between the ground 

coordinate frame “G” and the final coordinate frame of the wheelchair “W1”as follows: 
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In the case when the wheelchair is moving in a straight line as described in the 

previous sub-heading in “case 4”, the relation in (4.8) can be simplified to a pure 

translation as follows: 
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Following the same procedure above, a simpler solution can be reached for this 

special case that relates the ground coordinate frame to the wheelchair’s coordinate 

frame. 
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4.4.4. Transformation to the Robotic Arm’s Base 

So far, we have found the homogeneous transformation matrix that relates the 

ground coordinate frame to the wheelchair’s coordinate frame. For the purpose of the 

robotic arm to be mounted on the wheelchair, one more transformation is required 

between the wheelchair’s coordinate frame and the robotic arm base coordinate frame 

where it attaches to the wheelchair. This transformation will be constant since the arm 

base and the wheelchair are both attached together in a rigid mounting bracket at point 

“A” as shown in figure 4.1. This constant transformation is basically a translation as 

follows: 
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Post multiplying (4.10) by (4.12) gives the transformation needed to describe the 

robotic arm base at any moment based on the ground frame. This resultant matrix is 

required to be evaluated at every time step to know the current position and orientation of 

the wheelchair and arm base referenced to the world coordinate frame. 

 

4.5. Wheelchair Velocities 

In wheelchair motion, velocities are mapped from the wheels’ motion to the 

robotic arm base motion so that the results can be ready when the robotic arm is put 

together with the wheelchair. In this subsection, the velocity relations will be generated 

and the Jacobian matrix will be derived. Depending on the location of the robotic arm 

base on the wheelchair, three cases will be studied to make the general form that we were 
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looking for in the Jacobian. When the wheelchair is moving in a straight line, the velocity 

component at any point on the wheelchair is the same. But in the case of rotation, 

velocity components throughout the different points on the wheelchair will be different 

[44]. We will take the case of pure rotation to derive the velocity relations, and then we 

will add the component that is coming from the straight line motion to the velocities 

gathered from the rotation. 

 

4.5.1. Wheelchair Velocity Mapping to the Robotic Arm Base 

The relation between the wheelchair’s coordinate frame and the robotic arm base 

frame can be found in three cases as follows: 

1- Case I: When the Robotic Arm’s Offset is in the X-Direction: 

In this case, the length “L3” is set to zero as shown in figure 4.9, and the robotic 

arm is installed directly in front of the wheelchair along the line that divides the 

wheelchair into two symmetrical halves. Wheelchair motion in this context produces 

three relative motions at point “A”, two linear motions along X-axis and Y-axis, as well 

as a rotational motion about Z-axis. These three components are: 

 

Figure 4.9: The Case When “L3” is Zero. 
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2- Case II: When the Robotic Arm’s Offset is in the Y-Direction: 

In this case, the length “L2” is set to zero as shown in figure 4.10, and the robotic 

arm is installed directly in on the wheelchair’s axle along the line of rotation of the two 

driving wheels. Wheelchair motion in this context also produces three relative motions at 

point “A”, two linear motions along X-axis and Y-axis, as well as a rotational motion 

about Z-axis. These three components are: 
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Figure 4.10: The Case When “L2” is Zero. 
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3- Case III: When the Robotic Arm’s Offset is in Both Directions: 

This case combines the above two cases with a general understanding of the used 

arm location on the wheelchair. In this case, both offsets are accounted for and 

algebraically added together with their signs. Wheelchair motion in this context also 

produces three relative motions at point “A”, two linear motions along X-axis and Y-axis, 

as well as a rotational motion about Z-axis. Adding the component of linear motion of the 

wheelchair produces the general motion formula that relates the wheelchair frame 

velocities to the arm bas frame velocities as follows: 
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 (4.15) 

 

4.5.2. Mapping the Driving Wheels’ Velocities to the Wheelchair  

The relation between the wheelchair’s coordinate frame and the two driving 

wheels can be found by studying two cases, one case is when the left wheel is stationary 

while the right wheel is rotating as shown in figure 4.11, and the other case is when the 

right wheel is stationary and the left wheel is moving as shown in figure 4.12.  

Algebraically adding the two terms together gives the general relationship 

between the wheels’ motion and the wheelchair frame’s motion as follows: 
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Figure 4.11: The Case When the Left Wheel is Stationary. 

 

Figure 4.12: The Case When the Right Wheel is Stationary. 

Equation (4.16) carries a full mapping between the velocities of the wheels and 

the wheelchair velocities, while equation (4.15) carries a full mapping between the 

velocities of the arm base and the wheelchair velocities.  

 

Wheelchair’s
frame center

Left wheel, moving

Φ

L1/2

X 

Y 

Right wheel, not moving 

Left wheel, not moving 

ΦL1/2

X 

Y 

Right wheel, moving 

Wheelchair’s frame Center



www.manaraa.com

 77

4.6. Wheelchair’s General Jacobian 

To simplify the velocity relations and find the Jacobian, let us rewrite equation 

(4.15) in the form of a matrix as follows: 
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Where “JWA” is the Jacobian that relates the wheelchair’s Cartesian velocities to 

the arm base Cartesian velocities. Also, equation (4.16), can be rewritten in a matrix form 

as follows: 
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Where “JwhW” is the Jacobian that relates the wheelchair’s motion and the driving 

wheels’ motion. To obtain the general Jacobian that relates the wheels’ velocities to the 

arm base frame velocities, a dot product of the two Jacobians can be performed as 

follows: 

 whwhAAwhwhWWAA JVJJV θθ &&&& ⋅=⇒⋅⋅= , or (4.19) 
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The above equation will be used with the numerical methods to produce the 

motion commanded by the user in Cartesian coordinates after calculating the wheels’ 

velocities required to realize the commanded motion. 

 

4.7. Trajectory Options 

As discussed earlier in this chapter, non-holonomic constraints on mobile 

platforms restrict the system’s ability to control all DoF in the workspace. The above 

equations give the user the choice to control two out of three variables in the planar 

Cartesian coordinates. To make sense of the two chosen variables, it is more important to 

select the two position variables of the wheelchair rather than the orientation and one of 

the two positions. This way, the wheelchair is free to move in the plane in both direction, 

but without proper orientation. 

Adding trajectory planning to the motion can compensate for the lack of control 

variables by dividing the motion into sub-motions to realize two of the three commanded 

variables at every sub-motion. Suppose that the wheelchair is commanded to move the 

arm’s base reference frame from “T0” position to “T1” position, where “T” is the 

homogeneous transformation matrix of that position, the motion can be planned in three 

steps to realize the X-direction motion, Y-direction motion and the Z-direction 

orientation. The following steps can be programmed to execute these three motions: 

1- From the initial point of the arm base at “T0”, find the corresponding 

wheelchair’s frame transformation matrix at that pose using equation 4.12. 

2- From the destination point of the arm base at “T1”, find the corresponding 

wheelchair’s frame transformation matrix at that pose using equation 4.12. 
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3- Draw a line between the two new frame transformations of the wheelchair’s 

frame, and find the angle of that line using the transformation resultant 

between the two. 

4- Command the wheelchair to rotate to the angle of the new line with no 

translation. 

5- Command the wheelchair to move in a straight line from the initial position to 

the final position of the wheelchair, ignoring the orientation. 

6- Command the wheelchair to rotate from the angle of the new line to the angle 

of the final position. 

The above steps with the three sub-motions produced as shown in figure 4.13 will 

make the user capable of controlling all three DoF in the workspace of the wheelchair’s 

planar motion. Simulation testing of this method has been done and was successful to 

move to any position and orientation on the ground plane. 

 

Figure 4.13: The Three Sub-Motions in Motion Planning of the Wheelchair. 

 

4.8. Operator’s Safety Issues 

In the simulation process of the wheelchair motion, two separate concerns were 

noticed and can be summarized as follows: 

12

3 
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1-  In the case of directional motion with no rotation, the wheelchair might end up 

in an odd angle that might be useless to the user if he/she is using this kind of 

control in the autonomous motion of the actual wheelchair.  

2- In the case when a trajectory is planned and a motion is divided into three sub-

motions, it was noticed that when the wheelchair is in the first or second 

rotational motion, the front of the wheelchair may run into close-by objects 

such as a wall or a human in the close proximity of the wheelchair. It would 

also be dangerous if a drop in the ground elevation is nearby, such as a stair 

step down. Since this process is done autonomously, sensory information is 

important to be added for the safety of the operator. 

 

4.9. Summary 

In this chapter, the wheelchair’s motion was analyzed and the points of interest in 

the wheelchair relations were pointed out. Coordinate frames were assigned to these 

points of interest and transformations between the assigned frames were generated. 

Velocity propagation from one coordinate frame to the other were conducted to find the 

corresponding points of interests’ velocities based on the differentially driven wheel’s 

velocities according to the non-holonomic motion rules. The system’s Jacobian was 

generated to relate the robotic arm base frame Cartesian velocities to the wheels’ 

velocities. After that, trajectory planning was shown to compensate for lack of full 

coordinate control in the workspace of the wheelchair. Safety issues were addressed in 

the wheelchair control methods and suggestions were given to address them. 
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Chapter 5: 
 

Control and Optimization of the Combined Mobility and Manipulation 

 

5.1. Introduction 

In the previous two chapters, mathematical models of the 7-DoF robotic arm and 

the 2-DoF power wheelchair have been derived. The homogeneous transformation 

relationships between different key points on both of them were developed, and the 

relative velocities were calculated. The Jacobians of both systems were developed and 

numerical solution schemes to calculate the inverse kinematics of each of them were 

derived. It is often helpful to use robotic devices to help people with disabilities to do 

their activities of daily living without the need for an assistant. The idea of mobile robotic 

manipulators is something that can help the user, especially if the user is confined to a 

wheelchair. Having two independent controls for the wheelchair and the arm significantly 

limits the use of the arm in terms of controllability and the executable tasks. 

In this chapter, we will combine the two systems together in an effort to produce a 

3-degree of redundancy, 9-DoF system with a single control structure that can be used to 

control the combined wheelchair-mounted robotic arm (WMRA) system. This gives the 

WMRA system much more flexibility and it can be controlled autonomously or using 

teleoperation with the two sub-systems cooperating together in the control scheme.  
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5.2. Terminology 

In the combination of mobility and manipulation, several interpretations can be 

done to accomplish cooperated motion in the Cartesian space. In this work, the term 

“combined mobility and manipulation” is used to indicate that the combination is done 

from the lowest control level and mathematical models up to the advanced control 

algorithms to integrate both units into a single system. In this context, a single Jacobian 

of both sub-systems that combines the characteristics of mobility and manipulation will 

be derived.  

 

5.3. WMRA Assembly and Problem Definition 

In a previous work, mounting locations of the robotic arm on a power wheelchair 

were studied to determine the effect of the mounting location on the manipulability 

measure [57]. In this work, the selected mounting location provided the best location to 

execute tasks related to activities of daily living (ADL). Figure 5.1 shows the WMRA 

system with the frame assignments at each one of the points of interest. The reference 

frame of the ground was assumed to be stationary, and all other frames of the WMRA 

system are related to it.  

The aim of this chapter is to combine the seven joints of the robotic arm and the 

two joints (wheels) of the wheelchair into a single vector, and generate the corresponding 

individual transformations to obtain the general homogeneous transformation that relates 

the ground frame to the end-effector’s frame. Velocities will also be propagated through 

both sub-systems to find the total Jacobian that represents the velocity mapping from the 

nine joint variables to the six Cartesian space variables. 
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Figure 5.1: WMRA Coordinate Frames. 

 

5.4. Kinematics of the Combined WMRA System 

The total homogeneous transformation matrix of the WMRA system will be used 

later in the implementation of this theory, and defining it appropriately insures accuracy 

of the results. In our application, we will define it one way now, and then we will 

redefine it later in this chapter when we have other options and choices of variables to 

control. For the time being, let’s define the joint space of the robotic arm as: 

[ ]TAq 7654321 θθθθθθθ=  (5.1) 
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Let’s also define the joint space of the wheelchair (wheels’ rotation angles) as: 

[ ]TrlCq θθ=  (5.2) 

The combination of the two joint spaces can also be defined as: 

[ ]Trl
C

A

q
q

q θθθθθθθθθ 7654321=







=  (5.3) 

Where θ1 through θ7 are the robotic joint angles from the arm base to the wrist 

respectively, θl and θr  are the rotation angles of the left and right wheels respectively. 

Since we defined the transformation between the robotic arm base frame and the end-

effector’s frame in equation (3.3), and the transformation between the ground frame and 

the wheelchair’s frame in equation (4.10), as well as the constant transformation between 

the wheelchair’s frame and the arm base frame in (4.12), we can use these equations to 

find the total transformation matrix as follows: 
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107 ⋅⋅⋅⋅⋅⋅⋅⋅=  (5.4) 

Matrix TG7  represents the 4X4 homogeneous transformation between the ground 

and the end-effector’s frame in terms of the WMRA joint space. At any moment of time, 

for a given the joint space vector in (5.3), substituting joint values in (5.4) gives a clear 

description of the position and orientation of the end-effector. This calculation is 

important when we compare the target position in the workspace to the current location 

of the end-effector. 

 

5.5. Jacobian Augmentation and Resolved Rate Equations Generation 

The velocity relation developed in chapter 4 leads to the Jacobian of the non-

holonomic wheelchair that relates the wheels’ velocities to the three Cartesian velocities 
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in the planar motion of the wheelchair as described in equation (4.20). It is important to 

modify this equation to include all six Cartesian velocities in space so that we can 

combine the motion of the arm with the motion of the wheelchair. To find the new 

Jacobian of the wheelchair, let’s define the task space vector of the wheelchair as: 

[ ]TCCCCCCC
A
C ZYXqfr γβα== )(  (5.5) 

This vector represents the task space vector at the robotic arm base frame (A), and 

can be found by modifying (4.20) to include all Cartesian velocities as follows: 

CWC
A
C qJJr && ⋅⋅=  (5.6) 

Where “JW“ is the wheelchair’s planar Jacobian: 
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and “JC” is defined to map the Jacobian from the three Cartesian coordinates to 

six Cartesian coordinates as follows: 

T

CJ















=

100000
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000001

 (5.8) 

Equation (5.6) relates the wheels’ velocity vector to the Cartesian task space at the 

robotic arm base. Since the task will not be performed by the arm base, we need to map 

the motion to the end-effector’s frame. Let’s define the task space vector at the end-

effector’s frame (E) as: 

[ ]TCA ZYXqqfr γβα== ),(  (5.9) 
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Differentiating (5.9) with respect to time gives: 
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Note that the Jacobian in equation (5.6) relates the wheels’ velocity vector to the 

Cartesian task space at the robotic arm base frame, and what we need is the equivalent 

relationship defined at the end-effector’s frame. This will be done to the wheelchair’s 

motion by introducing a new Jacobian that relates the wheelchair’s motion at the arm 

base frame to the end-effector’s frame motion. This Jacobian will depend only on the first 

two and last Cartesian coordinates of the end-effector based on the arm base frame as 

follows: 
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Where Pxg and Pyg are the x-y coordinates of the end-effector based on the arm 

base frame, and Φ is the angle of the arm base frame, which is the same as the angle of 

the wheelchair based on the ground frame. Substituting (5.6) into (5.11) gives: 

CWCG
E
C qJJJr && ⋅⋅⋅=  (5.12) 

Now the Jacobians are augmented separately and ready for combination. 

Substituting the rates of change by the Jacobians found earlier for the arm and the 

Jacobains for the wheelchair into equation (5.10) gives: 

CWCGAA qJJJqJr &&& ⋅⋅⋅+⋅=  (5.13) 

Putting (5.13) in a matrix form results in the following: 
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Equation (5.14) combines the two Jacobians together to combine the mobility of 

the wheelchair and the manipulation of the arm. It is important to mention here that care 

must be taken in implementing this method in simulation or in the actual WMRA system. 

The combined Jacobian is related to joint angle rates, while the wheelchair is effectively 

performing linear motion that results from the two driving wheels. Combination of the 

Jacobian in this context requires three processes to be done before and after evaluating 

equation (5.14), these processes must be followed, or the solution will not converge, and 

the system will be out of control. The three processes should be done in the following 

sequence:  

1- Before using the Jacobian, convert the linear velocities at the left and right 

wheels into angular velocities using the equations:  

 
5L
Dl

l

&
& =θ , and 

5L
Dr

r

&
& =θ . (5.15) 

2- Use the Jacobian with the new angles of the left and right wheels. 

3- After using the Jacobian, convert the angular velocities of the left and right 

wheels into linear velocities using the equations:  

 5LD ll ⋅= θ&& , and 5LD rr ⋅= θ&& . (5.16) 

The reason we are converting the angular into linear velocities is to avoid 

oscillation of the system when evaluating the sines and cosines of the wheels’ angles 

when they complete a full rotation. Having the angular velocity values converted into 

linear velocities eliminates the oscillation in the system when the mobility and 

manipulation are combined, and produce smooth and compatible motion with the task 
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trajectory. Running these equations in simulation showed satisfactory results, this will be 

discussed later. 

 

5.6. Jacobian Changes Based on the Control Frame 

It is always noticed in mobile robotic applications that the user may need to 

control the end-effector based on its own frame rather than the ground frame or the 

wheelchair frame. In this application, we considered all three possibilities to be included 

for user convenience. These possibilities require a slight modification to the Jacobian of 

both the wheelchair and the robotic arm. Note that so far, we defined the robotic arm’s 

Jacobian based on its base frame, and the wheelchair’s Jacobian based on the ground 

frame. These definitions will be changed based on the controlled frame. 

 

5.6.1. Ground-Based Control 

This is best used in autonomous control mode, where the trajectory to the target is 

always defined based on the ground frame. The Jacobian of the wheelchair in this case 

stays the same, and the Jacobian of the robotic arm becomes: 

[ ] [ ]originalAG

G

newA J
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  (5.17) 

 

5.6.2. Wheelchair-Based Control 

This is best used in teleoperation control mode, when the user is controlling the 

wheelchair most of the time. The Jacobian of the robotic arm in this case stays the same, 

and the Jacobian of the wheelchair becomes: 
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5.6.3. End-Effector Based Control (Piloting Option) 

This is best used in teleoperation control mode, when the user is controlling the 

end-effector most of the time to perform ADL tasks. This mode is called the pilot mode 

since the end-effector is compared to a flying object with its own frame-based control. 

The Jacobian of the robotic arm in this case will be changed as follows: 
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And the Jacobian of the wheelchair will be changed as follows: 

[ ] [ ]originalWCGTG
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newWCG JJJ
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  (5.20) 

 

5.7. Jacobian Inversion Methods and Singularities 

At this point, we produced a Jacobian that combines both the mobility of the 

power wheelchair and the manipulation of the 7-DoF arm. To make effective use of the 

arm and execute Cartesian space tasks, an inversion of the Jacobian is necessary. Often 

times singular configurations that produce high joint rates and lead to instability occur 

while trying to execute a given task. Inverting the Jacobian while trying to avoid 

singularities would give reasonably effective results. Two methods of Jacobian inversions 

were done for the combined system, one of them uses Pseudo inverse, and the other uses 

Singularity-Robust inverse. 
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5.7.1. Inverting Using Pseudo Inverse 

Numerical solutions were implemented using the Jacobian to follow the user’s 

directional motion commands or to follow the desired trajectory. Redundancy can be 

resolved using Pseudo inverse of the Jacobian [54], and singularity is avoided by 

maximizing the manipulability measure [53] discussed earlier in chapter 3. When the 

Jacobian matrix is of rank 6, which is the number of rows in the 6X9 combined Jacobian 

matrix that we have, Pseudo inverse can be written as: 

1* )( −⋅⋅= TT JJJJ  (5.21) 

When this inverse was implemented in simulation, it showed good results when 

the manipulability measure was far from zero. Since this method carries a guaranteed 

valid solution only at a singular configuration and not around it, the results can carry high 

joint velocities when singularity is approached.  

 

5.7.2. Inverting Using Singularity-Robust Inverse 

Another inversion method was tried with the new combined WMRA system since 

singularity needs to be addressed. A method that starts to change the arm configuration as 

it approaches singularities was tested with the new system, that method is called the 

Singularity-Robust (S-R) inverse of the Jacobian [50]. Using this method allowed the use 

of redundancy resolution schemes for different subtasks, while singularities are taken 

care of at the Jacobian inversion level. The S-R inverse of the Jacobian used to carry out 

the inverse kinematics can be written as: 

1
6

* )( −⋅+⋅⋅= IkJJJJ TT  (5.22) 
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where I6 is a 6x6 identity matrix, and k is a scale factor. It has been known that 

this method reduces the joint velocities near singularities, but compromises the accuracy 

of the solution by increasing the joint velocities error. Choosing the scale factor k is 

critical, if it is too high, the error will be too high and the system might destabilize, and if 

it is too small, the joint rates will go too high, and the system might destabilize. Since the 

point in using this factor is to give approximate solution near and at singularities, an 

adaptive scale factor is updated at every time step to put the proper factor as needed. This 

factor can be defined as: 
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 (5.23) 

Where w0 is the manipulability measure at the start of the boundary chosen when 

singularity is approached, and k0 is the scale factor at singularity. The optimum values of 

w0 and k0 for our system were found by simulation to be 0.034 and 13x10-9 respectively. 

 

5.8. Optimization Methods with the Combined Jacobian 

One of the most beneficial advantages of redundancy in robotic manipulators is 

the fact that its motion can be optimized in many different ways. A human arm, for 

instance, is a redundant system because it has 7 degrees of freedom (3 in the shoulder, 1 

in the elbow and 3 in the wrist) and there are only 6 physical degrees of freedom in the 

task of placing the hand in any position and orientation in space (x, y, z, roll, pitch and 

yaw). If a human arm had only 6 joints, the arm will be stationary if the wrist is fixed, but 

since the human arm carries 7th joint, we were able to still move our arm while fixing the 

wrist at a fixed point.  
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Now that the singularity is taken care of using the S-R Inverse of the Jacobian, we 

can use the joint redundancy to optimize for a secondary task or to set motion preference 

weights on the joint domain while following the Cartesian trajectory. Three methods of 

optimization will be discussed and tried for this system. 

 

5.8.1. Criteria Functions and Minimizing Euclidean Norm of Errors 

Redundancy can be resolved using any of the two inverses discussed above to 

obtain a numerical solution of the joint angle rates. If we have the desired task space 

variables, and we need to obtain the desired joint space variables, we can use the simplest 

form of the resolved rate methods using the following equation: 

d
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 *  (5.24) 

This solution minimizes the norm of the joint velocities and the Euclidean norm 

of end-effector velocity errors, which is the difference between the commanded Cartesian 

space variables and the actual Cartesian space variables achieved. Adding more tasks to 

the optimization process can be done by adding additional terms to include another 

optimization function as follows: 
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 (5.25) 

Where “ 0q& ” is a 9x1 vector representing the secondary task, “J*” is the modified 

6x9 Jacobian matrix, and I9 is the identity matrix of size 9. The choice of the criterion 

function can range from a scalar quantity, such as the manipulability measure “w”, or can 

be a set of functions, such as joint limit avoidance conditions. The secondary task can 
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either be the desired trajectory in the case of pre-set task execution, or it can be a criterion 

function such that: 

)(0 qHaq q∇=&  (5.26) 

Where H(q)  is the optimization criterion y = H(q). The existence of the mobile 

platform means that “ 0q& ” may not exist for non holonomic constraint such as that of the 

wheelchair. To go around this limitation [47] proposed the following: Differentiate the 

optimization criterion function “H” with respect to time as follows: 
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In this case, the value of “ Hq& ” that improves the objective function can be 

defined as: 
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±=  (5.29) 

And that velocity vector can be used for optimization. This gives a good 

representation of the arm joints’ velocities and the wheels’ velocities of the wheelchair. 

The null space may contain more variables than what is required for the secondary task. 

In this case, another secondary task can be used to optimize for more than one criterion. 

The sign in (5.29) was taken as positive in case the optimization function needs to be 

maximized, and negative in case it needs to be minimized depending on the function and 

its requirement in the control algorithm.  
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5.8.2. Weighted Least Norm Solution 

Weighted Least Norm solution can also be used as proposed by [27] to resolve the 

system redundancy. In order to put a motion preference of one joint rather than the other 

(such as the wheelchair wheels and the arm joints), a weighted norm of the joint velocity 

vector can be defined as: 

qWqq T
W

&&& ⋅⋅=  (5.30) 

Where “W” is a 9X9 symmetric and positive definite weighting matrix. For 

simplicity, the weight matrix can be a diagonal matrix that represents the motion 

preference of each joint of the system. For the purpose of analysis, the following 

transformations are introduced: 

2/1−⋅= WJJW  and qWqW && ⋅= − 2/1  (5.31) 

Using (5.31), we can rewrite (5.14) and (5.30) respectively as: 

WW qJr && ⋅= ,   and (5.32) 

W
T
WW
qqq &&& ⋅=  (5.33) 

In this case, the Least Norm solution of (5.32) is: 

rJq WW && ⋅= **  (5.34) 

Using the second part of (5.31), joint velocities can be redefined as: 

*2
1

WW qWq && ⋅=
−

 (5.35) 

Using Pseudo inverse, it can be shown that the Weighted Least Norm solution is 

calculated as follows: 

( ) rJWJJWq TT
W && ⋅⋅⋅⋅⋅=

−−− 111  (5.36) 
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The above method has been used in simulation of the 9-DoF WMRA system with 

the nine state variables “ dq& ” that represent the seven joint velocities of the arm and the 

two wheels’ velocities of the power wheelchair. It was found that latter two state 

variables are of limited use since they tend to unnecessarily rotate the wheelchair back 

and forth during a long forward motion due to their equal weights. Changing the weights 

of these two variables will only result in a preference of one’s motion over the other. 

More on this will be discussed later in the chapter. 

 

5.8.3. Joint Limit Avoidance 

The criterion function used for optimization can be defined based on the physical 

joint limits of the WMRA system, and minimizing that function results in limiting the 

joint motion to its limit. A mathematical representation of joint limits in robotic 

manipulators has been a topic of many researchers. One of these representations were 

proposed [27] as follows: 
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This criterion function becomes “1” when the current joint angle is in the middle 

of its range, and it becomes “infinity” when the joint reaches either of its limits. When 

used in (5.29) the function can be minimized by choosing the negative sign for it so that 

the null space is used to choose the minimum value of the function that satisfies the main 

objective function. 

Using this optimization function in (5.36) can be accomplished through the 

weight matrix used for optimization. Rather than choosing arbitrary weight values for 
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each individual joint based on the user preference, an additional value can be added to 

represent the optimization criterion function as follows: 
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Where “wi,u“ is the user-defined weight preference to joint “i”, and the second 

term in each element is the gradient projection of the criterion function defined as: 
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When any particular joint is in the middle of the joint range, (5.39) becomes zero, 

for that joint, and the only weight left is the user defined weight. On the other hand, when 

any particular joint is at its limit, (5.39) becomes “infinity”, which means that the joint 

will carry an infinite weight that makes it impossible to move any further. When the user 

prefers to move robotic arm with minimal wheelchair motion, heavy weight can be 

assigned by the user to the two wheelchair state variables. When any of the robotic arm 

joints gets close to its limit and its weight approaches infinity, the wheelchair’s weight 

will be much less than that of the joint, and hence it will be more free to move than the 

joint that is close to its limit.  

It is important to note two different deficiencies that may lead to unintended 

operation or joint lock when using this method. The first deficiency is that the joint is 

penalized with higher weight whether it is approaching its limit or getting away from it. 
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This may cause the robotic arm to use the null space inefficiently by preferring to move a 

joint with heavy weight going towards its limit rather than moving a joint with heavier 

weight that is moving away from its limit. This problem can be eliminated if two 

conditions were imposed on the criterion function as shown in figure 5.2. These 

conditions are as follows: 

1- When the joint limit is being approached from outside the limit and moving 

towards the limit (i.e. the weight difference between two consecutive steps is 

positive and the current joint limit is not exceeded) then give the weight as 

calculated by (5.38). 

2- When the joint limit is being approached from outside the limit and moving 

away from the limit (i.e. the weight difference between two consecutive steps 

is negative and the current joint limit is not exceeded) then give the weight as 

“wi,u“. 

The second deficiency is that the precise joint limit that takes the weight to 

infinity may never be reached, instead, the numerical solution with its relatively coarse 

step size may jump from a joint value close to the joint limit before it is reached to a joint 

value close to the joint limit after it is reached. This will result in a heavy weight that will 

slowly get lower as the joint gets away from the set limit towards its actual limit. If the 

previous two conditions were applied alone, a dangerous motion can happen by giving 

the weight as the user chosen weight only since the joint is getting away from its limit 

from inside that limit. This can either break the joint or lock it when it reaches its actual 

physical limit with the hard stop. To overcome this deficiency, two more conditions need 

to be imposed on the system: 
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3- When the joint limit is being approached from inside the limit and moving 

away from the limit (i.e. the weight difference between two consecutive steps 

is negative and the current joint limit is exceeded) then give the weight as 

infinity since no further motion inside should be allowed. 

4- When the joint limit is being approached from inside the limit and moving 

towards the limit (i.e. the weight difference between two consecutive steps is 

positive and the current joint limit is exceeded) then give the weight as “wi,u“ 

since the joint is actually getting away from its limit. 

Imposing the above four conditions on the weight matrix to perform on the 

optimization criterion gave the control mechanism much better results in terms of joint 

limit avoidance and user-preferred motion of each individual variable in the joint space. 

 

Figure 5.2: Four Joint Limit Boundary Conditions. 
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5.8.4. Obstacle Avoidance 

The same criterion function can also be used to optimize the control algorithm 

based on obstacle avoidance. An important mathematical representation of the obstacles 

around the WMRA system is necessary to formulate these criteria functions. For the 

immediate objects around the WMRA system, there are three complex shapes that need 

to be avoided. These shapes are the wheelchair, the human user and the robotic arm itself. 

Modelling these shapes mathematically can be challenging since they are not fixed 

shapes. In this case, sensory suite can be used to recognize the obstacle and avoid it as the 

WMRA moves in its workspace. 

 

5.8.5. Safety Conditions 

In order to create a comprehensive representation of the physical environment 

within the WMRA and in its immediate surroundings, several safety conditions should be 

imposed to avoid joint limits both in position and velocities, and to avoid the arm from 

hitting the human user or the wheelchair or itself. These conditions were put in place as 

follows: 

1- Stop the joint if it reaches its maximum or minimum limit:  

0,min,max, =≤≥ commandediiiii qthenqqORqqif &  (5.40) 

2- Slow down the joint if it reaches its velocity limit (which is also useful in case 

the WMRA reached singularity and went out of control): 

max,,,max, )( icommandedicommandediii qqsignqthenqqif &&&& ⋅=≥  (5.41) 
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3- Slowly reverse all joint velocities in case any robotic arm joint frame 

approaches collision with the ground, the wheelchair’s side, the wheelchair’s 

wheels, the wheelchair’s human driver’s shoulder, his/her lap, his/her legs, 

and the wheelchair’s battery pack. 

4- Slowly reverse all joint velocities in case the robotic arm’s upper arm 

approaches collision with its forearm. 

Considering the above four conditions in the control algorithm ensures the safety 

of the human operator as well as the WMRA system from physical damage. Condition 

number “3” above has been expanded into “16” sub-conditions that address the physical 

relations between the reachable space of each joint frame and the physical presence of 

obstacles in that particular reachable space. 

 

5.8.6. Unintended Motion Effect Based on the Optimization Criteria 

It is important to the user when operating the WMRA system in teleoperation 

mode to have total control with predictable motion. When equation (5.25) is used with 

“qo=0”, the optimization will be based on the minimization of the Euclidean norm of 

errors. Observing that equation shows that the commanded joint velocities will be “zeros” 

if the user does not command the Cartesian variables of the end-effector to move. 

Depending on the chosen criterion function of “qo” and its dependency on different 

variables in both the Cartesian space and the joint space, it is possible for the WMRA to 

move even when the user does not command it to move.  

In the case of joint limit avoidance, the criteron function in (5.37) depends only 

on the joint variables. That makes the second term in (5.25) non-zero even when the user 
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commands the WMRA system not to move by setting the first term to “zero” (or by not 

touching the controller interface to send r&=0). The logical interpretation of that equation 

means that the user will see the WMRA in motion as soon as the system is powered up if 

any of the joints is not in the middle of its operational range. This motion will drive the 

arm to its joint mid-range angles and then stop. The reaction caused by such optimization 

can be dangerous on the user and the surrounding subjects if it is used the way it is.  

On the other hand, looking at equation (5.36) when using the Weighted Least 

Norm solution, when the commanded Cartesian velocity vector r&=0, the commanded 

joint velocity vector will be “zero” no matter what the weight function is. This ensures 

that the optimization will not take effect unless the user started to command the arm to 

move in its workspace. Even though both solutions were integrated in the control 

algorithm of the WMRA, care must be taken when using the first solution since it can 

result in unpredictable motion. 

 

5.9. Optional Combinations for the Resolved Rate Solution 

Each of the optimization schemes mentioned earlier can be used for different 

purposes, and other schemes might be added to resolve redundancy. To make the control 

algorithm flexible in terms of optimization, all methods were implemented in the high-

level control so that the user can choose his/her preference. Two things are needed for 

redundancy resolution, the first is finding the inverse of the Jacobian, and the second is 

implementing the optimization function to find the joint rates. The following eight 

combinations were programmed for redundancy resolution options: 
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1- Pseudo inverse solution (PI): This selection evaluates the inverse of the 

Jacobian using Pseudo inverse to find joint rates for the next time step when 

given the current Cartesian coordinates of the end-effector. 

2- S-R inverse solution (SRI): This selection evaluates the inverse of the Jacobian 

using the Singularity-Robust inverse to find joint rates for the next time step 

when given the current Cartesian coordinates of the end-effector. 

3- Weighted Pseudo inverse solution (WPI): This selection evaluates the inverse 

of the Jacobian using Pseudo inverse, and then applies the weighted least 

norm solution to find joint rates for the next time step when given the current 

Cartesian coordinates of the end-effector. 

4- Weighted S-R inverse solution (WSRI): This selection evaluates the inverse of 

the Jacobian using the Singularity-Robust inverse, and then applies the 

weighted least norm solution to find joint rates for the next time step when 

given the current Cartesian coordinates of the end-effector. 

5- Pseudo inverse with gradient projection solution (PI-GP): This selection 

evaluates the inverse of the Jacobian using Pseudo inverse and adds the 

projection of the null space with the optimization criterion function to find 

joint rates for the next time step when given the current Cartesian coordinates 

of the end-effector. 

6- S-R inverse with gradient projection solution (SRI-GP): This selection 

evaluates the inverse of the Jacobian using the Singularity-Robust inverse and 

adds the projection of the null space with the optimization criterion function to 
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find joint rates for the next time step when given the current Cartesian 

coordinates of the end-effector. 

7- Weighted Pseudo inverse with criterion function optimization solution (WPI-

CF): This selection evaluates the inverse of the Jacobian using Pseudo inverse, 

and then applies the weighted least norm solution with the criterion 

optimization function included in the weight matrix to find joint rates for the 

next time step when given the current Cartesian coordinates of the end-

effector. 

8- Weighted S-R inverse with criterion function optimization solution (WSR-CF): 

This selection evaluates the inverse of the Jacobian using the Singularity-

Robust inverse, and then applies the weighted least norm solution with the 

criterion optimization function included in the weight matrix to find joint rates 

for the next time step when given the current Cartesian coordinates of the end-

effector. 

In the event that other optimization criteria or Jacobian inversion methods were 

added to the control algorithm, more choices can be added to the program, and the user 

will be given the prompt to choose which optimization selection to select.  

 

5.10. State Variable Options in the Control Algorithm 

In any control problem, state variables are chosen such that changing any of them 

during the control process gives a result that makes sense for the general objective of the 

control algorithm. In our application, the state variables selected are the seven joint limits 

of the robotic arm and the two wheelchair wheels’ angles. This is not necessarily the best 
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way to control the WMRA system. Other state variables may make more sense in the 

overall control objectives, and may be used in a better way in terms of optimization.  

 

5.10.1. Seven Robotic Arm Joints, Left wheel and Right Wheel Variables 

This is the default state variables selection that applies the resolved rate scheme to 

find “ q& ” that contains the nine joint variables selected. These joint variables are the 

seven joints of the robotic arm, the left driving wheel angle, and the right driving wheel 

angle of the wheelchair. As far as the robotic arm is concerned, controlling its seven 

joints is the only available selection, but when it comes to the wheelchair, there is another 

way to control its wheels’ angles. In this sub-section, the selected variables for the 

wheelchair motion gave undesired motion that was not necessary to execute the 

trajectory-following command.  

When used with the weighted least norm solution optimization scheme, a weight 

matrix that contains preference weights to each of the nine state variables was created 

such that the wheelchair wheels’ motion carry higher weights than the robotic arm’s 

joints. This is done so that if the task is within the workspace of the robotic arm and can 

be executed without the need to move the wheelchair, the control process would result in 

minimal wheelchair motion and maximum arm motion for task execution. In the event 

that the user is working in an office environment, he/she will not be inconvenienced be 

constantly moving his wheelchair unnecessarily.  

The problem found with the selection of these state variables is that when motion 

of the wheelchair is necessary for task execution, and both wheels are given equal 

weights, the wheelchair turns unnecessarily. This happens because the robotic arm is 
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mounted on the side of the wheelchair, and when it follows a long trajectory and the arm 

reaches its workspace boundaries, the left wheel starts to move since it is the closest one 

to the arm base that will cause the arm to continue following the trajectory. This results in 

a wheelchair rotation since the right wheel is not necessary to move at that point. When 

moving the left wheel is no longer sufficient to give the robotic arm the necessary motion 

to follow the trajectory, the right wheel starts moving and causes the wheelchair to turn 

again unnecessarily. Even though the end-effector precisely followed its trajectory and 

the wheelchair moved as it was necessary, its motion was unpleasant.  

In a test of moving the end-effector in a straight line trajectory extending 10 

meters in the forward direction of the wheelchair, the motion that makes sense is that the 

arm should extend forward, and the two wheels of the wheelchair move at the same speed 

as necessary, but because of the wheel proximities to the robotic arm base, they were 

giving different speeds to the wheels over the simulation period of time until the 

destination point was reached. Giving the two wheels different weights based on their 

proximity of the arm base doesn’t solve the problem since the trajectory can be different 

from the straight line, and in the case of left or right hand motion of the end-effector, the 

wheelchair will not behave in the best way possible. 

 

5.10.2. Seven Robotic Arm Joints, Forward and Rotational Motion of the Wheelchair 

In avoiding this kind of behavior in the wheelchair motion response, the two 

wheelchair’s state variables should be changed. Since the user does not care about the 

wheels motion or which wheel moves faster than the other, two different state variables 

must be chosen, and then related to the wheels’ motion. The choice that makes sense in 
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this context is to choose polar coordinate control of the wheelchair, and that can be done 

by controlling the linear distance and the angle of the wheelchair. If having the linear 

motion and the rotational motion of the wheelchair as the two state variables rather than 

the two wheels’ motions, it can be used with the weights to give motion that is more 

convenient to the user. A linear motion of the wheelchair corresponds to equal velocities 

of both wheels in the same direction, while a rotational motion corresponds to equal 

velocities of both wheels in opposite directions. A combination of linear and rotational 

velocities corresponds to algebraically adding the resultant motion of both in each of the 

wheels. To make this option available, let’s re-define equation (5.2) by the two new state 

variables as follows: 
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For pure rotation of the wheelchair, both wheels will be running to the same angle 

with opposite directions, the resulting wheelchair’s inclination angle is: 
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Since “θl“ and  “θr” are equal in value, but opposite in direction, lets take the right 

wheel angle as the positive angle, that is: 

θθθ =−= lr  (5.44) 

This simplifies (5.43) to: 
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Or, 
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Using (5.44) and (5.46) gives the relations: 
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For pure translation of the wheelchair, both wheels will be running to the same 

angle “θ” with the same direction, the resulting wheelchair’s linear distance is: 

θ⋅= 5LX , or 
5L
X

rl == θθ  (5.48) 

For the general case when we have both rotation and translation, we can add the 

wheels’ angles in (5.47) and (5.48) together. Now we need to relate the old state variable 

to the new state variables in the wheelchair as follows: let the new wheelchair’s state 

variables be defined as 
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Differentiating (5.49) with respect to time gives the rates of the angular motion of 

the wheels as: 
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Remembering that θ&
&
=

5L
X  for linear motion, using the angle instead of the 

distance makes the Jacobian compatible in units. Putting (5.50) in a matrix form gives a 

better prospective as follows: 
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This gives the Jacobian that relates the two wheels to the angle of inclination and 

the travelled linear distance of the wheelchair. The Jacobian used in (5.7) then can be 

modified as follows: 
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The rest of the derivation can be carried on in the same way as done to combine 

the manipulability of the wheelchair and the manipulation of the arm done earlier this 

chapter. The new state variables will become: 
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=  (5.53) 

Care must be taken again here when using the angle “θ” in the Jacobian instead of 

the linear distance “X”, a conversion from distance to angle must be done before 

processing the Jacobian, and then another conversion back to distance after processing 

the Jacobian.  

The combination of the above two variables would be sufficient to describe any 

forward and rotational motion of the wheelchair. Having these two state variables in 

vector “q” instead of the wheels’ velocities gives a greater advantage in controlling the 

preferred rotation or translation of the wheelchair. The wheelchair’s Jacobian in (5.6) is 

changed for the new state variables before augmenting it to the arm’s Jacobian, and the 
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results are much better in terms of desired control. When these new state variables were 

used in simulation with the weight matrix, we were able to avoid user inconvenience 

problem that happened in the previous method by assigning heavier weight to the rotation 

of the wheelchair than the weight of the translation so that when a trajectory is followed, 

rotation only occurs as necessary. We will show examples of that in simulation results 

chapter. 

 

5.11. Trajectory Generation 

Trajectory generation is an important step in performing autonomous tasks using 

any robotic device. Since this 9-DoF robotic system can be used in both autonomous 

motion and teleoperation motion, it was essential to explore on different trajectory 

generation schemes. Four different trajectory generators were developed for this WMRA 

system, and the user were given the choice to choose one of them for any particular task.  

 

5.11.1. Generator of a Linear Trajectory 

It is important to mention here that the transformation from one point to the other 

in space is a non-linear process if it involves rotation. For this reason, the trajectory 

generator must take that into consideration when dealing with rotations. A typical 

homogeneous transformation matrix consists of three rotational vectors and one 

translational vector as follows: 
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Where “n” is the projection of the unit “X” axis on the reference frame, “o” is the 

projection of the unit “Y” axis on the reference frame, “a” is the projection of the unit 

“Z” axis on the reference frame, and “P” is the coordinates of the frame’s origin on the 

reference frame. Since vector “P” is a linear vector that involves only distances, it needs 

no modification. The modification is needed for the unit axes projections on the reference 

frame since they include non-linear sine and cosine functions of the three angles of 

rotation. The three Euler angles of rotations in the homogeneous transform can be 

represented by a single rotation about a new single axis in space [51]. Finding that axis of 

rotation and the new single rotational angle makes it easier to divide that single angle into 

angle steps along the trajectory. The single angle of rotation can be found from the 

homogeneous transform as [51]:  
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Using the function (Atan2) instead of (Atan) would give a single value of the 

angle based on its position in the quadrant of rotation. Once this angle is found, we can 

now find the new axis of rotation by defining its unit vector projection on the reference 

frame. This can be done through three different conditions: 

1- When the rotation angle is zero or very small, in this case, there is no rotation, 

and the axis of rotation can be arbitrary. For simplicity, we can define it as: 

 [ ]Tk 001=  (5.56) 

2- When the rotation angle is less than 90o, in this case, the axis of rotation can be 

defined as: 
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3- When the rotation angle is more than 90o, in this case, the axis of rotation can 

be defined as: 
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Where “sign” indicates the sign of the difference of what is inside the bracket. 

These values are not always true [51], and adjustments must be made based on 

which one of the projection components is the largest value as follows: 

 a- If “kx” is the largest, then the other two are: 
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 b- If “ky” is the largest, then the other two are: 
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 c- If “kz” is the largest, then the other two are: 
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It is important to remember that the transformation matrix of the task is usually 

defined based on the global coordinate frame, and that the current end-effector’s frame is 

defined based also on the global coordinate frame. The rotation from the end-effector’s 
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current position “Ri” to the desired task position “Rd” should be found, and that rotation 

is the one that should be processed for trajectory generation of the angle between the two, 

and that can be found as: 

d
T
i RRR ⋅=  (5.62) 

Once we have the single angle of rotation and the axis of rotation, we can 

generate the trajectory in a linear line. The approach used to generate the trajectory 

utilizes a constant transformation change along the trajectory, which means that the 

trajectory will be divided into “n” transformation matrices, with “δT” transformations 

between every two consecutive points in the trajectory as shown in figure 5.3. 

 

Figure 5.3: Linear Trajectory Generation. 

To find the constant transformation change along the trajectory, the four variables 

(dx, dy, dz, dθ) that represent the constant distance change and the constant angle change 

must be defined as follows: 
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From these values, we can now construct the rotation change along the trajectory 

using the following equation: 
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Using (5.63) and (5.64), we can now find the transformation change between any 

two consecutive points along the trajectory as follows: 
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dRTδ  (5.65) 

To find the transformation matrix of any point along the trajectory line, the 

following equation will be used: 

t
it TTT δ⋅=  ,  nt ≤≤1  (5.66) 

Where “Tt” is the trajectory point transformation and “Ti” is the initial 

transformation matrix of the end-effector. The above scheme was coded into a program in 

the form of a function for trajectory generation and used for WMRA autonomous control. 

 

5.11.2. Generator of a Polynomial Trajectory 

When the robotic arm starts moving from rest, it is impossible to move it from 

zero to full speed in virtually no time. When the linear trajectory was generated, 
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simulation revealed that the joint space variables are commanded to move at infinite 

accelerations at the beginning of simulation to reach the desired velocity in no time. To 

take care of this issue, a polynomial trajectory is introduced so that when the arm starts 

from rest, the trajectory points are very close to each other, and then the arm will reach a 

maximum speed and ramp back down to zero velocity when it reaches the destination as 

shown in figure 5.4.  

 

Figure 5.4: Polynomial Function of 3rd Order for Variable Ramp with Time. 

The governing equation for such a polynomial [49] can be written for any variable 

that needs to be ramped as follows: 
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The above equation was implemented in the trajectory generator, and all four 

variables from (5.63) were divided to non-linear segments, and the results were 

satisfactory since the transformation change is no longer constant, but rather variable 

with time. This was added to the program as a second choice, and the previous linear 

option was also kept as the first choice. 
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5.11.3. Generator of a Polynomial Trajectory with Parabolic Blending Factor 

When using the polynomial function to generate a non-linear trajectory, efficiency 

of the trajectory-following task was not acceptable. The reason is that the desired velocity 

is reached at the mid-point of the trajectory, and ramping that velocity up and down takes 

a very long time. To overcome this problem, a polynomial blending procedure was 

adopted [49]. The blending factor accelerates the velocities at the beginning of the 

trajectory, and then set the acceleration to zero throughout the major part of the trajectory 

following procedure when the desired velocity is reached, and then decelerate the 

velocity back down to zero at the end of the trajectory-following task as shown in figure 

5.4 with a blending factor of “5”. Since the middle segment is linear, we use the linear 

function definition to define that segment. The beginning and ending segments of the 

trajectory are assumed to have the same duration and at the same constant acceleration 

with opposite signs. We first begin by defining the blending factor “b”, in our case, we 

chose 5. Then we define the acceleration during blending as: 

24
f

if
b t

XX
bX

−
⋅⋅=&&  (5.68) 

Where “tf” is the time at which the trajectory-following task is completed. Then 

we define the time when blending ends as: 
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The velocity at that point would be: bbb tXX ⋅= &&&  (5.70) 

And the variable’s value at blending would be: 25.0 bbib tXXX ⋅⋅+= &&  (5.71) 
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Substituting these values in to the 3rd degree polynomial gives a smooth trajectory 

as shown in figure 5.5. When the blending factor is “1”, the constant velocity region 

becomes a point, and that returns us back to the polynomial with no blending as decribed 

in the previous subsection. 

 

Figure 5.5: Polynomial Function of 3rd Order for Blended Variable Ramp with Time. 

A slight modification was made to make the blending factor vary based on the 

length of the trajectory and the commanded velocity so that the curve is not too steep and 

at the same time it doesn’t, the acceleration is reasonable during the blending regions. 

The second blending region is done the opposite way of the first one. Figure 5.6 shows 

the trajectory generation with polynomial function. 

 

5.12. Control Reference Frames 

At the beginning of solving the manipulation and mobility combination problem, 

the commanded motion was referenced to the ground frame. In reality, this doesn’t 

always help the user in the most effective way. For instance, when the robotic arm is used 

in autonomous mode, it is better to reference the motion to the ground frame, but when 
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the user is controlling the WMRA system using teleoperation, he/she will be confused 

about which direction represents the forward or right turn and so forth. For that reason, 

three different control reference frames were programmed so that the user can choose the 

most convenient one based on the task at hand. The ground frame is most suited for 

autonomous operation with pre-set tasks, the wheelchair’s frame is most suited for 

wheelchair motion in the most part, and the end-effector’s frame is most suited for 

teleoperation using the end-effector. Refer to figure 5.1 for the Cartesian coordinate 

frame of references that we will be working on to transform the Cartesian task space and 

the Jacobian from one frame to the other. 

 

Figure 5.6: Polynomial Trajectory Generation. 

 

5.12.1. Ground Reference Frame 

This is the default option that was used for reference in all the previously 

generated equations. The commanded Cartesian positions expressed in a homogeneous 
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transformation matrix were based on the ground coordinate frame, and the Jacobian was 

also based on the ground frame. If the user is operating in autonomous mode, the 

trajectory will also be generated based on the ground frame. If the user uses this option, it 

may cause some inconvenience in the sense that if the wheelchair rotates 180o and the 

user tries to move forward in his/her mind, the actual motion would be backwards since 

the positive X-axis of the ground reference frame is stationary and will be pointing 

backwards from the wheelchair’s prospective. 

 

5.12.2. Wheelchair Reference Frame 

In this option, the user would like to use the wheelchair’s frame as the reference 

frame for the motion of the WMRA system. Two transformations have to be made, one 

that transforms the commanded Cartesian positions from the wheelchair’s reference 

frame to the ground’s reference frame, and that would be modified as: 

TTT W
d

G
W

G
d ⋅=  (5.72) 

And the other transformation is to transform the Jacobian from the ground frame 

to the wheelchair’s frame as follows: 
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When the user is using the WMRA system to perform pre-set tasks of activities of 

daily living in autonomous mode, a third transformation is necessary to transform the 

trajectory generation from the wheelchair’s reference frame to the ground’s reference 

frame as follows: 

oldtinitial
G
Acurrent

G
Anewt TTTT ,

1
, ⋅⋅= −  (5.74) 
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This gives the user the feeling of controlling the WMRA system based on where 

the wheelchair moves. A very good choice to for this option would be when the user is 

controlling the wheelchair alone without autonomous motion and without using the 

robotic arm. 

 

5.12.3. End-Effector Reference Frame 

In this option, the user uses the end-effector’s frame as the reference frame for the 

motion of the WMRA system. Two transformations have to be made here as well, one 

that transforms the commanded Cartesian positions from the end-effector’s reference 

frame to the ground’s reference frame, and that would be modified as: 

TTT d
GG

d
7

7 ⋅=  (5.75) 

And the other transformation is to transform the Jacobian from the ground frame 

to the end-effector’s frame as follows: 
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When the user is using the WMRA system to perform pre-set tasks of activities of 

daily living in autonomous mode, a third transformation is necessary to transform the 

trajectory generation from the end-effector’s reference frame to the ground’s reference 

frame as follows: 

oldtinitial
G

current
G

newt TTTT ,7
1

7, ⋅⋅= −  (5.77) 

This gives the user the feeling of controlling the WMRA system based on where 

the end-effector is pointing. This option is a very good choice when the user controls the 

WMRA to do activities of daily living using the end-effector. 
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5.13. Summary 

The main aim of this chapter is to show the theory of combining the mobility of 2-

DoF the wheelchair and the manipulation of the 7-DoF robotic arm to form a single 

control structure of the 9-DoF wheelchair-mounted robotic arm. We derived the 

combined forward kinematics of the system, and showed the relations between the two 

subsystems with each other and with the ground. The new WMRA system with 3 degrees 

of redundancy was controlled using the resolved rate after augmenting the Jacobian to 

include both subsystems. Several methods of inversion were implemented to find the 

inverse of the jacobian to solve the inverse kinematic problem. Optimization was then 

done using several techniques and the control algorithm was designed to use any 

optimization method or criterion function.  

Two different state variables were implemented in the WMRA system to reduce 

the unintended motion of the wheelchair while executing a task of a long trajectory. It 

was found that using the polar-coordinate type variables in the mobility side of the 

problem gave more efficient results when used with the robotic arm. Trajectory 

generation was done using different linear and polynomial functions with or without 

parabolic blending. The control reference frame was also shown in three different bases 

of reference, and each one of them was useful in different kinds of setups.  
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Chapter 6: 
 

User Interface Options 

 

6.1. Introduction 

One of the important aspects of controlling robotic devices is the user interface, 

especially if the user is a person with disabilities. If the design of the robot is good, the 

control algorithm is very sophisticated, but the user interface is insufficient, the user 

might not utilize the robot up to its capabilities due to lack of control. In this chapter, we 

will talk about the clinical tests done on two WMRA user interfaces that are used in 

commercial WMRA systems. Then we will talk about the user interface devices used for 

this new WMRA that was included in the program software, as well as some other 

possibilities that can be added later as the user prefers.  

 

6.2. User Interface Clinical Testing 

Two different user interfaces were tested in two different commercial wheelchair-

mounted robotic arms, Manus and Raptor. These two user interfaces are the double-axis 

joystick as well as a keypad. A test procedure was put in place to do the testing, and 

human subjects with disabilities were tested to perform these tasks using the chosen user 

interfaces. Cognitive load was addressed based on the different user interfaces for 

different users and the type of control they are using (Cartesian or joint control). The 
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effectiveness of the two commercial WMRA based on these aspects and the execution 

times for different ADL tasks were addressed. 

 

6.2.1. Representative ADL Tasks Used for the Clinical Study 

In WMRA applications to perform tasks of daily living, the user-specific needs 

should be taken into consideration to make a proper selection of a WMRA [57]. This 

criterion is based on user’s age, size, weight, disability and prognosis. Other 

characteristics should also be addressed such as the cosmetics features, cost and payload 

capacity needed. In this clinical study, a representative population of individuals with 

different functional limitations who use a personal aid to do their ADL tasks were 

observed and interviewed while performing reach and manipulation tasks associated with 

their ADL using Manus and Raptor in separate occasions. Their opinions on the ease of 

use and comfort-related aspects were obtained.  

Based on the uses of WMRA devices for ADL tasks, a test bed was designed to 

evaluate the user interface and control of each WMRA. In order to assess the functional 

use, different ADL related tasks, as shown in figure 6.1, were designed as follows: 

1- Relocating an object on a level plane: This task consisted of moving the 

WMRA from the home position (H), picking up an object from quadrant-1 

and positioning it in quadrant-2. Each quadrant was 8” deep and 11.5” wide. 

The quadrants were on a table surface 30” above the floor surface. 

2- A pronation / supination function to simulate a pouring function: This task 

consisted of moving the WMRA from the home position (H), picking up a 
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water bottle from quadrant-1 and pouring the water into a cup in quadrant-2. 

Each quadrant was 11.5” deep and 8” wide.  

3- Accessing a higher level cabinet: This task consisted of moving the WMRA 

from the home position (H), picking up the object from the surface of a shelf 

(24”) above the surface of the table and placing it on the table surface. 

4- Picking up an object from the floor: This task consisted of moving the WMRA 

from the home position (H) to the floor (1), picking up the object and placing 

it on the table surface (2).  

 

Figure 6.1: Four Different ADL Tasks. 

Each task was performed three times and the time was recorded. The Raptor was 

tested with the joystick interface and the Manus with the joystick and the keypad 

interfaces. The input device for Raptor consists of an eight-way joystick. An additional 

set of switches controlled the opening and closing of the gripper. The four-way joystick 

of Manus controls the arm and the gripper using four different menus in the Cartesian 

control mode. The user accesses the menus by a quick tap of the joystick in either 

direction. The keypad interface consists of 16 buttons that the user can activate for 

control of the WMRA. Both the keypad and joystick systems offered a visual display to 

the user indicating the menu and function.  
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6.2.2. The Tested User Interfaces 

Three user interface devices were tested in this clinical study, two different 

joysticks and one keypad. These devices were supplied by the manufacturer of these 

robotic arms, and they had no flexible robotic system to take third-party user interfaces. 

Manus uses a two dimensional joystick, four-way joystick as shown in figure 6.2, that is 

easy to move in all directions in its circular motion. 

 

Figure 6.2: Four-Way Joystick for Manus. 

Manus was also equipped with another user interface that uses a 4X4 matrix of 

buttons on a keypad as shown in figure 6.3. This device works individually from the 

joystick, and it has a clear display of button functions. 

 

Figure 6.3: Eight-Button Keypad for Manus. 
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The third user interface came with Raptor, which is a two-dimensional, eight-way 

joystick as shown in figure 6.4. That joystick can travel only along the eight directions to 

control the arm, and if the direction does not match one of these eight ways, the joystick 

doesn’t move. 

 

Figure 6.4: Eight-Way Joystick for Raptor. 

 

6.2.3. Population of the Chosen Users with Disabilities 

In this clinical study, two individuals with disabilities (C5-6 quadriplegia) of 

similar size and weight, who have been power wheelchair users for 25 years, were 

selected to test the evaluation test bed. The home position for each WMRA was chosen as 

the stored position in which the user would normally place the arm when travelling. After 

each user was trained on the use of the WMRA device, they were timed on the 

performance of each task. Errors were noted if the object was dropped, placed 6” beyond 

the destination or the task was incomplete. In the second phase, cognitive load was added 

to determine the effect on the time. This was done by asking the subjects a series of 

questions using a telephone headset as they performed each task.  
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6.2.4. Clinical Test Results on User Interfaces 

In the tests conducted by this study, the users were active power wheelchair users, 

and they favoured a joystick interface, but did not like using a two dimensional control 

for three dimensional output. A space-ball or glove with voice recognition and macro 

controls would be far more efficient. The tests showed that the Raptor’s 2D, 8-way 

joystick control interface was the easiest to understand and learn. However the users 

found it difficult to activate the secondary switch for opening and closing the gripper. 

The Manus with joystick was the most difficult to learn and errors were caused by the 

user when using the joystick to access the menu structure. The keypad offered direct 

control and was most efficient. However the users had difficulty with the size of the 

buttons and shape on the keypad as shown in figure 6.5.  

 

Figure 6.5: Clinical Testing of the Keypad by a Power Wheelchair User. 

In moving the object in the same plane, the users had difficulty picking up objects 

from quadrant 1 and took an average of 180 seconds to pick up the object using Raptor as 
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shown in figure 6.6. Once the object was picked up, positioning it in quadrant two was 

done in 15-30 seconds and the return to home occurred in 20 seconds or less. The same 

task took about half the time when Manus was used with the keypad. Cognitive loading 

interestingly did not affect the initial phase of the task (H-1), but significantly increased 

the time trebled for the remainder of the task. The users had difficulty with diagonal 

movement of the arms.  

 

Figure 6.6: Clinical Testing of the Joystick by a Power Wheelchair User. 

The pouring task was the most difficult and the operation of tilting the bottle often 

caused the water to spill outside the receiving cup when Raptor was used. The model 

presented was a useful test to evaluate WMRA. Both the degrees of freedom and the 

control interface are critical for an efficient WMRA use. Performance was best in the 

case of the Manus with the keypad, where sufficient degrees of freedom existed with the 

least complicated user interface control. However, the performance can be greatly 
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enhanced by a more intuitive control with less cognitive load. Other user interfaces may 

put these two arms in a better usability when used by people with disabilities. 

 

6.3. The New WMRA User Interfaces Used 

One of the most difficult situations that can affect the outcome of the use of 

WMRA systems is the existence of two individual user interfaces to individually control 

the power wheelchair and the robotic arm. In the new WMRA system, since both the 

wheelchair and the arm are being controlled in the same control algorithm, a single user 

interface can be used to perform ADL tasks without the need of user-cooperated motion 

from two different interfaces. In the program structure, flexibility was one of the 

objectives in the design of user interfaces so that a wider range of these interfaces can be 

used based on the user’s abilities and preference.  

 

6.3.1. Six-Axis, Twelve-Way SpaceBall 

This user interface makes a three dimensional motion that corresponds to the six 

Cartesian space variables used in the WMRA. Three translational directions in their 

positive and negative values, and three rotational directions in their positive and negative 

values. Figure 6.7 shows the SpaceBall device that is programmed and used in the control 

software implementing the control algorithm discussed in this work. In addition to the 

SpaceBall’s main functionality, twelve fully programmable buttons were added for any 

sub-commands that might be used in the control of the WMRA system. The problem in 

this device is that it is stiff and might be hard to move by people with disabilities. 
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Figure 6.7: Twelve-Way SpaceBall. 

 

6.3.2. Computer Keyboard and Mouse 

Another user interface is the computer keyboard and mouse, where the user might 

prefer the use of these devices as shown in figure 6.8. This option was programmed in the 

control algorithm in case a computer is equipped with special software, such as speech 

recognition software, that the user might be using for other functions. 

 

Figure 6.8: A Keyboard and a Mouse. 
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6.3.3. Touch Screen on a Tablet PC 

This is one of the main user interfaces that can be used in this application since a 

tablet PC is already installed as part of the control hardware. The implementation of the 

control structure included this option in both simulation and actual WMRA motion. The 

touch screen used is of a Fujitsu Lifebook tablet PC equipped with a 12-inch active 

digitizer as shown in figure 6.9.  

 

Figure 6.9: A 12-Inch Touch Screen of a Tablet PC. 

This user interfaces can be used with the newly developed graphical user interface 

(GUI) program shown in figure 6.10, where the user can touch any of the directional 

buttons to activate the proper Cartesian directional motion of the WMRA system. 

 

Figure 6.10: GUI Screen Used for the Touch Screen. 
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6.4. The Brain-Computer Interface (BCI) Using P300 EEG Brain Signals 

Many people with severe motor disabilities need augmentative communication 

technology to enable them to control different devices independently. Those who are 

totally paralyzed, or “locked-in,” cannot use conventional augmentative technologies, all 

of which require some measure of muscle control. Over the past two decades, a variety of 

studies has evaluated the possibility that brain signals recorded from the scalp or from 

within the brain could provide new augmentative technology that does not require muscle 

control [58] for a comprehensive review. These BCI systems measure specific features of 

brain activity and translate them into device control signals as shown in figure 6.11. 

 

Figure 6.11: Basic Design and Operation of the BCI System. 

 

6.4.1. The P300 EEG Signal 

The P300 is a neural evoked potential component of the electroencephalogram, or 

EEG [59]. This event-related potential (ERP) appears as a positive deflection of the EEG 

voltage at approximately 300 ms. It dominates at parietal electrode sites. The P300 is 
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supposed to follow unexpected sensory stimuli or stimuli that provide useful information 

to the subjects according to his/her task. 

The P300 only peaks in the vicinity of 300 millisecond for very simple decisions 

[59]. More generally, its latency appears to reflect the amount of time necessary to come 

to a decision about the stimulus. The P300 also has useful properties of being larger to 

rare stimuli, especially if they are targets. The amplitude of the P300 therefore gives 

information about how the person is categorizing the stimuli and how rare they are 

considered to be subjectively. The P300 is only seen when the person is actively keeping 

track of the stimulus so it also gives information about what they are paying attention to, 

which makes it useful for BCI applications. A further parameter is the method of 

feedback used and this is shown in studies of P300 signals. Patterns of P300 waves are 

generated involuntarily (stimulus-feedback) when people see something they recognize 

and may allow BCIs to decode categories of thoughts without training patients first.  

 

6.4.2. The Use of the BCI 

The features used in studies to date include slow cortical potentials, P300 evoked 

potentials, sensory motor rhythms recorded from the scalp, event-related potentials 

recorded on the cortex, and neuronal action potentials recorded within the cortex. These 

studies show that non-muscular communication and control is possible and might serve 

useful purposes for those who cannot use conventional technologies. To people who are 

locked-in (e.g., by end-stage amyotrophic lateral sclerosis, brainstem stroke, or severe 

polyneuropathy) or lack any useful muscle control (e.g., due to severe cerebral palsy), a 

BCI system, as shown in figure 6.12, could give the ability to answer simple questions 
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quickly, control the environment, perform slow word processing, or even operate a 

neuron-prosthesis or orthosis [58]. For easier, non-invasive use of this neuro-imaging 

technology, the user wears a head mask fitted with several electrodes to measure the 

P300 EEG signals from the activities of the brain as shown in figure 6.12.  

 

Figure 6.12: The Non-Invasive BCI Device. 

 

6.4.3. The BCI-2000 Interface to the New 9-DoF WMRA System 

In collaboration with the Department of Psychology at the University of South 

Florida, we were able to develop a new user interface that uses the portable BCI-2000 

device to control the new WMRA system even for people who are paralyzed from the 

neck down. The screen shown in figure 6.13 was developed to give the user the proper 

prospective of what to control, and at the same time to serve as the user feedback for the 

selected image. The BCI-2000 scans the rows and columns of the screen choices shown 

in figure 6.13 at high frequency so that one row or one column is shown at a time. The 

user is asked to look at the symbol that he/she would like to use to control the WMRA 
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system and count the number of times the/she saw that symbol. Every time the user 

counts one more view of the symbol, the P300 EEG signal is recorded, and the 

corresponding row or column that was shown at that moment was also recorded. In about 

15 seconds, the BCI-2000 gives the selected row and column of the shown matrix on the 

screen. Once this value is received by the WMRA control program, it translates it into a 

Cartesian velocity in the proper direction and executes the algorithm to move the arm. 

 

Figure 6.13: Basic Design and Operation of the BCI System. 

 

6.4.4. Testing of the BCI-2000 with the WMRA Control 

Before the BCI-2000 was tested to control the robotic arm, a volunteer human 

subject was trained properly to use the device. The BCI-2000 was also trained to be 

optimized for that particular human subject, and it showed high accuracy of the selected 

choice (ranging from 92% to 100 %). These gains were recorded to be used for the actual 

test. During the testing phase, a successful control with high accuracy of the motion 

response was apparent. Few potential problems were noticed as follows: 
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1- Every full scan of a single user input takes about 15 second, and that might 

cause a delay in the response of the WMRA system to change direction on 

time as the human user wishes. This 15 second delay may cause problems in 

case the operator needs to stop the WMRA system for a dangerous situation 

such as approaching stairs. 

2- After an extended period of time in using the BCI-2000 system, fatigue starts 

to appear on the user due to his concentration on the screen when counting the 

appearances of his chosen symbol. This tiredness on the user’s side might be a 

potential problem. 

3- In case the wrong selection was made by the BCI-2000, the user will be 

frustrated to return back to his/her original choice. 

4- When the user is constantly looking at the screen and concentrating on the 

chosen symbol, he/she will not be looking at where the WMRA is going, and 

that poses some danger on the user. 

Despite the above noted problems, a successful interface with a good potential for 

a novel application was developed. 

 

6.5. Expandability of User Interfaces 

During the programming and implementation of the designed control algorithm, 

modularity and flexibility of the WMRA system was taken into account. For this purpose, 

all mentioned user interfaces are converted into a corresponding vector that is interfaced 

to the main program through a single function. Changing the user interface, or adding 

other interfaces is very easy in this context since the output of any new user interface can 
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be reformatted to the proper vector format in a new function that will directly interface to 

the main program and be used as a new interface selection. Other possible interface 

selections can be added, including the following devices. 

 

6.5.1. Omni Phantom Haptic Device 

The force-feedback enabled Phantom device from SensAble Technologies shown 

in figure 6.14 can be used as one of the user interface devices. It carries a stylus mounted 

on a six-joint mechanism with encoders and force transducers. The Cartesian coordinate 

velocities of the tip of the stylus can be mapped into an input to the commanded 

Cartesian velocities of the WMRA system.  

 

Figure 6.14: The Phantom Omni Device from SensAble Technologies. 

The Phantom allows users to actually feel virtual objects if integrated with a 

sensory suite. The Phantom contains 3 motors, which control the x, y, and z forces 

exerted on the user's fingertip. Mounted on each motor is an optical encoder to determine 

the x, y, and z position of the user's fingertip. The torque from the motors is transmitted 
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through a proprietary transmission cable to a stiff, lightweight linkage. Incorporated at 

the end of this linkage is a passive 3 degree-of-freedom set of gimbals attached to a 

thimble [60]. The passive gimbals allow the thimble to rotate so that a user's fingertip 

may assume any comfortable orientation.  

 

6.5.2. Sip n’ Puff Device 

The Sip n’ Puff is a term used to describe a dual-switch system which utilizes 

pneumatic switches. A single piece of tubing, accessible to the user, controls both 

switches as shown in figure 6.15. A slight pressure (puff) operates one switch, while a 

slight vacuum (sip) operates the other, and the proper signal to the controlled device is 

sent through an RS232 serial port. This device is widely used in assistive technology 

applications for control. A disadvantage of this device is the fact that it acts as an on/off 

switch, which means that its use will be very complicated for the user to control functions 

that need many input choices.  

 

Figure 6.15: The Sip and Puff Input Device. 
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6.5.3. Head and Foot Switches 

Head and foot switches such as the ones shown in figure 6.16 can also be used for 

a user interface to the WMRA system in case the user’s foot or head muscles are the 

strongest controllable muscles in his/her body. Some of the foot switches allow the user 

to rest the activating body part on top of the switch between activations. The head switch 

can be activated with a light pressure exerted by the user’s head,  

 

Figure 6.16: Head and Foot Switches. 

 

6.6. Summary 

In this chapter, several user interface options were presented. A clinical study of 

the user interface devices used by the commercially available WMRA was presented, and 

a test procedure was described. The high-level control algorithm of the WMRA can be 

interfaced with many user interfaces, but the ones tested were the SpaceBall, the 

Keyboard and mouse, the touch screen, and the Brain-Computer interface (BCI) that 

reads the P300 EEG signal from the brain to control the WMRA just by paying attention 

to a visual display. Other devices that can easily be adapted to the WMRA control 

include the Phantom Omni haptic devices, the Sip n’ Puff devices, and the head and foot 

switches among others. 
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Chapter 7: 
 

Testing in Simulation 

 

7.1. Introduction 

When new concepts in control are developed, it is important to validate them by 

means of simulation. In our case, the control methods that combined the manipulation 

and mobility of the newly developed WMRA were tested in simulation before applying 

them to the actual WMRA system. This step is very important for debugging and 

inspecting the methods before applying them into the actual arm so that no harm to the 

physical system is done in case of unexpected errors. In this chapter, we will show the 

different ways this theory was implemented, and the different programming packages 

used for this purpose. Figure 7.1 shows a flowchart of the program procedure. 

 

7.2. User Options to Control the WMRA System 

In the control software, several options were made available to include the 

modularity, re-configurability and flexibility requirements for this WMRA system. These 

options were programmed to work in combination with any possibilities that make sense 

of the control as follows: 

1- What to control: This option gives the user the option to control both position 

and orientation of the end effector with its six Cartesian variables, or control 
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the position only and ignore the orientation to bring the Cartesian space 

variables down to three variables and use the resultant six-degree of 

redundancy system for different sub-task optimization. 

2- What to run: In this option, the user is given three choices. These choices are 

to run the robotic arm only while freezing the wheelchair, to run the 

wheelchair only while freezing the arm in certain configuration specified by 

the user, or to run the combined WMRA system that uses both the robotic arm 

and the power wheelchair. 

3- What is the control coordinate reference frame: This option gives the user the 

choice of controlling the end effector in reference to the ground coordinate 

frame, the wheelchair coordinate frame, or the gripper’s coordinate frame. 

4- What kind of simulation to run: This option gives the user to run Virtual 

Reality simulation, Matlab wire frame simulation, both simulations together, 

or no simulation at all. 

5- Run the actual WMRA: This option gives the user the option to run the 

WMRA system or not when running the control software. 

6- Print diagnostic plots: This option allows the user to print out the various 

states of the system variables in terms of position, velocity and acceleration of 

the points of interest in the WMRA system, as well as the manipulability 

measure of both the arm and the WMRA system. 

7- Optimization Method: This option gives the user the option to use the eight 

optimization combination methods discussed in chapter five. It also allows the 
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user to select the joint limit avoidance and/or the joint limit and obstacle 

safety stop options on the control system. 

8- Close all when completed: This option gives the user the option to close or 

keep open the simulation windows, the diagnostic plots, and the WMRA 

control DLL library that connect to the actual WMRA. 

9- User interface options: This option allows the user to choose autonomous 

operation using position control, velocity control of the end effector. It also 

allows the user to choose teleoperation control using the SpaceBall, the BCI-

2000 system, or the touch screen. 

10- Trajectory generator: This option allows the user to chose the trajectory to be 

linear, polynomial, or polynomial with parabolic blending. 

11- Where to start: This option gives the user the option to start the WMRA 

system at the ready position, the current position or a user-specified position. 

12- Include pre-set task motion: This option gives the user the option to initialize 

the system from its parking position to its ready position, and when the user is 

finished using the WMRA system, it gives the option to go back to the ready 

position and the park position, respectively.  

The above user choices were adequate to allow the user to choose the most 

comfortable options based on his/her preference so that the WMRA could be used 

efficiently with as many user-specific needs as possible. When the user chooses to control 

the wheelchair only, the wheelchair motion is slow relative to the normal wheelchair 

velocities. If the user needs a normal operation of the wheelchair, the control system can 

shut down, and the control switch can be switched to the standard wheelchair controller.  
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7.3. Changing the Physical Dimensions and Constraints of the WMRA System 

It was noted in previous programming experience that a program can be 

extremely difficult to modify by other than the developer if any physical changes or 

modifications to the system occur. Since this is a project that could involve several 

changes, it is important to store few files that describe the physical characteristics of the 

system, and have each function or script programmed to read from these files so that any 

physical changes to the system can be easily accommodated in the control software. 

Three files were dedicated for this purpose as follows: 

1- Wheelchair dimensions: A file named “WMRA_WCD.m” was designed to 

carry the physical dimensions of the wheelchair that are used in the program, 

as well as the mounting location of the robotic arm on the wheelchair. 

2- Robotic arm parameters: A file named “WMRA_DH.m” was designed to 

carry the D-H parameter table of the robotic arm. 

3- Robotic arm joint limits: A file named “WMRA_Jlimit.m” was designed to 

carry the maximum and minimum joint limits of the robotic arm. 

 

7.4. Programming Language Packages Used 

In order to fulfill the need of implementing the program in simulation and in the 

physical arm, it was important to choose compatible programs whenever possible. For the 

physical arm, the communication protocols and functions that send the commands and 

receive the sensory information from the controller boards use C++ with certain DLL 

library functions. On the other hand, simulation is best done using Matlab 2006b from 

MathWorks because of its powerful toolboxes that include good packages for simulation.   
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Figure 7.1: Program Flowchart. 
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To be compatible with the goal of modularity of the physical system, a separate 

file that includes the physical characteristics of the robotic arm and the wheelchair was 

created, and every thing in the program refers to that file to read the piece of information 

needed for its calculations. In this sense, the program can be easily modified for any other 

WMRA system with different physical characteristics by editing that file and changing 

the information from the current system to the new system. 

 

7.4.1. Programs in C++ Programming Language 

Since the PIC Servo SC controller boards were interfaced to the PC using DLL 

libraries that are programmed in C++ as functions, it was clear that this programming 

language had to be used for communication with the PC. In terms of simulation, these are 

not needed since we did not need to communicate with the actual WMRA to perform the 

simulation. However, for the Space Ball to be implemented and integrated with the 

system, C++ programming was required as its drivers were compatible with a C++ 

library. The program is designed to run the driver of the SpaceBall and collect the user 

inputs from the device and send it to a Matlab environment as a vector variable that is 

changed constantly as the user moves the SpaceBall.  

 

7.4.2. Matlab Programming Environment 

The main programming language used to implement the control system is Matlab 

since it includes a lot of libraries and simulation capabilities. The program was coded into 

Matlab code that includes the main script as well as several functions created for certain 

purposes. Each one of the function was created in such a way that it was simple to 
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understand, and at the same time easy to be modified for future changes. The main script 

runs in Matlab command prompt and starts by asking the user questions and collecting 

the answers so that it runs according to the user preferences. When the program runs in 

simulation mode, the user can chose between simulation in wire frame graphics or in 

Virtual reality graphics. In the wire frame graphics, precise Cartesian coordinate lines 

were drawn and simulated through time for the ground, wheelchair, arm base and end-

effector coordinate frames. Another coordinate frame was added in case autonomous 

operation was required and the desired destination coordinate frame can be shown. In this 

case, at the end of simulation, the end-effector’s coordinate frame coincides with the 

destination coordinate frame. This gives a precision representation of the simulation 

accuracy. 

At the end of simulation, optional plots can be displayed, including the positions, 

velocities and accelerations of the joint space variables, the Cartesian coordinates of both 

the end-effector and the wheelchair, and the manipulability measure throughout the 

simulation period. These plots are very useful to understand the behavior of the system 

and the response throughout the simulation and when certain characteristics or methods 

are chosen over others. They also help in diagnosing any problems or potential problems 

that may appear when the control is implemented. Figure 7.2 shows a sample of the 

command prompts when the user uses the program from the common command line of 

Matlab to use the simulation in autonomous mode. Figure 7.3 shows the simulation 

window of the WMRA wire frame with the Cartesian coordinate frames attached and 

color-coded. The results of the simulation will be shown and discussed in the next 

chapter. 
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Figure 7.2: A Sample Command Prompts for Autonomous Operation Mode. 

 

 

>> WMRA_Main 
 

Choose what to control:  
For combined Wheelchair and Arm control, press "1",  For Arm only control, press "2", For Wheelchair 
only control, press "3".   1  
 

Choose whose frame to base the control on:  
For Ground Frame, press "1", For Wheelchair Frame, press "2", For Gripper Frame, press "3".  1 
 

Choose the cartesian coordinates to be controlled:  
For Position and Orientation, press "1",  For Position only, press "2".  1 
 

Please enter the desired optimization method: 
 (1= SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE)  1 
 

Do you want to include Joint Limit Avoidance? (1= Yes, 2= No)  1 
 

Do you want to include Joint Limit/Velocity and Obstacle Safety Stop? (1= Yes, 2= No)  1 
 

Choose the control mode:  
For position control, press "1",  For velocity control, press "2", For SpaceBall control, press "3",  
For Psychology Mask control, press "4",  For Touch Screen control, press "5".  1 
 

Please enter the transformation matrix of the desired position and orientation from the control-based frame  
 (e.g. [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) [ 1 0 0 800 ; 0 1 0 -500 ; 0 0 1 350 ; 0 0 0 1 ] 
 

Please enter the desired linear velocity of the gripper in mm/s (e.g.50)   50 
 

Chose the Trajectory generation function:  
 Press "1" for a Polynomial function with Blending, or  
 press "2" for a Polynomial function without Blending, or  press "3" for a Linear function.  1 
 

Choose animation type or no animation:  
 For Virtual Reality Animation, press "1", For Matlab Graphics Animation, press "2",  
 For BOTH Animations, press "3", For NO Animation, press "4".    2 
 

Would you like to run the actual WMRA?  For yes, press "1", For no, press "2".    2 
 

Press "1" if you want to start at the "ready" position, 
 or press "2" if you want to enter the initial joint angles.   1 
 

Press "1" if you want to include "park" to "ready" motion,  or press "2" if not.   1 
 

Press "1" if you do NOT want to plot the simulation results,  or press "2" if do.  1 
 
 
Simula. time is 7.460476 seconds. Elapsed time is 7.513704 seconds. 
 
 
 Do you want to go back to the "ready" position?  Press "1" for Yes, or press "2" for No.   1 
 

 Do you want to go back to the "parking" position?   Press "1" for Yes, or press "2" for No.   1 
 

 Do you want to close all simulation windows and arm controls?  Press "1" for Yes, or press "2" for No. 1 
 

>> 
>> 
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Figure 7.3: Simulation Window of the WMRA System in Wire Frame. 

 

7.4.3. Simulation with Virtual Reality Toolbox 

The same simulation discussed in the previous sub-section was also programmed 

and simulated using Virtual Reality simulation. SolidWorks models of each one of the 

link segments of the robotic arm were drawn, as well as the wheelchair model and the 

two driving wheels separately. All drawn models are then converted into WMRL files 

that use WMRL language. A new VRML program was created to call each individual 

segment of the WMRA system in a hierarchy, and relate them together using variable 

positions of the joint space variables. In that environment, enhancements were made to 

make the background and the floor look realistic in simulation. The new VRML file 
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created  was then called during Matlab simulation and updated with the new joint space 

variables so that the view of the WMRA change as the simulation progresses.  

Different view points were created to view the system in Virtual Reality. Unlike 

workstation robots, this WMRA is not stationary, and it eventually gets out of the 

simulation window if the wheelchair is driven too far. For this reason, several dynamic 

views are also developed to follow the wheelchair as it moves so that it stays within the 

viewing area of the window. These views can be changed during the simulation, and snap 

shots or videos can be recorded. Figure 7.4 shows a static view of the Virtual Reality 

program window that shows the WMRA in the ready position. 

 

Figure 7.4: A Sample of the Virtual Reality Simulation Window. 
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The Virtual Reality model used for simulation was tested using several user 

interfaces, including the SpaceBall, the keyboard and mouse, the brain-computer 

interface (BCI2000) and the touch screen interface. The program performed in a 

satisfactory way with precise and fast simulations with no noticeable delays. 

 

7.4.4. Graphical User Interface (GUI) Program 

Using the main program in Matlab to control the robotic device was hard for a 

user with disabilities to accomplish because of the initial questions asked by the program 

to bring the control up to the user preference. A new GUI program was created to ease 

this process and make it practical and user friendly for persons with disabilities. The main 

program was integrated with a GUI with default values so that the user can store the 

default values in the main program and use it directly as the software opens. This feature 

dramatically reduces the burden on the user to fill out the initial options every time he/she 

wants to use the WMRA system. Figure 7.5 shows the graphical user interface with its 

default options. To make it even easier and less confusing to the user, different windows 

or buttons will disappear if they don’t apply to the user’s selected option or when next 

options do not apply to the currently chosen mode.  Since the tablet PC is equipped with a 

touch screen, the user can easily tap the selections. When a touch-screen user interface 

control is selected, another screen appears with the functions and directions that the user 

can choose appear as shown in figure 6.8. This screen accepts commands by touching the 

intended button, or by pressing the button by mouse or the equipped touch pad. 
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Figure 7.5: The Graphical User Interface (GUI) Screen with the Defaults. 

 

7.5. Comments on Interfacing Different Programs Together 

When this program was created, we knew that communication problems would 

occur between software and hardware or software and software. The first problem was 

integrating the SpaceBall and interfacing it with Matlab. DLL libraries that are written in 

C++ are possible to read and use the functions they contain, but the problem comes when 

these functions use different data structure than Matlab while compiling. This means that 
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the functions are either unusable or very hard to use. In the case of SpaceBall, a new C++ 

program was created to send the data to a Matlab environment and make it ready for use.  

Another problem came when we were going to use the program to operate the 

actual WMRA system. Since it uses functions from complex DLL libraries, we had to re-

create functions in C++ and compile them into DLL files in a data structure that is 

compatible with C++, and then use them in Matlab and call these functions to 

communicate with the PIC Servo SC controller boards used in controlling the WMRA. 

This works out well, except that some times the virtual link between Matlab and the DLL 

library fails, and that results in unresponsive WMRA when commanded to do a task. This 

problem can be taken care of if the program controlling the arm is separated from the 

program that simulates the arm. This way, the program that controls the arm can be 

rewritten in C++ so that less interfacing problems will appear. 

The BCI 2000 user interface also uses a C++ program for processing and sending 

the data out. In this case, a networked TCP/IP port was dedicated to communicate 

between the BCI2000 and the computer that is running the control algorithm, and Matlab 

was interfacing with the TCP/IP port to get the date and use it in the control software.  

 

7.6. Summary 

In this chapter, a description of the simulation software was presented and 

discussed. Different programming languages and packages were used to create different 

applications and interface them together. The main program was written in Matlab, and 

two different graphic simulation were used. Wire frame graphical simulation of WMRA 

was created for precise inspection of the simulation and its results, and Virtual reality 
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simulation was created for its realistic look and appearance. Several plots can be shown 

to describe the system behavior during the simulation period. 

The main program can be run in two different ways, one is through the common 

command line of Matlab, and the other through a graphical user interface (GUI). The 

GUI was more user-friendly and easier for use by people with disabilities. Several 

communication and interfacing problems were faced during programming different parts 

of the WMRA system together with the control software. The solutions to these problems 

were presented. 
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Chapter 8: 
 

Simulation Results 

 

8.1. Introduction 

Simulation of many different cases to test the theory developed in chapters 3, 4, 

and 5 is important to validate the control algorithm and the methods used for control, 

especially if these algorithms are going to be used to control the actual WMRA system 

built at USF. In this chapter, simulation of these cases will be shown, and the effects of 

different control schemes and values will be discussed. Many plots of Cartesian space 

variables and joint space variables will be shown in positions, velocities and accelerations 

of these variables throughout the simulation period. The effectiveness of the singularity 

avoidance schemes will be shown by plotting the manipulability measure of the robotic 

arm and the combined WMRA system. The control system of the 9-DoF WMRA system 

is implemented in simulation using Matlab 7.0.4 with Virtual Reality toolbox installed on 

a PC running Windows XP. 

 

8.2. Simulation Cases Tested 

Several cases were tested in this simulation using the Weighted Least Norm 

solution control with Singularity-Robust inverse of the Jacobian since this was the most 

effective way of controlling the WMRA system. Five different values were tried for the 
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diagonal elements of the weight matrix (W) to implement the control system and to verify 

its effectiveness. These values were expressed in the following five cases: 

1- Case I: The weight matrix of the first case carried in its diagonal elements the 

same value “1” for all 9 variables. That means that all seven joints of the arm 

and the two wheelchair position and orientation variables will have equal 

potential of motion. 

2- Case II: In the second case, “W” carried “10” for each of the arm’s seven 

joints, and “1” for wheelchair’s position and orientation variables, which 

means that the wheelchair’s two variables are 10 times more likely to move 

than the arm’s joints. 

3- Case III: The third case carried weights of “1” for the arm’s joints, and “100” 

for the wheelchair’s two variables in “W”, which means that the arm is 100 

times more likely to move than the wheelchair. 

4- Case IV: In the fourth case, “W” carried weights of “1” for the arm’s seven 

joints and the wheelchair’s orientation variable, and a weight of “100” for the 

wheelchair’s position. This means that the forward or backward motion of the 

wheelchair is 100 times less likely than the motion of the rest of the system 

5- Case V: The last case was the opposite of the fourth case, where the orientation 

of the wheelchair took a weight of “100”, and the other eight variables took a 

weight of “1”. This means that the wheelchair’s rotational motion is 100 times 

less likely to occur than the motion in the arm’s joints and the wheelchair’s 

translational motion. 
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To show the effect of choosing the state variables of the wheelchair’s non-

holonomic motion in the planar Cartesian coordinates as the linear position and angular 

orientation rather than the two wheelchair wheel angles, two other cases were added for 

comparison of the WMRA system’s behaviour when either method was used as follows: 

1- Case A: When the state variables representing the wheelchair’s motion were 

selected as the two angles of the wheelchair’s driving wheels. 

2- Case B: When the state variables representing the wheelchair’s motion were 

selected as the linear forward motion and the angular motion of the wheelchair 

in the planar Cartesian space. 

Each one of these individual cases will be discussed, and the results will be shown 

to express the difference between these cases and the effectiveness of the methods and 

variables chosen. 

 

8.3. Results and Discussion of the First Five Cases 

The first five cases dealing with different weight values in the weight matrix “W” 

will be discussed in this section. The simulation was tested by commanding the WMRA 

system to move the gripper’s frame from its ready position defined by the following 

homogeneous transformation matrix based on the ground frame: 



















−
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rT  (8.1) 

Moving the arm from its ready position defined above to the desired position 

defined by the following homogeneous transformation matrix based on the ground frame:  
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Figure 8.1 shows the initial pose of the WMRA system at the beginning of the 

simulation when it was at the ready position. The end-effector’s position and orientation 

on the Cartesian space were the same in all trials since the trajectory was the same for all 

five cases tested. Figure 8.2 shows the end-effector’s position and figure 8.2 shows the 

end-effector’s orientation during simulation as it moves from the initial pose to the 

commanded point in the workspace. The motions of the individual variables in the joint 

space were completely different for each one of the cases depending on the selected 

weight for each variable so that we can get the desired behaviour of the WMRA system. 

 

Figure 8.1: The Initial Pose of the WMRA in Simulation. 
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Figure 8.2: Position of the WMRA During Simulation. 
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Figure 8.3: Orientation of the WMRA During Simulation. 
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8.3.1. WMRA Configurations in the Final Pose of the Simulation 

During simulation, each case behaved differently in terms of solved values of the 

joint space variables. Figures 8.4, 8.5, 8.6, 8.7 and 8.8 show the final poses of the 

WMRA system after the end-effector reached the desired destination for the five cases 

studied. Observing the figures, it was apparent from the first case compared to the others 

that all seven joints of the arm and the two wheelchair’s position and orientation variables 

had equal potential of motion as shown in figure 8.4. In the second case, the wheelchair’s 

two variables were 10 times more likely to move than the arm’s joints, and that is 

apparent in the results shown in figure 8.5. In the third case, the arm was 100 times more 

likely to move than the wheelchair, and that can be clearly seen in figure 8.6, where the 

wheelchair had a minimal motion and the arm did most of the motion.  

The beauty of this simulation comes apparent in the last two cases, where in the 

fourth case, the forward or backward motion of the wheelchair was 100 times less likely 

than the motion of the rest of the system, and figure 8.7 shows how the wheelchair’s 

forward motion was minimal. Figure 8.8 shows the last case, which is the opposite of the 

fourth case, where the wheelchair’s rotational motion was 100 times less likely to occur 

than the motion in the arm’s joints and the wheelchair’s translational motion. 

These poses clearly show the property of combining the wheelchair’s motion and 

the robotic arm’s motion under the optimization and redundancy resolution schemes 

discussed in earlier chapters. It was also observed from running other tasks that took the 

WMRA system out of its reach in the vertical direction that this method was stabilized by 

ignoring some of the trajectory’s orientation or position errors as needed so that the 

system doesn’t go out of control by producing high velocities in the joint domain. 
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Figure 8.4: Destination Pose for Case I, When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 

 

Figure 8.5: Destination Pose Case II, When W = [10, 10, 10, 10, 10, 10, 10, 1, 1]. 
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Figure 8.6: Destination Pose Case III, When W = [1, 1, 1, 1, 1, 1, 1, 100, 100]. 

 

Figure 8.7: Destination Pose Case IV, When W = [1, 1, 1, 1, 1, 1, 1, 100, 1]. 
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Figure 8.8: Destination Pose Case V, When W = [1, 1, 1, 1, 1, 1, 1, 1, 100]. 

 

8.3.2. Displacements of the Joint Space Variables 

The simulation program was designed to give different useful values and plots 

throughout the simulation process for observation and diagnosis of any potential 

problems that might occur during the task execution whether the physical arm is running 

or if it is just the simulation. Among these plots are the joints’ angular displacements and 

velocities. Figures 8.9 through 8.13 show the angular displacement versus time for the 

arm’s seven joints throughout the simulation period for all five cases. The first case in 

figure 8.9 shows the normal weights with no preference to any of the nine variables. In 

the second case shown in figure 8.10, when the arm was assigned large weight in the 

weight matrix, it was clear that the seven arm joints had minimal motion that was 

necessary for the destination to be reached. That end-effector destination was impossible 
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to reach by using the two wheelchair variables only. The last three cases shown in figures 

8.11, 8.12 and 8.13 show an easy arm motion as compared to that of the wheelchair. 
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Figure 8.9: Arms’ Joint Motion for Case I,  When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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Figure 8.10: Arms’ Joint Motion for Case II, When W = [10, 10, 10, 10, 10, 10, 10, 1, 1]. 



www.manaraa.com

 163

0 2 4 6 8 10 12
-20

0

20

40

60

80

100

120

140

160
Joint Angular Displacements vs Time

time, (sec)

jo
in

t a
ng

le
s,

 (d
eg

)

 

 
θ1

θ2

θ3

θ4

θ5

θ6

θ7

 

Figure 8.11: Arms’ Joint Motion for Case III, When W = [1, 1, 1, 1, 1, 1, 1, 100, 100]. 
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Figure 8.12: Arms’ Joint Motion for Case IV, When W = [1, 1, 1, 1, 1, 1, 1, 100, 1]. 
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Figure 8.13: Arms’ Joint Motion for Case V, When W = [1, 1, 1, 1, 1, 1, 1, 1, 100]. 

Another plot that was given in the simulation program was the track distances 

drawn by each of the two wheels of the wheelchair. These plots were useful in particular 

to observe the wheelchair’s motion. Figures 8.14 through 8.18 show these distances 

driven through the simulation for all five cases. An important property of this 

optimization method was apparent during simulation, and can be seen in figure 8.14, 

which was minimization of singularity. As the arm was moving to the destination and the 

left wheel was moving backwards, it reversed its motion in the middle of the simulation 

period when the arm approached singularity as seen in figure 8.21. The maximum 

wheelchair motion occurred in the second case as shown in figure 8.15, where the higher 

weight was assigned to the arm, and the wheelchair was free to move. Figure 8.16 shows 

the opposite, where the wheelchair moved the least among all cases since the weight was 

assigned to the wheelchair’s motion and the arm did most of the motion.  
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Figure 8.14: Wheels’ Motion for Case I, When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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Figure 8.15: Wheels’ Motion for Case II, When W = [10, 10, 10, 10, 10, 10, 10, 1, 1]. 
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Figure 8.16: Wheels’ Motion for Case III, When W = [1, 1, 1, 1, 1, 1, 1, 100, 100]. 
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Figure 8.17: Wheels’ Motion for Case IV, When W = [1, 1, 1, 1, 1, 1, 1, 100, 1]. 



www.manaraa.com

 167

0 2 4 6 8 10 12
-60

-40

-20

0

20

40

60

80

100

120

140
Wheels Track distances vs Time

time, (sec)

w
he

el
s 

tra
ck

 d
is

ta
nc

es
, (

m
m

)

 

 
θL

θR

 

Figure 8.18: Wheels’ Motion for Case V, When W = [1, 1, 1, 1, 1, 1, 1, 1, 100]. 

Observing figures 8.17 and 8.18 shows how the opposite weights carried by the 

position  and orientation  variables of the wheelchair in these two cases led to a rotation 

as observed in figure 8.17, where both wheels carried the same but opposite motion,  and 

a translation as observed in figure 8.18, where both wheels carried the same motion. 

 

8.3.3. Velocities of the Joint Space Variables 

The velocity profiles of the five cases were observed, but the beauty of the 

trajectory generator was apparent. Figures 8.19 and 8.20 show the velocity profiles of the 

seven arm joints and the two wheelchair wheels respectively for case I. When using a 3rd 

order polynomial with parabolic blending, velocities ramped up or down at a constant 

acceleration rather than going from zero to the desired joint velocities in no time. This 

option was used in all simulation cases. 
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Figure 8.19: Arms’ Joint Velocities for Case I, When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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Figure 8.20: Wheels’ Velocities for Case I, When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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8.3.4. Singularities and the Manipulability Measure 

Figures 8.21 through 8.25 show the manipulability index of both arm only and the 

combined WMRA system. It is important to note here that these values were multiplied 

by ( 10-9 ) to get the normalized manipulability measure. It is clear that the manipulability 

is much higher for the WMRA system than that of the arm only due to the fact that the 

WMRA system carries two more degrees of freedom. In all five cases, the manipulability 

measure was maximized based on the weight matrix. Figure 8.22 shows the 

manipulability of the arm as nearly constant because of the minimal motion of the arm. 

Figure 8.23 shows how the wheelchair started moving rapidly later in the simulation (see 

figure 8.16) as the arm approached singularity, even though the weight of the wheelchair 

motion was heavy.  This helped in improving the WMRA system’s manipulability.  
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Figure 8.21: Manipulability Index for Case I, When W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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Figure 8.22: Manipulability Index for Case II, When W = [10, 10, 10, 10, 10, 10, 10, 1, 1]. 
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Figure 8.23: Manipulability Index for Case III, When W = [1, 1, 1, 1, 1, 1, 1, 100, 100]. 
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Figure 8.24: Manipulability Index for Case IV, When W = [1, 1, 1, 1, 1, 1, 1, 100, 1]. 
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Figure 8.25: Manipulability Index for Case V, When W = [1, 1, 1, 1, 1, 1, 1, 1, 100]. 
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It is important to mention that changing the weights of each of the state variables 

gives motion priority to these variables, but may lead to singularity if heavy weights are 

given to certain variables when they are necessary for particular motions. For example, 

when all the seven joints of the arm were given a weight of “1000” and the task required 

rapid motion of the arm, singularity occurred since the joints were nearly stationary. 

Changing these weights dynamically in the control loop depending on the task in hand 

leads to a better performance.  

 

8.4. Results and Discussion of the Second Two Cases 

The two other cases tested in simulation were done to show the effect of choosing 

the state variables of the wheelchair’s non-holonomic motion in the planar Cartesian 

coordinates as the linear position and angular orientation rather than the two wheelchairs 

wheel angles. In the first case (A), the state variables representing the wheelchair’s 

motion were selected as the two angles of the wheelchair’s driving wheels. In the second 

case (B), the state variables representing the wheelchair’s motion were selected as the 

linear forward motion and the angular motion of the wheelchair in the planar Cartesian 

space. In this simulation test, the WMRA system was commanded to move the gripper 

forward on a straight line along the global “X” direction for one meter (1000 mm), i.e., it 

was moved from the ready position shown in equation 8.1 to the following desired 

position: 



















−
−−

=

1000
899010
131001

1455100

dT  (8.3) 
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The natural response that the operator would expect is to move the wheelchair 

forward without turning since the trajectory is in a straight line in front of the wheelchair. 

What actually happened in the first case (A) was different. First, when the weights of all 

joint variables were the same, the response was the same in both cases since it didn’t 

make a difference what the state variables were if you assigned the same weights to all 

variables. Figure 8.26 shows the position of the robotic arm’s base that is mounted on the 

power wheelchair. Observe that the arm had to move about 650 mm forward and 400 mm 

to the side of the wheelchair. Also, figure 8.27 shows the orientation of the robotic arm’s 

base that is mounted on the power wheelchair. Observe that the arm had to turn 

unnecessarily about 28 degrees clockwise, and then turn again about 9 degrees counter 

clockwise.  This unnecessary motion can be avoided using the weight matrix only if the 

state variables are selected in the proper way to be controlled. 

 

Figure 8.26: Arm Base Position When the Weights Were Equal, W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 
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Figure 8.27: Arm Base Orientation When the Weights Were Equal, W = [1, 1, 1, 1, 1, 1, 1, 1, 1]. 

In case (A), the state variables were the two wheels of the wheelchair, and the 

only way to control these two variables were by assigning heavy weights on both of them 

so that the wheelchair doesn’t move unnecessarily. The weights assigned were “50” to 

both wheels, and “1” to the seven robotic arm joints. Figure 8.28 shows the position of 

the robotic arm’s base that is mounted on the power wheelchair. In this case, the arm had 

to move about 625 mm forward and 250 mm to the side of the wheelchair. Even though 

the side motion was not necessary, but it was less than the motion when the weights were 

equal. Also, figure 8.29 shows the orientation of the robotic arm’s base. Observe that the 

arm had to turn unnecessarily about 16 degrees clockwise, and then turn again about 2 

degrees counter clockwise.  Even though this unnecessary rotation happened, it was still 

less than that motion when the weights were equal. 
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Figure 8.28: Arm Base Position for Case A, When W = [1, 1, 1, 1, 1, 1, 1, 50, 50]. 

 

Figure 8.29: Arm Base Orientation for Case A, When W = [1, 1, 1, 1, 1, 1, 1, 50, 50]. 
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Having control over the forward motion and the orientation of the wheelchair 

separately allows greater and more meaningful behavior of the system response. In case 

(B), the state variables were the wheelchair’s linear motion and its rotational orientation, 

and these two variables can be controlled separately to give preference to the rotation or 

the forward motion separately by assigning heavier weights on the variable that should 

not change unnecessarily. The weights assigned in this case were “50” to the 

wheelchair’s rotational motion, and “1” to the wheelchair’s forward motion and the seven 

robotic arm joints. Figure 8.30 shows the position of the robotic arm’s base that is 

mounted on the power wheelchair. In this case, the arm had to move about 700 mm 

forward and 100 mm to the side of the wheelchair. Even though the side motion was not 

necessary, it was significantly less than that for case (A). The wheelchair moved more 

forward to compensate for the unwanted side motion. Also, figure 8.31 shows the 

orientation of the robotic arm’s base. The orientation change was minimal, and it was less 

than 8 degrees clockwise. This turn was less than half of that in case (A) since heavier 

load was given to the orientation rather than all wheelchair motion. Notice that the 

orientation change not only was minimal, but it didn’t change direction to go counter 

clockwise as what happened in case (A). This shows that the apparently unnecessary 

rotation that happened was in fact necessary to follow the trajectory without getting close 

to singular configurations.  

The observations of these cases emphasize the importance of choosing the 

variables based on the convenience of the user. The adapted variables for WMRA control 

in the actual arm were the forward position and the rotational orientation of the WMRA. 
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Figure 8.30: Arm Base Position for Case B, When W = [1, 1, 1, 1, 1, 1, 1, 50, 1]. 

 

Figure 8.31: Arm Base Orientation for Case B, When W = [1, 1, 1, 1, 1, 1, 1, 50, 1]. 
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8.5 More Simulation for Optimization Methods and Criterion Function Effects 

To show the effects of optimization method and the criterion function on the 

simulation results, four different cases of optimization methods with different criterion 

function were tested in simulation. These cases are:   

1- Case I: The minimization of Euclidean norm of errors using Pseudo inverse of 

the Jacobian.  

2- Case II: Joint limit avoidance based optimization with Pseudo inverse of the 

Jacobian and the gradient projection term. 

3- Case III: The Weighted Least Norm optimization solution with S-R inverse of 

the Jacobian. 

4- Case IV: The Weighted Least Norm optimization solution with S-R inverse and 

joint limit avoidance. 

The four tested cases showed different joint reaction in the WMRA system based 

on the method used and the optimization criteria selected. The WMRA system was 

commanded to move in autonomous mode from its initial position before simulation to a 

point that is (-1500, -400, 100) mm away from the ground’s frame with the same 

orientation as the ground frame’s orientation. Figures 8.32 and 8.33 show the results of 

the first case, where the wheels and the joints of the WMRA system moved minimally to 

achieve the destination point. Note that joint six can not move more than 100o from the 

center of the joint range, and not including the joint limit avoidance made it cross that 

limit, while the rest of the joints had plenty of room to move to achieve the destination 

and did not move. 
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Figure 8.32: Wheels’ Motion Distances for Case I. 

 

Figure 8.33: Joint Angular Displacements for Case I. 
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When this same test was conducted with the joint limit avoidance as the criterion 

function as discussed in case II, joint limits were successfully avoided as shown in 

figures 8.34 and 8.35. The wheelchair moved more than in the first case, and joint one 

came close to its limit of 170o to compensate for the other joints for the limited motion in 

joint six. 

In case III, a different optimization method was used without the joint limit 

avoidance criterion function imbedded in the weight matrix. The weight matrix 

considered of the user-defined weights of W = diagonal [1, 1, 1, 1, 1, 1, 1, 20, 20]. 

Figures 8.36 and 8.37 show the motion of the wheels as they occurred later on during the 

simulation, and the joint angles travelled to reach the destination at the end effector. It 

can be seen that joint six went over its limits of 100o since the weight matrix does not 

reflect the joint limit avoidance as the optimization criterion function.  

 

Figure 8.34: Wheels’ Motion Distances for Case II. 



www.manaraa.com

 181

 

Figure 8.35: Joint Angular Displacements for Case II. 

 

Figure 8.36: Wheels’ Motion Distances for Case III. 
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Figure 8.37: Joint Angular Displacements for Case III. 

In case IV, the optimization criterion function was included in the weight matrix 

to avoid joint limits with all the four conditions discussed in chapter 5. Figures 5.38 and 

5.39 show how the wheelchair moved significantly more to compensate for the joints that 

reached their limits and their weights went to infinity. Joint three reached its limit of 170o 

and joint six reached its limit of 100o. This resulted in a smoother simulation with joint 

limit implementation while keeping the user’s preference of minimal wheelchair motion 

as expressed in terms of the user-defined portion of the weight matrix discussed in 

chapter five. These test cases reflect the usability of the system and its reaction to 

different control algorithms as it is used based on the user’s preference. It is noted here 

that when the user chose case II with teleoperation mode, the system started moving 

before the user touched the controls since the system was still optimized to keep the 

joints close to the middle of their range of motion. 
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Figure 8.38: Wheels’ Motion Distances for Case IV. 

 

Figure 8.39: Joint Angular Displacements for Case IV. 
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8.6. Simulation of the Eight Implemented Optimization Control Methods for the 
Case of an Unreachable Goal 

To test the difference in the system response in case the WMRA system is 

commanded to reach a point that is physically unreachable, eight different cases were 

simulated, each uses a different control method. The end-effector was commanded to 

move horizontally and vertically upwards to a height of 1.3 meters from the ground. This 

height is physically unreachable, and the WMRA system will reach singularity. The 

response of the system can avoid that singularity depending on the method used. 

Singularity, joint limits and preferred joint-space weights were the three factors we 

focused on in this simulation. The eight control cases simulated were as follows: 

1- Case I: Pseudo inverse solution (PI).  

2- Case II: Pseudo inverse solution with the gradient projection term for joint 

limit avoidance (PI-JL). 

3- Case III: Weighted Pseudo inverse solution (WPI). 

4- Case IV: Weighted Pseudo inverse solution with joint limit avoidance (WPI-

JL). 

5- Case V: S-R inverse solution (SRI).  

6- Case VI: S-R inverse solution with the gradient projection term for joint limit 

avoidance (SRI-JL). 

7- Case VII: Weighted S-R inverse solution (WSRI). 

8- Case VIII: Weighted S-R inverse solution with joint limit avoidance (WSRI-

JL). 

From these cases, we observe the following results in terms of singularity 

expressed by the manipulability measure, joint limit avoidance (joint 6 should not exceed 
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+/- 100o), and the user option of preferred weights of motion (1 is used for the arm and 10 

for the wheelchair): 

1- Case I: (PI) In this case, the system was unstable, the joints went out of bounds, 

and the user had no weight assignment choice (see figures 8.40 and 8.41). 

2- Case II: (PI-JL) In this case, the system was unstable, the joints stayed in bounds, 

and the user had no weight assignment choice (see figures 8.42 and 8.43). 

3- Case III: (WPI) In this case, the system was unstable, the joints went out of 

bounds, and the user had weight assignment choices (see figures 8.44 and 8.45). 

4- Case IV: (WPI-JL) In this case, the system was unstable, the joints stayed in 

bounds, and the user had weight assignment choices (see figures 8.46 and 8.47). 

5- Case V: (SRI) In this case, the system was stable, the joints went out of bounds, 

and the user had no weight assignment choice (see figures 8.48 and 8.49).  

6- Case VI: (SRI-JL) In this case, the system was unstable, the joints stayed in 

bounds, and the user had no weight assignment choice (see figures 8.50 and 8.51). 

7- Case VII: (WSRI) In this case, the system was stable, the joints went out of 

bounds, and the user had weight assignment choices (see figures 8.52 and 8.53). 

8- Case VIII: (WSRI-JL) In this case, the system was stable, the joints stayed in 

bounds, and the user had weight assignment choices (see figures 8.54 and 8.55). 

It is clear that case number 8 showed the best performance since it fulfilled all the 

important control requirements. This method avoided singularities while keeping the joint 

limits within bounds and satisfying the user-specified weights as much as possible. 
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Figure 8.40: Manipulability Measure Case I (PI). 

 

Figure 8.41: Joint Angular Displacements for Case I (PI). 
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Figure 8.42: Manipulability Measure Case II (PI-JL). 

 

Figure 8.43: Joint Angular Displacements for Case II (PI-JL). 
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Figure 8.44: Manipulability Measure Case III (WPI). 

 

Figure 8.45: Joint Angular Displacements for Case III (WPI). 
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Figure 8.46: Manipulability Measure Case IV (WPI-JL). 

 

Figure 8.47: Joint Angular Displacements for Case IV (WPI-JL). 
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Figure 8.48: Manipulability Measure Case V (SRI). 

 

Figure 8.49: Joint Angular Displacements for Case V (SRI). 
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Figure 8.50: Manipulability Measure Case VI (SRI-JL). 

 

Figure 8.51: Joint Angular Displacements for Case VI (SRI-JL). 
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Figure 8.52: Manipulability Measure Case VII (WSRI). 

 

Figure 8.53: Joint Angular Displacements for Case VII (WSRI). 
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Figure 8.54: Manipulability Measure Case VIII (WSRI-JL). 

 

Figure 8.55: Joint Angular Displacements for Case VIII (WSRI-JL). 
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8.7. Summary 

Simulation results of the implementation of the methods of combining mobility 

and manipulation and redundancy resolution were shown in this chapter. Several cases 

were defined for simulation, and observation of the simulation results were shown and 

discussed for the effectiveness of the solutions. In all cases, the trajectory was generated 

to move the end-effector from the initial to the final position following the specified 

optimization choices. Final configurations of the WMRA system were shown for all 

cases, and the joint space variables were studied. The effect of the 3rd degree polynomial 

with parabolic blending in generating the trajectory points were shown in the velocities of 

the joint space variables. This led to constant accelerations or decelerations of the 

variables so that smooth motion occurred. A couple of other simulations shown in this 

chapter verified the idea behind the proper choice of the state variables so that the control 

of these variables makes more sense than any arbitrary choice of variables that may 

produce undesirable system behavior. 

Four comparison cases were presented to compare four different control 

optimization methods when used within the workspace. Another eight cases were 

presented to show the different behaviors of the system response in case the WMRA 

system was commanded to go to a point that was physically out of its reach. These twelve 

cases clearly identified the advantage of using the WSRI method with joint limit 

avoidance over all other optimization methods. 
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Chapter 9: 
 

Experimental Testbed and Field Tests 

 

9.1. Introduction 

The combination of mobility and manipulation in robotics as assistive devices 

would be better used in actual products if testing on physical systems was done after 

theories and simulation results were developed. In this chapter, we will discuss the 

testbed comprise of a new 7-DoF robotic arm design, a modified wheelchair, a new 

gripper designed specifically for activities of daily living (ADL), and a control hardware 

that controls all these equipment using a tablet PC running Windows XP. Design aspects 

and components will be shown, and communication and wiring the system together will 

be discussed. 

 

9.2. The New 7-DoF Robotic Arm Design and Development 

A 7-DoF wheelchair-mounted robotic arm (WMRA) was designed and built to be 

integrated with a power wheelchair to help people with disabilities to do their activities of 

daily living independently or with minimal help. The mechanical design incorporates DC 

servo drive motors with actuator hardware at each individual joint, allowing 

reconfigurable link lengths [52].  It has seven degrees of freedom and uses a side mount 

on a power wheelchair.  The control system allows coordinated Cartesian control, and 
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offers expandability for future research, such as coordinated motion with the wheelchair 

itself.  

 

9.2.1. Design Goals 

A new WMRA was developed, designed and built. The goal was to produce an 

arm that has better manipulability, greater payload, and easier control than current 

designs. The arm is also reconfigurable, which increases the number of applications for 

our design. The following design goals were set for the hardware: 

 

9.2.1.1. Weight 

In a mobile application, minimal weight is of primary importance.  Power 

wheelchairs have a rated payload, and a heavy arm reduces the payload available for the 

user. Based on this criterion, our goal was to have a total system mass under 14 kg, 

including the arm, controller, and all peripherals. 

 

9.2.1.2. Mount Type 

As found in previous research [57], side mounting is preferable overall because it 

provides the best balance between manipulability and unobtrusiveness. However, care 

must be taken to prevent widening of the power chair. The new arm is mounted as far 

forward and upward as possible while still in a side mount configuration, and only 

increases chair width by 7.5cm. This mounting location allows the arm to be stowed by 

folding it back and then wrapping the forearm behind the seat. It virtually disappears 
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when not in use, especially when the arm is painted to match the chair. This helps avoid 

the stigma that these devices can bring. 

 

9.2.1.3. Stiffness 

It is one of the major differences between this WMRA and a typical industrial 

manipulator. As anticipated, teleoperation will be the most common control mode for the 

robot, and therefore great precision is not required. With a human participating at all 

times, inaccuracy due to a compliant structure is easily and transparently corrected. 

Recognizing this allowed the structure to be made much lighter than an industrial 

manipulator with the same payload. However, the low stiffness and large backlash of 

other WMRAs is an impediment to accurate coordinated control. With this design, we 

attempted to find an optimal balance, stiffer than other WMRAs, but less stiff than an 

industrial manipulator. 

 

9.2.1.4. Payload 

This manipulator is intended for use in Activities of Daily Living (ADL), and for 

job tasks of a typical office environment.  As such, it is important that the arm be strong 

enough to move objects that are common in these environments. A gallon (4 Liters) of 

milk is a good upper limit for a typical around-the-house object that must be manipulated. 

As this is an approximately 4 kg mass, this was set as the baseline payload for the arm at 

full horizontal reach at rest. Then, an extra margin of 2 kg was added to allow for a 

choice of end-effector capable of this load.  The 4 kg useful payload is much larger than 

the 1 kg payload of the Raptor. 
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9.2.1.5. Reconfigurability 

Even though a side mount was chosen for this prototype, it is important to note 

that the basic design can be adapted to a front or rear wheelchair mount, or a fixed 

workstation mount. The arm can be specialized for these workspaces by adjusting link 

lengths. Longer lengths can be specified for a rear mount on a power chair, but this 

reduces payload and reduces manipulability in front of the chair. Reconfigurable arm 

lengths allow greater leverage on the engineering input, as a single basic design may be 

adapted to numerous applications. This is only practical with electric drive and actuator 

placement directly at each joint.  

 

9.2.1.6. Power Supply and Consumption 

In the power wheelchair industry, a 24-volt lead-acid battery pack is standard, and 

is the natural choice for the power supply of a WMRA.  All motors, controllers, input 

devices, sensors, etc. must be able to work with 24vdc. Energy consumption is important, 

as users would reject a device that worked well but left them stranded without the 

wheelchair power! Therefore, efficient components were chosen to keep power 

consumption low.   

 

9.2.1.7. Cost Constraints 

Reasonable cost is important to widespread adoption of these devices, but is not a 

major hurdle such as poor utility and difficulty of use. The target was to be in the mid-

range of commercially available systems in terms of cost. The usability of the WMRA 
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system will be far more important than the cost when the user decides on which device 

should be used. 

 

9.2.1.8. User Interface 

People want a useful payload, and a simple intuitive control. Raptor lacks 

encoders and therefore control is manual, one joint at a time. Quadrature encoders are a 

cost-effective way to provide coordinated Cartesian control. The controllers of the new 

WMRA have PWM voltage regulation, and have built-in support for acceleration limits. 

The system easily scales to control grippers or even the base wheelchair, all through one 

standard control system. 

 

9.2.1.9. Degrees of Freedom 

Extra degrees of freedom help improve manipulability. This is evidenced by the 

considerable increase going from Raptor’s 4 DOF to the 6 DOF of MANUS. Our new 

design incorporates 7 joints, allowing full pose control even in difficult regions of the 

workspace, such as reaching around the wheelchair, reaching up to a high shelf, 

manoeuvring around objects, or opening a door. 

 

9.2.1.10. Actuation and Transmission Systems 

Most actuation alternatives were restricted due to the requirement for 

reconfigurability. Changing the length of an arm that is driven through linkages or 

flexible cables from motors in the base would require many parts to change, which would 

require a new design. The option of pneumatics was eliminated due to positioning 
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difficulty and compressor noise. The best option was to drive the joints electrically 

through harmonic gearheads that carry large gear ratio, with the entire actuator positioned 

at each joint. 

 

9.2.1.11. DC Motors as Actuators 

The only serious choice was whether to use stepper or servo motors [52]. Due to 

recent improvements in servo controllers, the cost of this option is not much higher than 

that for stepper motors. Brush DC servomotors allow closed-loop control, and are much 

quieter, lighter and more efficient than steppers. For these reasons, DC Servo drive was 

selected.  Quadrature encoders, mounted on the motors, were selected for their accuracy, 

simplicity and low cost. Optical limit switches ease initialization at power-up. 

 

9.2.2. Kinematic Arrangements and Component Selection 

The arm is a 7-DOF design, using 7 revolute joints [52]. It is anthropomorphic, 

with joints 1, 2 and 3 acting as a shoulder, joint 4 as an elbow, and joints 5, 6 and 7 as a 

wrist as shown in figure 9.1. The 3 DOF shoulder allows the elbow to be positioned 

anywhere along a spherical surface, whereas with the Raptor arm, elbow movement is 

limited to a circle. Throughout the arm, adjacent joint axes are oriented at 90 degrees as 

shown in figure 9.2.  This helps to meet two goals: mechanical design simplicity and 

kinematic simplicity. Machining parts on a conventional milling machine is easier with 

right angles, and the coordinate transform equations simplify greatly resulting in low 

computational cost. All adjacent joint axes intersect, also simplifying the kinematics.  
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Figure 9.1: Complete SolidWorks Model of the WMRA. 

 

Figure 9.2: Kinematic Diagram with Link Frame Assignments. 

Emphasis was placed on using off-the-shelf parts wherever possible. The basic 

arrangement for each joint is a high-reduction gearhead, a motor with encoder and spur-

gear reduction, and a bracket that holds these two parts and attaches to the two 

neighbouring links. The hardware components were selected to meet the design 

requirements, as follows: 
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9.2.2.1. Gearhead Selection 

Harmonic drive gearheads were chosen because they can achieve 100:1 reduction 

in a single stage, with only 64mm axial length [52]. In addition, they have bearings 

suitable for supporting overhung loads, enabling the next arm segment to be bolted 

directly to the output flange of the gearhead. This greatly simplifies the design, reducing 

weight and cost through lower part count. Gearheads were chosen based on required 

overhung loads and torques, with the size of the gearhead gradually reducing at 

consecutive distal joint. Once the basic type of gearhead was selected, information on the 

available sizes was collected, namely the mass and recommended maximum torque.  

Maximum recommended torque here was taken to be the lesser of two specifications 

from the manufacturer: maximum output torque and maximum overhung torque.  A 

simple spreadsheet model of a horizontally outstretched arm was made, which accounted 

for link lengths and self-weight.  The target payload (6 kg) was also applied to the end of 

the arm, and eventually the gearheads were chosen as shown in Table 9.1. One of the 

harmonic drive gearheads selected for the first two joints in the shoulder of the robotic 

arm is shown in figure 9.3. 

Table 9.1: HD Systems Gearhead Selections for Each Joint. 

Joint Model Selected Torque (N m) Outside Diam (mm) Mass (kg) 

1 CSF-25 140 107 1.50 
2 CSF-25 140 107 1.50 
3 CSF-20 70 93 0.98 
4 CSF-17 46 79 0.68 
5 CSF-17 46 79 0.68 
6 CSF-14 19.5 73 0.52 
7 CSF-11 6.6 58 0.15 
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Figure 9.3: Harmonic Drive Gearhead. 

 

9.2.2.2. Motor Selection 

Brush DC motors were chosen since they are the least expensive way to achieve 

servo control [52]. While brushless motors are a future possibility, performance gains are 

dubious, and would significantly increase the cost of the robot. The marginal increase in 

efficiency is relatively unimportant, and gear train noise is already greater than 

commutator noise. The main benefits for brushless motors are increased service life 

before maintenance, and possibly better packaging. Brush DC servo drive is the best 

overall compromise for a WMRA. Brush DC, 24v Pittman motors were selected that 

meet all performance criteria, and have integrated gearboxes and encoders as shown in 

figure 9.4. These relative encoders are initialized with optical limit switches. 

 

Figure 9.4: Pittman Servo Brush Motors with Gearbox and Encoder. 
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9.2.2.3. Material Selection 

6061 Aluminum was chosen for the joint brackets because of machinability, 

weldability, lower cost, good strength-to-weight ratio, and availability [52].  This 

material was also chosen for the link tubes, for the same reasons. Steel was rejected due 

to its high density.  In many places, the thickness of a bracket is not determined by 

strength or stiffness, but by simple packaging constraints. Steel would unacceptably 

increase mass in these areas. Carbon fiber/epoxy were considered for the link tubes due 

to the increase in stiffness and reduction in weight possible. It was rejected for the 

prototype because of its cost. Carbon fiber becomes especially attractive for a long-reach 

option, and may make a rear-mount arm more feasible. 

 

9.2.2.4. Joint Design 

Once all components were selected, design of each joint was rather straight 

forward [52]. The typical arrangement for a joint is to have a gearhead and motor held 

together by an angle bracket.  This bracket mounts to the previous joint or link.  The 

output flange of the gearhead attaches to the next link.  Billet 6061 aluminum was chosen 

for its high strength and dimensional accuracy. 

 

9.2.2.5. Wrist Design 

There were two basic choices for a 3-DOF wrist: Orthogonal and nonorthogonal 

as shown in Figures 9.5. The conventional orthogonal arrangement was selected due to 

better packaging [52].  All three axes are mutually orthogonal and all axes of rotation 

converge at a single point.  This is common in industrial manipulators, such as the Puma 
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560.  It is done to simplify the kinematic equations and provide inverse kinematic 

solution with the least amount of computations. Joint 6 has a design unlike the others in 

this manipulator. A right angle gearbox between the motor and gearhead greatly 

improves packaging, but increases complexity. A single bracket was designed to hold all 

3 parts in proper alignment, and to carry the load to joint 5. Joint 7 is coaxial with the last 

link, so irrespective of the pose of the arm, rotation about this axis is assured. The 

gearhead mounts to a flange welded to the end of the link tube, and the motor is hidden 

inside this tube. Wires to the motors and encoders can run inside the tubes or be clipped 

on the side of the tubes. 

   

Figure 9.5: Wrist Design: 3-Roll Wrist (Left), Orthogonal Wrist (Right). 

 

9.2.3. Final Design Testing and Specifications 

Good stiffness leads to quality construction and accurate control. Stiffness was 

tested by extending the arm straight out in front of the wheelchair [52]. A dial indicator 

was set to measure vertical deflection, and then a known mass was applied to the wrist 

plate. Deflections were measured at the wrist plate (100.3 cm from axis 1), joint 4 (50.8 
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cm from joint 1) and directly on the joint 1 gearhead. Table 9.2 shows the arm deflection 

due to the applied load. 

Table 9.2: Arm Deflections vs. Applied Load. 

Load (kg) Wrist Deflection  (mm) Elbow Deflection (mm) Joint 1 Deflection (mm)

2 4.4 1.8 0.2 
4 8.7 3.7 0.4 
6 13.3 5.5 0.7 

 

Each joint was individually tested for the maximum load it could lift.  This was 

done by placing the arm in a pose most adverse for the joint in question. The arm was 

placed fully outstretched, pointing forward parallel with the ground. Weights were 

progressively added, and the joint was given full power to try to raise them. All joints 

were tested up to the design load. Testing shows that joints three and four are 

overpowered, and smaller motors could be substituted. 

The maximum, unloaded speeds of each joint were measured using a known arc 

(90, 180, or 360 degrees as geometry permitted). Time to traverse this arc was measured 

with a stopwatch and joint velocities in RPM were calculated. Speeds range from 5 RPM 

in proximal joints to 16 RPM in Joint 7. With any battery-operated device, energy use is 

very important.  A digital multi-meter was connected inline with the power feed from the 

wheelchair battery, and power consumption was recorded as shown in Table 9.3.  

Table 9.3: Power Usage. 

Condition Current (A) 

Idle - all motors off, controller only 0.36 
Holding self-weight outstretched 0.58 
Holding 6kg fully outstretched 1.70 

Lifting 6kg with joint 1 3.30 
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While more testing will be instructive, a reasonable estimate is that typical 

household and office tasks will lead to an average current of 2 Amperes. Therefore, six 

continuous hours of arm use would consume 12 Ah. This would leave a 73 Ah battery 

(group 24 gel cell) with 61 Ah for propulsion, or 84% of capacity. Thus, driving range 

would be reduced, from about 30 km to 25 km. This should be acceptable for most users, 

and daytime charging can help restore range. Figure 9.6 shows the completed robotic arm 

in different positions using the SolidWorks model of the arm as well as the actual arm in 

two different positions. The photos show the arm with a Barrett hand installed at the end-

effector. A summary of the specifications of the robotic arm built are shown in Table 9.4. 

 

Figure 9.6: WMRA SolidWorks Models and the Corresponding Positions of the Built Device. 
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Table 9.4: Summary of the Robotic Arm Specifications. 

Arm Mass 12.5 kg 
Max reachable height above floor 1.37 m 
Chair width increase with side mount 7.5 cm 
Average Current Draw 2 A
Design Payload (including gripper) 6 kg 
Deflection at design payload 13.3 mm 
Degrees of Freedom 7
Actuator Type Brush DC Servo 
Transmission Harmonic Drive 
Controller Type Pic-Servo SC 

 

 

9.3. The New 2-Claw Ergonomic Gripper Design and Development 

A new robotic gripper was designed and constructed for Activities of Daily 

Living (ADL) to be used with the new Wheelchair-Mounted Robotic Arm developed. 

Two aspects of the new gripper made it unique: one is the design of the paddles, and the 

other is the design of the actuation mechanism that produces parallel motion for effective 

gripping. The paddles of the gripper were designed to grasp a wide variety objects with 

different shapes and sizes that are used in every day life. The driving mechanism was 

designed to be simple, light, effective, safe, self content, and independent of the robotic 

arm attached to it. 

In designing a gripper, functionality is very important, and it remains one of the 

main factors considered in most robotics applications. If the design has good 

functionality, minimal cost, high durability, and the aesthetic characteristics are met, a 

good product is likely to be produced. In order to decide on a good design for a gripper, 

several aspects have to be inspected, such as the tasks required by the mechanism, size 

and weight limitations, environment to be used in as well as material selection. Some of 

the ADL tasks that will be performed using the gripper are opening doors, grasping a 
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glass to drink from, flipping on a light switch, pushing and turning buttons and knobs, 

holding books and similar objects, handling tiny objects such as a CD or lose sheets of 

paper, or holding a small ball. 

 

9.3.1. Paddle Ergonomic Design 

Specific considerations were taken in the attempt to optimize the functionality of 

the gripper. It was decided early on that the gripper would utilize parallel motion 

generated from a dual four bar mechanism attached to each side of the two fingers 

creating 8 links between the gripper surfaces and the driving mechanism itself. As a start, 

the gripper’s fingers (paddles) were first put into consideration. Through the required 

tasks expected out of the overall device the gripper’s surfaces were designed to be varied 

for the adequate handling and use of household objects mentioned. A rounded surface 

was implemented as shown in figure 9.7, which would give the gripper a soft look as well 

as good function while grasping objects.  

 

Figure 9.7: The New Gripper’s Ergonomic Surfaces. 
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A spherically channeled surface was placed in the center of the paddle surface 

with the intention to contour to spherical door knobs. Small protrusions were added to the 

end of each paddle at the tip of the gripper for grasping smaller objects allowing added 

dexterity and the operations of press buttons and toggle switches. The tips were 

specifically made narrow for precision operations and rounded off to prevent the marring 

of surfaces that they would come in contact with. Optional protrusions extending toward 

the center of the grip at the tip of one of the paddles was added to allow objects such as 

door handles and door knobs to be pulled open with more security, rather than relying on 

friction and the locking of the mechanisms grip alone. The other paddle would have a 

small opening for the protrusions to go through when closing the gripper is required as 

seen in Figure 9.8. 

 

Figure 9.8: The Gripper Design in Application Reference. 

It was later decided that an extra flat surface placed closer to the driver 

mechanism would be beneficial in grasping larger rectangular objects such as boxes or 

books. By relying on the finger tips of the gripper alone to grasp larger objects, a greater 

moment would be generated on the driving mechanism and higher stresses induced in the 
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links to achieve the same amount of gripping force attainable from a location closer to the 

driving mechanism itself. Figure 9.9 shows these changes to the paddles. 

 

Figure 9.9: Extended Interior Surface Added to the Gripper. 

As a final modification to the paddles, a spring hinge was added to the back of the 

flat paddle surface, near the hinge location, to allow for a small amount of torsional 

rotation. The thought behind this modification was for an added degree of freedom in the 

paddles to allow for a better grasp on tapered objects such as cups and for self-

adjustment. Four main contact surfaces were intended for this gripper: The spherical area 

at the center of the paddles for spherical objects, the two round surfaces on both sides of 

the paddle for handling cylindrical and tapered objects, the two flat surfaces at the bottom 

and top of the paddles for handling rectangular and large objects, and the paddles’ tips for 

handling small objects, switches, knobs and sheets of paper. 

 

9.3.2. Actuation Mechanism 

The driving mechanism was the next step in creating the gripper. As noted 

previously, the design was going to utilize four bar linkages to allow the paddles to open 

and close in a parallel motion. The main reasons for this were to increase the contact 

surfaces between the gripper and the handled object, and to prevent these objects from 

slipping out of the grasp of the paddles due to the angular change in the contact surfaces 
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caused by simpler pin joint gripper designs. By keeping the paddles parallel, a more 

predictable surface contact angle could be controlled which would allow larger objects to 

be grasped safely without the risk of being dropped. This modification was done and 

tested. 

The first requirement for the gripper was for it to have a minimum gripping force 

of ten pounds and be capable of traveling from a full open position of four inches to a 

closed position within approximately four seconds. The gripper was also required to have 

an onboard motor for modularity reasons. The idea of utilizing an acme screw and a pull 

nut setup would be adequate for power transmission, and its compact size, relatively high 

variability in gear ratios, and its ability to lock the position without the use a mechanical 

brake mechanism made it a good choice for the purpose of this gripper. For this design a 

stainless steel 1/4-20 acme screw with a plastic nut was selected and thought to be the 

best design for space conservation and overall weight conservation as well. The selected 

motor carried relatively high torque to size ratio, and as a result, minimized the overall 

weight of the gripper dramatically. For the safety of the user, the handled object, and the 

mechanism, an adjustable slip-clutch was attached to the acme screw to build up the 

gripping force based on how delicate the object is, and to prevent the torque in the motor 

to rise above the designed limit of the mechanism. 

 

9.3.3. Component Selection 

The selected components are as follows: 

1- The Motor: A 24 volt DC coreless gearhead servo motor was selected since the 

wheelchair can supply that voltage from its batteries. The diameter of the 
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selected motor was 0.67 inches having a length of 1.77 inches. This motor, 

made by Faulhaber, puts out a stall torque of 11.5 mNm with a maximum 

current of 190 mA and a maximum speed of 8000 rpm. This motor uses a 14-1 

planetary gear ratio, and an optical encoder with 512 counts per revolution for 

the use of feedback control. Figure 9.10 shows the motor assembly with the 

gearhead and the encoder. 

 

Figure 9.10: The Selected Coreless Gearhead Servo Motor. 

2- Acme Screw and Pull Nut: A Stainless Steel 20 thread-per-inch acme screw 

was selected with a diameter of 0.25 inches to transmit the motion from the 

motor to the linkages through a Delrin plastic pull nut. This helps in locking 

the mechanism when the motor is stopped, and it gives a proper conversion of 

the motor speed to the required torque for driving the system. 

3- Slip Clutch: An adjustable 0 to 50 oz-in slip clutch was selected to build up the 

grip force and slip in case the motor is still running while the required torque 

is reached. Figure 9.11 shows a drawing of the slip clutch  

4- Spur Gears and Flange Ball Bearings: Two spur gears made out of anodized 

aluminum were selected with a pitch of 0.25 inch to transmit the motion from 

the motor shaft to the acme screw. A gear ration of 2:1 is used with 36 teeth, 
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9.5 mm diameter gear on the motor shaft and 72 teeth, 18.5 mm diameter gear 

on the acme screw.  

 

Figure 9.11: The Selected Slip Clutch. 

Figure 9.12 shows the actual driving mechanism after assembly. Aluminum was 

the main component used in building the housing and shield of the mechanism and the 

links. Other components, including plastics and Teflon, were used as sleeves in the joints 

of the driving four-bar linkage mechanism. 

 

Figure 9.12: The Assembled Actuation Mechanism. 

When all the side panels are in place and the top cap of the housing seal the 

compartment of the spur gears, safety of the operator is ensured in terms of getting any 
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external object caught in the driving mechanism. It also ensures proper protection of the 

motor and the small components driving the gripper from external dust and debris. 

Extensions on both sides of the gripper’s base with extra holes were added for 

expandability in case other devices such as a camera and a laser range finder need to be 

mounted to the gripper’s base plate. Figures 9.13 and 9.14 show the final Pro/E drawing 

and the physical gripper with the involved components after assembly, respectively.  

 

Figure 9.13: The New Gripper and the Actuation Mechanism Drawing. 

 

Figure 9.14: The New Gripper and the Actuation Mechanism. 
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9.3.4. Final Design and Testing 

Force analysis of the mechanism was accomplished by working from the paddles’ 

contact surfaces through the mechanism linkages until reaching the electronic motor.  

The force considered in the design was 10 pounds of gripping force at the contact 

surfaces of the gripper. The force from the paddle surfaces was then translated through 

the parallel four-bar linkages to the pull-nut using static analysis. Teflon bushings were 

utilized in the hinges at this joint to reduce friction but accounted for while calculating 

the forces. The pull-nut static calculations were used to determine the required torque on 

the acme screw to generate the force needed at the pull-nut. This was accomplished 

relatively accurately by using the offered specifications by the manufacturer of the acme 

screw.   

Input torque per output force measurements were utilized when calculating the 

torque required within the acme screw. Ball bearings were used to support the acme 

screw for maximum efficiency. After calculating the torque needed in the acme screw, 

forces were determined at the teeth of the spur gears used in the mechanism. The required 

torque and speed of the motor were calculated by assuming a required minimum opening 

and closing time of 4 seconds with the given force at the gripper. A safety factor of 2 was 

used in selecting a motor for the required torque. 

Figure 9.15 shows a close-up view of the gripper, attached to the newly designed 

9-DoF WMRA system on a power wheelchair, holding a 2.5 inch diameter ball. Several 

tests were conducted using the rapid prototype models and test objects to ensure proper 

application before the final design was reached. When the gripper machining was 
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completed and the gripper was assembled, actual grasping tasks commonly used in ADL 

were conducted. 

 

Figure 9.15: The New Gripper When Holding a Spherical Object. 

Another application tested show the adjustability of the paddles to the grasped 

object, as shown in figure 9.16. A standard cup was the test object to show adjustability 

of the paddles due to the added hinges that give them an extra degree of freedom for 

adjustment to the tapered object. 

 

Figure 9.16: The New Gripper When Holding a Tapered Cup. 

One of the main objectives intended for this gripper is the ability to handle 

different door handles. Figure 9.17 shows both kinds of handles, the lever handle and the 
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knob handle, commonly used in doors. These handles were used in this test to ensure 

proper application. 

 

Figure 917: The Gripper When Opening a Door with a Lever Handle (Left) and a Knop Handle (Right). 

Another test for handling small objects and sheets of paper were conducted. 

Figure 9.18 shows the gripper holding a business card using the tips of the paddles 

without the need to fully close the other end of the gripper.  

 

Figure 9.18: The New Gripper When Handling Small Objects. 

Handling large objects can be challenging based on the geometrical complexity of 

that object. Figure 9.19 shows the gripper holding the box of heavy tools while moving it 

from one place to another. The two side-curved surfaces and the middle spherical 

surfaces help in supporting odd objects in case complex shapes are handled.  
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Figure 9.19: The New Gripper When Handling Large and Heavy Objects. 

 

9.4. Modification of a Standard Power Wheelchair 

To install the newly designed components on a power wheelchair for a complete 

WMRA system, modifications had to be made to a standard power wheelchair both in 

hardware and control. The selected power wheelchair was the “Action Ranger X Storm 

Series”. The wheelchair has been modified by adding an incremental encoder on each one 

of the wheels. The controller module of the wheelchair has also been modified using TTL 

compatible signal conditioner and a DA converter so that the signal going to the wheels 

can be controlled using the same PIC-Servo SC controllers used in the arm. The only 

difference is that the output from this control board used for the wheelchair is the PWM 

signal rather than the amplified analogue signal.  

Since the wheelchair controller was sealed, and the manufacturers treat these 

controllers as proprietary components, we had to find a way to take over the control of 

the wheelchair. The best way to do this was by opening the joystick module and 

interfacing our control system with the joystick signal. The joystick sends two 
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independent analogue voltages to the wheelchair controller, one controls the forward 

speed of wheelchair (i.e. both wheels at the same speed and direction) and the other 

controls the rotation of the wheelchair (i.e. both wheels at the same speed bur opposite 

directions). The voltage sent is as follows: 

1- A voltage of 0.4 volts corresponds to a full positive speed. 

2- A voltage of 2.6 volts corresponds to a stop and applies breaks. 

3- A voltage of 4.0 volts corresponds to a full negative speed. 

Any voltage between these values corresponds to slower motion of the wheels. 

The controllers used in our WMRA system are capable of supplying pulse-width 

modulation (PWM) signal at 20 KHz. Changing the duty cycle means changing the 

average of the signal. A circuit that converts a constant-frequency PWM signal is shown 

in figure 9.20. Two independent circuits like these can be connected between the WMRA 

controller and the joystick of the wheelchair so that the wheelchair can be controlled 

using the arm controller. 

 

Figure 9.20: A Circuit Designed to Convert Digital PWM Duty-Cycle Control Signal to Analogue Signal. 
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A new controller box was designed to fit 12 controller boards, two power 

adapters, one converter, a cooling fan, and the connecting cables. Figure 9.21 shows the 

box before attaching it to the power wheelchair. This box was built so that it is easy to 

take off and put on the wheelchair with quick connectors that can be disconnected from 

the arm and the power supply to the battery. 

 

Figure 9.21: The Designed Controller Box Installed on the Modified Wheelchair. 

Another item attached to the power wheelchair was the quick-release mechanism, 

shown in figure 9.22, that is permanently attached to the power wheelchair and can 

quickly mount or dismount the designed robotic arm into or out of the wheelchair. This 

mechanism allows the user to quickly detach the arm if the wheelchair needs to be 

transported in a small container or a minivan that does not fit the WMRA system. Cable 

connectors extending from the robotic arm to the controller box are designed to quickly 

disengage the power and logic to and from the arm and the controller box. This also 

allows for easier portability that can be done by an average person. 
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Figure 9.22: The Quick-Release Mechanism that Mounts the Robotic Arm on the Wheelchair. 

 

9.5. Controller Hardware 

The controller hardware was designed to control all joint servo motors 

simultaneously through an amplified analogue signal, and to control the motors of the 

differential drive of the wheelchair through PWM signal. Wiring of the boards to the 

individual motors was done using quick-release sockets. 

 

9.5.1. Controller Boards 

PIC-SERVO SC controllers that support the DC servo actuators were chosen as 

shown in figure 9.23. At 5cm x 7.5cm, this unit has a microprocessor that drives the built-

in amplifier with a PWM signal, handles PID position and velocity control, 

communicates with RS-485, and can be daisy-chained with up to 32 units.  It also reads 

encoders, limit switches, an 8 bit analogue input, and supports coordinated motion 

control. Each joint controller is individually addressable, and can be controlled in 
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position, velocity, or current (torque) mode. In position mode, velocity and acceleration 

limits may be specified for smooth operation. Data for the entire arm is interfaced to the 

main computer using a single serial link. The PIC-Servo SC controllers use RS-485, and 

a hardware converter interfaces this with the RS-232 port or a USB port on the host PC. 

The current host PC is an IBM laptop, running Windows XP. However, the 

communications protocol is simple and open, and could be adapted to virtually any 

hardware/software platform with an RS-232 or a USB port. These controller boards were 

all connected to the computer using a single cable. 

 

Figure 9.23: JRKERR PIC Servo SC Controller Boards. 

9.5.2. Communication and Wiring 

As shown in figure 9.24, PIC-SERVO SC controllers (C1 through C7) that 

support the DC servo actuators (J1 through J7) were integrated in the control box. The 

logic of the boards run through 12v DC power converted from the wheelchair’s batteries.  
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Figure 9.24: Control System Circuitry. 

The seven motors used to actuate the power wheelchair were connected via a 

serial port as shown in figure 9.25 (left), and the single servo motor used for the gripper 

was connected to the controller boards using a different serial port as shown in figure 

9.25 (right). In figure 9.26, the circuit that connects the wheelchair encoders to the 

controller boards is shown. A toggle switch will be added to the joystick supplied with 

the wheelchair so that it can still be used if the user wants to run the wheelchair regularly. 

 

9.5.3. Safety Measures 

Two safety measures were added to the hardware of the WMRA system. The first 

is a panic stop button that is connected and situated under the right elbow of the user to 

stop the motor power supply from its battery source without shutting off the logic power. 
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This way, the system can run back up, or a diagnostic procedure can detect any problems 

that may have happened. Another safety feature is the use of a timer that cuts off the 

power to the motors and to the logic circuits so that the batteries of the power wheelchair 

can conserve energy in case the user forgot to shut the system off.  

  
Figure 9.25: Serial Port Connection of the Joint Motors (Left) and the Gripper (Right). 

 

9.6. Experimental Testing 

The newly designed WMRA was put to test in its early stages when the robotic 

arm was ready for testing. Even though wheelchair modification is still undergoing, we 
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were able to run the control algorithm to move the arm only as we had this in one of the 

user options in the control software. Figure 9.27 shows the WMRA system with the 

Barrette hand installed and a video camera used by a person affected by Guillain-Barre 

Syndrome. In her case, she was able to use both the computer interfaces. 

 

Figure 9.26: Wheelchair Encoders and Control Communications. 

The robotic arm was also tested with an able bodied human subject using the 

Brain-Computer Interface (BCI-2000) with the newly designed gripper as shown in 

figure 9.28. The user was able to move the robotic arm without touching any of the 

controls by looking at the feedback screen and counting the number of flashes of the 

particular direction or choice displayed on the screen. This was a successful test of this 

interface that encountered some unanticipated problems. When the user sits on the 

wheelchair, which is within the electromagnetic field of all the running wires inside the 

WMRA system, the BCI sensors were picking up a lot of noise and magnifying them 

along with the brain signal. This reduced the accuracy of the user’s choice recognition, 
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but it was good enough for him to execute the task he was trying to do without the need 

to step off the wheelchair. This noise might be reduced if the BCI-2000 gains were 

trained on the user while sitting on the wheelchair..  

    

Figure 9.27: A Person with Guillain-Barre Syndrome Driving the New WMRA System. 

Another user interface tested with this WMRA system was the touch screen. It 

was one of the most convenient control interfaces that we tested if the user is able to hold 

on to the stylus pen and touch the screen icons with it. In autonomous mode, the arm was 

also tested by commanding the controller to drive it from one point to another with a 

specific trajectory, and it moved the arm at that trajectory and returned back to the ready 

position as needed. Other physical tests conducted include the use of end-effector 

Cartesian velocity profile inputs to move the arm for a specified period of time. It is 

noteworthy at this point to mention that the electronics used to control the WMRA 

system stop responding occasionally with no apparent reason and at random without 

specific conditions. Overall, the system was functioning as designed, and it was able to 

execute ADL tasks with different user interfaces. More field testing will be conducted 

later, and the results will be published. 
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Figure 9.28: A Human Subject Testing of the BCI-2000 Interface with the WMRA System. 

 

9.7. Summary 

In this chapter, the design of a new 7-DoF robotic arm was presented. The 

component selection was discussed, and the final product testing was described along 

with the specifications of the device. A new gripper that was designed specifically for 

activities of daily living was presented. Special claw design procedure and features were 

presented. Each feature represents a specific use for task execution and grasping. The 

actuation mechanism of the gripper was designed, and proper components were selected 

to provide sufficient power to grasp the desired objects. 
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A standard power wheelchair was modified to hold the robotic arm and the 

controller box and the associated hardware. Two optical encoders were added to the 

wheels of the power wheelchair to give feedback to the controller when moving the 

wheelchair for a closed loop control. The controller hardware that controls the seven joint 

motors of the robotic arm, the two wheels of the power wheelchair, and the motor of the 

gripper was shown. This controller is capable of running up to 32 controller boards that 

are daisy-chained to form a single interface to the computer. Operator safety was 

addressed by adding panic stop button and a timer to turn the system power off.  

Testing of the WMRA with human subjects was conducted to ensure proper 

operation of the system. Several user interface options were tested as well, and the results 

were satisfactory. 
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Chapter 10: 
 

Conclusions and Recommendations 

 

10.1. Overview 

Extensive analysis was conducted to combine the WMRA’s 7-DoF and the 

wheelchair’s mobility in the new redundant 9-DoF system. This redundancy was used 

and optimized to improve manipulation capabilities for activities of daily living (ADLs) 

and avoid obstacles, joint limits and singularities. The new system was capable of 

executing pre-set tasks autonomously as well as in teleoperation mode. A real-time 

controller was developed and implemented to provide high frequency inverse kinematics 

update rates and real-time sensory feedback for effective closed-loop control of the 

WMRA system. 

The control algorithm was implemented in Virtual Reality simulation to test its 

ability to provide a good and comprehensive control structure that can be used by persons 

with disabilities.  

A newly built modular WMRA was used. It was developed based on 

manipulation trajectories needed for activities of daily living. This WMRA utilized an 

optimized controller for both WMRA and the power wheelchair. A standard power 

wheelchair was modified to include PC based control and sensory feedback. 
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A keypad, a Spaceball, a touch screen, and a Brain-Computer Interface (BCI) 

were used as modular user interfaces with different capabilities for each input device to 

fit the individual user needs and capabilities. Future testing will determine the appropriate 

interface needed for a specific disability. Higher level control algorithms were developed 

to interface the sensory data and the user input for an easy control of the system.  

Testing procedures were developed for both simulation and experimental testing 

on the developed testbed. That testbed was created to conduct the necessary testing of the 

system in realistic environments (Home, Office, etc.). Several US patents were planned 

for many parts of this work. 

 

10.2. General Discussion 

A 7-DoF robotic arm and a 2-DoF non-holonomic wheelchair were 

mathematically modeled for kinematiccontrol. A combination of the two mathematical 

models created a new 9-DoF redundant manipulator that combined the mobility and 

manipulation. The control system was designed for coordinated Cartesian control with 

singularity robustness and task-optimized combined mobility and manipulation. 

Weighted Least Norm solution was implemented among others for preference control of 

each of the joints and the wheelchairs’ position and orientation.  

The control algorithm utilized redundancy to optimize the motion based on 

different criteria functions or user-defined weights of preference. It was noticed that the 

use of conventional optimization methods resulted in unintended motion that may turn 

into undesirable move potentially harming the human user or the WMRA hardware. 

These methods add an optimization term that can still be active even when the user is not 
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commanding the arm to move. Even though these conventional methods were kept in the 

control algorithm for the user to choose, it was found that the Weighted Least Norm 

solution with the new modifications added to it gave the most predictable and robust 

control algorithm that resulted in a smooth motion with joint limit avoidance and user-

preferred motion weights. 

A wheelchair-mounted robotic arm (WMRA) was designed and built to meet the 

needs of mobility-impaired persons, and to exceed the capabilities of current devices of 

this type. The mechanical design incorporates DC servo drive with actuators at each joint, 

allowing reconfigurable link lengths and thus greater adaptability to a range of 

workspaces. Nine principal degrees of freedom allow full pose control of both the 

wheelchair and the arm. The used control electronics are capable of controlling up to 32 

devices when daisy-chained together, and it is capable of reading different sensory 

feedback and supplying it to the control software. Reliability of these electronics proved 

unpredictable since it showed some failure with no specific reason or pattern for 

diagnostics.  

A new gripper was designed specifically to be used for activities of daily living. 

The design includes two ergonomic claws with designated surfaces for handling specific 

shapes and objects. The actuation mechanism was designed to be light, effective and safe 

at the same time. Interfacing the gripper with the robotic arm and controlling it using the 

same controllers used to control the arm were some of the features included in the design 

and component selection process. 

Modularity in both the hardware and software levels allows multiple input devices 

to be used to control the system. User interfaces include the SpaceBall, the keyboard and 
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mouse, a touch screen, or the Brain-Computer Interface (BCI) used for people with 

disabilities. Any other preferred device can be used easily since the control software is 

flexible enough to allow any other user-interface hardware to be added. 

Simulation testing of the new control algorithm was conducted using Matlab and 

Virtual Reality toolbox among other C++ programs. Modular functions with proper 

interfaces were designed to ease the addition to any future developments that might be 

needed. The results showed a powerful method of controlling this 9-DoF combined 

WMRA system. Simulation results were also shown to emphasize on the effectiveness of 

the methods. 

The use of simulation and hardware testing showed successful integration 

between the mobility and manipulation mathematically and in the real application. When 

tested with the actual robotic arm, there were some unpredictable moments of 

unreliability between Matlab functions and C++ functions that resulted in the loss of 

motion in few occasions. This may be due to the lack of good compatibility between 

Matlab program and the DLL library that was compiled using C++. This problem can 

very likely be taken care of if the control software of the actual WMRA is done 

separately on a similar program done in C++.  

The following is a list of the major contributions made in this dissertation: 

1- Design and development of a 9-DoF wheelchair-mounted modular robotic 

arm system. 

2- Design and development of an ergonomic gripper to be used for ADL tasks. 

3- Development of a complex inverse-kinematics algorithm that combines the 

mobility of non-holonomic motion and the manipulation of redundant 
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manipulators for a complex 9-DoF control system with all the associated 

details. 

4- Expand the WLN method with the S-R inverse for a new control method that 

is robust and reliable in real applications. 

5- Utilization of redundancy for joint limit avoidance of such complex systems 

through optimization. 

6- Development of a powerful and modular simulation tool using Virtual Realty 

and friendly graphical user interface to model and simulate the 9-DoF WMRA 

system with theory implementation. 

7- The implementation of the theory on the actual WMRA hardware, and the 

resolution of all communication and interface challenges. 

8- The use of the BCI system to control WMRAs for people with severe 

disabilities. 

 

10.3. Recommendations 

Going back to the control method, it would add more enhancements to the control 

algorithm if an accurate mathematical model of the human subject along with the 

wheelchair and the surrounding obstacles are available. This way, the WMRA motion 

would change the configuration to avoid these objects rather than stop the system. The 

implemented safety measures and conditions can still be kept in case the system comes 

close to singularity or goes out of control.  

In the hardware part, better control boards may eliminate the occasional 

unpredictable failure of the WMRA system to respond. While the daisy-chaining 
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capabilities of these control boards give the system better connection to the computer 

through a single wire, performance was greatly affected and was noticeable. When the 

WMRA system was commanded to execute a task, the commanded joint positions and 

velocities were sent to the boards for execution. The problem with that was the fact that 

the command goes from the first board to move its joint, to the last board, and by the time 

the last joint moves, the first joint would already have finished its motion. This 

introduced some uneven periods of motion among the joints. A single and more compact 

board to control all ten motors may replace the ten boards in use currently whenever they 

are commercially available. It is also recommended to change the flexible coupling in 

joint 6 to a rigid coupling to avoid slippage. 

In the simulation side of this work, a separation of the physical WMRA system 

control and the simulation control may be done to convert the control software to C++ 

only rather than the combination of Matlab and C++ together. While Matlab’s Virtual 

Reality simulation is impressive, using it to control the robotic arm in a conventional 

operating system introduced undesirable delays. Separating the two softwares would 

allow the user to use the actual WMRA system more efficiently, and at the same time 

allow the system to be work in powerful virtual environment for testing and development 

of new implementations to the system. 

User interfaces were also using C++ applications under Windows operating 

system. When used with Matlab, it was necessary to interface these two programming 

packages together either by intermediate programs that link the information between the 

two packages, or by assigning virtual ports and sending the data and information through 
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these ports. In both cases delays were introduced in the system, and some times, it even 

froze the computer. 

The current control system is sufficient for low velocities, which is what persons 

with disabilities need to perform their ADL tasks. Expanding the mathematical 

representation of the WMRA system to include a full dynamic model and gravity 

compensation can help the user to perform other tasks that require high velocities such as 

sports and recreational activities. 
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Chapter 11: 
 

Future Work 

 

11.1. Introduction 

This WMRA system has the potential to be one of the leading assistive device 

projects in the country. Several patents were planned for for many aspects of this work. 

Commercializing this WMRA system would benefit many people with disabilities who 

find themselves physically dependent on other that may or may not be willing to provide 

the best help possible. Several steps can be taken to ensure an effective system that can 

be widely used with many wheelchair-bound individuals. This chapter gives a glimpse of 

what can be done in the future to add more capabilities and ease of use to this WMRA 

system. 

 

11.2. Quick Attach-Detach Mechanism 

This is an ongoing work that is aiming to have the robotic arm and the controller 

hardware detached and attached quickly with minimum efforts. The idea is to allow a 

single individual the ability to attaching or detaching the robotic arm and the controller 

box with all the wires and cables to and from the wheelchair. It was noticed with both 

Manus and Raptor that when they are attached to a power wheelchair, transportation of 

the wheelchair becomes a problem, even when a power lift is used with a custom-
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designed wheelchair transportation van. Manus already has a quick-release mechanism to 

detach the arm from its hosting wheelchair. The ongoing efforts in this project will 

employ a mechanism to attach the arm to the wheelchair using the weight of the arm to 

slide it into place and lock the system solid. Quick connection cables are also designed to 

remove the cables from the controller box and detach the whole control system from the 

wheelchair. This will allow the user to transport both the wheelchair and the robotic arm 

independently and with minimum effort. 

 

11.3. A Single Compact Controller 

In the current design, each motor to be controlled uses a dedicated controller 

board to send the commanded position and velocity to that motor. This resulted in ten 

controller boards so far, seven for the seven robotic joints, two for the wheelchair and one 

for the gripper. An additional board was used to take the signals from all ten daisy-

chained controller boards to the computer’s serial port or USB port on a single cable. 

Currently, we are seeing huge advancements in microelectronics and micro-

processing. Having a single board that is capable of simultaneously controlling all ten 

motors without the serial connection delays will give a better performance to the whole 

system. This will also affect the size of the controller box. The current controller-boards 

box is significant in its size housing the ten control boards, a converter board and power 

adapter, and was mounted under the seat cushion of the power wheelchair. Having a 

significantly smaller box may eliminate the need for having it mounted on the wheelchair 

and keep it on the robotic arm itself. This will reduce the need for many connectors and 
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cables between the wheelchair and the robotic arm, and it will certainly make it lighter 

and more self-sufficient. 

 

11.4. Sensory Suite 

It is essential for an intelligent robotic system to carry in its sensory suite many 

different sensors. In this WMRA system, ten optical encoders were installed for joint 

angle measurements. A laser range finder and a digital camera are two other sensors that 

are to be added. The laser range finder will be used for object-following or for 

determining abject coordinates based on the read distance and the current orientation of 

the laser range finder. The camera will be used for navigation feedback to the user as well 

as for object recognition and tracking in the plane.  

Other sensors, such as proximity sensors, will be used for on-line obstacle 

avoidance and for guidance through narrow pathways. Force-torque sensors will be added 

at the gripper’s base to provide force feedback to enhance the manipulation of different 

objects. 

 

11.5. Real-Time Control 

When operating the WMRA system using Windows XP operating system, time 

and priority assignments are uncontrollable by the programmer. Doing the control under 

a real-time operating system such as QNX allows the programmer to control the priorities 

and set priority rules to operate the WMRA as well as any other software or hardware 

used by the computer. This will enhance the response time of the system and make the 
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programmer run the system at higher frequencies without compromising the accuracy of 

the WMRA system or the operating system.  

 

11.6. Bluetooth Wireless Technology for Remote Wireless Teleoperation 

Bluetooth wireless is being integrated to the system to add remote wireless 

teleoperation so that the user can perform some ADL tasks while not seated on the 

wheelchair. The current USB and serial connections between the WMRA system and the 

control software on the tablet PC will be made wireless through special adaptors that will 

convert the signal from its current protocol to Bluetooth protocol and back at the 

computer terminal. This will allow the user to detach the tablet PC from the wheelchair 

when he/she is not using it. For instance, if a user with severe disabilities wakes up in the 

morning in need of a drink or a snack, that person will usually wait until the designated 

aid or family member comes to the room for assistance. Having the ability to control the 

WMRA system remotely allows him/her to drive the WMRA around the house by 

operating the system through a selected user interface and looking at the camera view 

through the tablet PC monitor. When the fridge is reached, the operator would be able to 

use the arm to open the door, get the desired drink and come back to the room with no 

need to wait for a human aid. 

 

11.7. Sensor Assist Functions (SAFs) 

Sensor Assist Functions (SAFs) will be used to assist or resist user’s motion based 

on the trajectory generated to execute the intended task and the motion input coming 

from the user interface. Velocity scaling teleoperation, force reflection, varying 
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impedance parameters, and visual servoing for object grasping will be used to enhance 

the manipulation capabilities of persons with disabilities. When using a haptic device, the 

user can be trained to perform better in ADL tasks by starting with the assist functions 

and slowly releasing them with time as the user gets used to proper control.  

 

11.8. Pre-Set ADL Tasks 

Programming several tasks to the current WMRA system is quite straight forward. 

The plan is to program commonly used tasks for each individual using the customized 

WMRA system so that these tasks can be done autonomously as the user selects them. 

Several tasks will be included in this WMRA system as follows: 

1- Turning switches on and off. 

2- Operating an oven, washer, dryer, microwave, dishwasher, etc. 

3- Opening and going through spring-loaded doors when the door dimensions are 

according to common standards 

4- Object-following task as the camera and/or the laser range finder guide the 

WMRA system to autonomously follow that object or human. 

5- Inserting CDs/diskettes into the computer or the CD player. 

 These pre-programmed ADL tasks are among many others that can be 

programmed to execute at the user’s request. A good scenario of such tasks is when a 

user is in a hallway or a room and would like to go outside that room through a spring-

loaded door. The user can point the attached laser range finder to the door handle and 

press the assigned button. The control system will start the autonomous mode while 

keeping the teleoperation mode running. The autonomous operation will start by 
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calculating the coordinates of the door knob from the given distance from the laser and 

the given laser orientation from the optical encoders and forward kinematics of the 

WMRA system. Once the door knob location is fully defined, the WMRA control system 

moves the wheelchair to a close proximity from the door at certain pre-calculated angle, 

reach to the door knob using the arm, grasp it using the end-effector, open the door and 

backup the wheelchair from the door way with a resultant circular motion at the gripper 

to match the door handle trajectory while opening. The system can then advance the 

wheelchair while holding the door using the robotic arm, and drive the wheelchair 

through the door until it is clear, and then release the door. The autonomous mode will 

then stop until the next pre-set operation is requested. 
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Appendix A. Hardware Components 
 

A.1. Robotic Arm Gear Motors with Encoders 
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A.2. Harmonic Drive Gearheads 
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A.3. Wheelchair Selected Encoders 
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A.4. Wheelchair Selected Friction Wheels 
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A.5. Gripper’s Actuation Motor 
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A.6. Gripper’s Planetary Gearhead 
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A.7. Gripper’s Optical Encoder 
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A.8. Gripper’s Spur Gears 

 



www.manaraa.com

Appendix A. (Continued) 
 

 273

A.9. Gripper’s Slip Clutch 
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A.10. PIC Servo SC Motion Controller Board 
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A.11. SSA-485 Smart Serial Adapter 
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Appendix B. Matlab Programs and Functions 
 

B.1. VRML File of the Virtual Reality Control Code 

#VRML V2.0 utf8 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
#%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
NavigationInfo { type "EXAMINE" speed 30 avatarSize [ 1, 0, 0 ] headlight TRUE } 
DEF WMRAROBOT Group { 
  children[ 
    Group { 
      children [ 
 DEF EXT_SETTINGS Group { 
   children [ 
     WorldInfo { title "Wheelchair Mounted Robotic Arm, By: Redwan Alqasemi, USF 2007"}, 
     NavigationInfo { 
        type "EXAMINE" 
        avatarSize 180 
        visibilityLimit 200 
        speed 1000 
     }, 
 
        Background { 
            groundColor [ 0.8 0.7 0.1 , 0.8 0.7 0.1] 
            groundAngle [1.57] 
            skyColor [ 0 0 1 , 0 0.5 1 , 0 0.5 1 , 0.5 0.5 0.5 , 1 0.5 0] 
            skyAngle [ 1 1.15 1.35 1.57] 
            #topUrl "cloud.jpg" 
        }, 
 
        DEF DynamicView Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
            Viewpoint { 
              description "a_start" 
              position 2500 500 1800 
              orientation 0 1 0 0.8 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_far" 
              position 900 6000 -200  
              orientation -0.601 -0.547 -0.582 2.172 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-lt-up" 
              position -1300 1600 -1600 
              orientation -0.1 -1 -0.25 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-lt-dn" 
              position -1400 400 -1800 
              orientation 0.025 -1 0.037 2.4 
              jump FALSE  
              },
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            Viewpoint { 
              description "a_ft-lt-up" 
              position 1600 1800 -1400 
              orientation -0.1 0.9 0.25 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-lt-dn" 
              position 1700 400 -1600 
              orientation 0.031 1 -0.052 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-rt-up" 
              position 1600 1900 1500 
              orientation -0.4 0.5 0.14 0.85 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-rt-dn" 
              position 1700 300 1900 
              orientation 0.191 1 -0.075 0.615 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-rt-up" 
              position -1700 1700 1700 
              orientation -0.25 -0.5 -0.12 1 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-rt-dn" 
              position -1800 500 1900 
              orientation 0.116 -1 0.021 0.818 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_birdeye" 
              position -1100 4900 -1900 
              orientation -0.56 -0.72 -0.4 2.2 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_top" 
              position 200 3100 0 
              orientation -0.577 -0.577 -0.577 2.1 
              jump FALSE  
            }, 
          ]} 
        Viewpoint { 
          description "top" 
          position 200 3100 0 
          orientation -0.577 -0.577 -0.577 2.1 
          jump FALSE  
        }, 
        Viewpoint { 
          description "birdeye" 
          position -1100 4900 -1900 
          orientation -0.56 -0.72 -0.4 2.2 
          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-rt-dn" 
          position -1800 500 1900 
          orientation 0.116 -1 0.021 0.818 
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          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-rt-up" 
          position -1700 1700 1700 
          orientation -0.25 -0.5 -0.12 1 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-rt-dn" 
          position 1700 300 1900 
          orientation 0.191 1 -0.075 0.615 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-rt-up" 
          position 1600 1900 1500 
          orientation -0.4 0.5 0.14 0.85 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-lt-dn" 
          position 1700 400 -1600 
          orientation 0.031 1 -0.052 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-lt-up" 
          position 1600 1800 -1400 
          orientation -0.1 0.9 0.25 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-lt-dn" 
          position -1400 400 -1800 
          orientation 0.025 -1 0.037 2.4 
          jump FALSE  
          }, 
        Viewpoint { 
          description "bk-lt-up" 
          position -1300 1600 -1600 
          orientation -0.1 -1 -0.25 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "far" 
          position 900 6000 -200  
          orientation -0.601 -0.547 -0.582 2.172 
          jump FALSE  
        }, 
        Viewpoint { 
          description "start" 
          position 2500 500 1800 
          orientation 0 1 0 0.8 
          jump FALSE  
        }, 
 
     DEF GROUND Transform { 
        rotation 1 0 0 0 
        translation 0 0 0 
        children [ 
     Shape { 
     geometry Box { size 5000 1 5000 } 
     appearance Appearance { 
     texture ImageTexture { url "9_Z_Ground.jpg" repeatS TRUE repeatT TRUE } 
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     textureTransform TextureTransform { 
        rotation 0 
           center 0 0 
           translation 0 0 
           scale 3 3 
        }}}]}, 
   
    ]} 
    ]} 
 
        # Transforming the wheelchair world coordinate system to the VR's world coordinate system: 
        DEF World Transform { 
        rotation 1 0 0 -1.5707963 
        translation 0 0 0 
        children [ 
 
        DEF Chair Transform { 
        rotation 0 0 1 0 
        translation -440 -230 168 
          children [ 
#          DEF WCR SphereSensor {} 
#          DEF WCT PlaneSensor { minPosition -400 0 maxPosition 400 0 } 
          Group { 
          children [Inline { url "0_Chair.wrl" } 
 
        DEF LWheel Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
#          DEF LW CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "0_LWheel.wrl" }]}]} 
 
        DEF RWheel Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
#          DEF RW CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "0_RWheel.wrl" }]}]} 
 
        DEF ARM1 Transform {          
        rotation 1 0 0 1.5707963 
        translation 440 220 139 
          children [ 
#          DEF JOINT1 CylinderSensor { diskAngle 0 minAngle 1.5707963 maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "1.wrl" } 
 
        DEF ARM2 Transform {          
        rotation 0 0 -1 1.5707963 
        translation 0 42.69 -75.1 
          children [ 
#          DEF JOINT2 CylinderSensor { diskAngle 0 minAngle -1.5708 maxAngle 1.5708 } 
          Group { 
          children [Inline { url "2.wrl" } 
         
        DEF ARM3 Transform {          
        rotation 0 1 0 1.5707963 
        translation -1.73 75.08 -42.7 
          children [ 
#          DEF JOINT3 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 } 
          Group { 
          children [Inline { url "3.wrl" } 
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        DEF ARM4 Transform { 
        rotation 0 0 -1 0 
        translation -2.92 42.64 -75.08 
          children [ 
#          DEF JOINT4 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 } 
          Group { 
          children [Inline { url "4.wrl" } 
 
        DEF ARM5 Transform {          
        rotation 0 1 0 1.5707963 
        translation -11.45 74.85 -423.58 
          children [ 
#          DEF JOINT5 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 } 
          Group { 
          children [Inline { url "5.wrl" } 
 
        DEF ARM6 Transform {          
        rotation 0 0 -1 1.5707963 
        translation -2.17 45.99 -75.1 
          children [ 
#          DEF JOINT6 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1416 } 
          Group { 
          children [Inline { url "6.wrl" } 
         
        DEF ARM7 Transform {          
        rotation 0 1 0 1.5707963 
        translation -2.92 -61.52 -161.49 
          children [ 
#          DEF JOINT7 CylinderSensor { diskAngle 0 minAngle -1.5708 maxAngle 1.5708 } 
          Group { 
          children [Inline { url "7.wrl" } 
         
        DEF ARM8 Transform { 
        rotation 0 0 -1 0 
        translation -1.78 61.39 -192.29 
          children [ 
#          DEF JOINT8 CylinderSensor { diskAngle 0 minAngle -3.1416 maxAngle 3.1614 } 
          Group { 
          children [Inline { url "8.wrl" } 
 
        ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]} 
 
#        ROUTE WCT.translation_changed TO Chair.set_translation 
#        ROUTE WCR.rotation_changed TO Chair.set_rotation 
#        ROUTE LW.rotation_changed TO LWheel.set_rotation 
#        ROUTE RW.rotation_changed TO RWheel.set_rotation 
#        ROUTE JOINT1.rotation_changed TO ARM1.set_rotation 
#        ROUTE JOINT2.rotation_changed TO ARM2.set_rotation 
#        ROUTE JOINT3.rotation_changed TO ARM3.set_rotation 
#        ROUTE JOINT4.rotation_changed TO ARM4.set_rotation 
#        ROUTE JOINT5.rotation_changed TO ARM5.set_rotation 
#        ROUTE JOINT6.rotation_changed TO ARM6.set_rotation 
#        ROUTE JOINT7.rotation_changed TO ARM7.set_rotation 
#        ROUTE JOINT8.rotation_changed TO ARM8.set_rotation 
 
]} 
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B.2. Matlab Functions Listed Alphabetically 

 
% This "new USF WMRA" function SIMULATES the arm going from any position to the ready 
position with ANIMATION. All angles are in Radians. 
% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians). 
% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_any2ready(ini, vr, ml, arm, Tiwc, qi) 
  
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and 
Plots windows: 
if ini==3 
    if arm==1 
        try 
            WMRA_ARM_Motion(ini, 0, 0, 0); 
        end 
    end 
    if vr==1 
        try 
            WMRA_VR_Animation(ini, 0, 0); 
        end 
    end 
    if ml==1 
        try 
            WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
    return; 
end 
  
% Defining the used conditions: 
qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0];   % Final joint angles (Ready Position). 
ts=10;       % (5 or 10 or 20) Simulation time to move the arm from any position to the 
ready position. 
n=100;      % Number of time steps. 
dt=ts/n;    % The time step to move the arm from any position to the ready position. 
  
% Initializing the physical Arm: 
if arm==1 
    WMRA_ARM_Motion(ini, 2, [qi;0], dt); 
    ddt=0; 
end 
  
% Initializing Virtual Reality Animation: 
if vr==1 
    WMRA_VR_Animation(ini, Tiwc, qi); 
end 
  
% Initializing Robot Animation in Matlab Graphics: 
if ml==1     
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(qi); 
     
    % Calculating the transformation matrices of each link: 
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T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3
)); 
    
T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3
)); 
    
T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3
)); 
    
T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3
)); 
    
T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3
)); 
    
T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3
)); 
    
T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3
)); 
    % Calculating the Transformation Matrix of the initial and desired arm positions: 
    Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
    Td=Tiwc*WMRA_q2T(qd); 
    WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
end 
  
% Check for the shortest route: 
diff=qd-qi(1:7); 
for i=1:7 
    if diff(i) > pi 
        diff(i)=diff(i)-2*pi; 
    elseif diff(i) < (-pi) 
        diff(i)=diff(i)+2*pi; 
    end 
end 
  
% Joint angle change at every time step. 
dq=[diff/n;0;0]; 
  
% Initialization: 
qo=qi; 
tt=0; 
  
while tt <= (ts-dt) 
    % Starting a timer: 
    tic; 
                 
    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Updating the physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || tt>=(ts-dt) 
            WMRA_ARM_Motion(2, 1, [qn;0], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tiwc, qn); 
    end 
     
    % Updating Matlab Animation: 
    if ml==1 
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        % Calculating the new Transformation Matrix: 
        
T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_transl(0,0,DH(1,3))
; 
        
T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_transl(0,0,DH(2,3))
; 
        
T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_transl(0,0,DH(3,3))
; 
        
T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_transl(0,0,DH(4,3))
; 
        
T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_transl(0,0,DH(5,3))
; 
        
T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_transl(0,0,DH(6,3))
; 
        
T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_transl(0,0,DH(7,3))
; 
        WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
    end 
  
    % Updating the old values with the new values for the next iteration: 
    qo=qn; 
    tt=tt+dt; 
  
    % Pausing for the speed sync: 
    pause(dt-toc); 
     
end 
 
 
% This function communicates with the physical USF WMRA system with 9 DOF to get the 
encoder readings and send the commands to be executed. 
% The (.H) file and the (.DLL) file that contains the used functions should be in the 
directory containing this program. 
% config=0: Set the current encoder readings to zeros, config=1: Read the encoder 
readings from the configuration txt file. 
% config=2: Change the configuration file to the initial values provided by (qo), then 
read the encoder readings from the configuration txt file. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [qn] = WMRA_ARM_Motion(ind, config, qo, dt) 
  
% Declaring the global variables: 
global L ptr e2r1 e2r2 e2r3 e2r4 e2r5 e2r6 e2r7 e2r8 e2r9 e2d 
  
% The initialization of the Arm library: 
if ind==1 
    % Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
    L=WMRA_WCD; 
    % Serial Communication properties: 
    com=4; 
    baud=19200; 
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    % PID controller gains: 
    Kp=100; 
    Kd=1000; 
    Ki=0; 
     
    % Conversion of encoder readings to radians: Note that the encoder readings are 
negative of the kinematic arrangements in the control code. 
    e2r1=-pi/900000; 
    e2r2=-pi/900000; 
    e2r3=-pi/950000; 
    e2r4=-pi/710000; 
    e2r5=-pi/580000; 
    %e2r6p=-pi/420000; 
    %e2r6n=-pi/500000; 
    e2r6=-pi/440000; 
    e2r7=-pi/630000; 
    e2r8=1; % Redwan: change this to forward motion when wheelchair controllers are 
installed (Only when reading the encoders). 
    e2r9=1; % Redwan: change this to rotation motion when wheelchair controllers are 
installed (Only when reading the encoders). 
    e2d =-1/100000; 
     
    % The case when changing the configuration file to qo is required: 
    if config==2 
        % Converting the commanded angles to encoder readings: 
        %qo=[qo(1)/e2r1; qo(2)/e2r2; qo(3)/e2r3; qo(4)/e2r4; qo(5)/e2r5; qo(6)/e2r6; 
qo(7)/e2r7; qo(8)/e2r8; qo(9)/e2r9; qo(10)/e2d]; 
        qo=[qo(1)/e2r1; qo(2)/e2r2; qo(3)/e2r3; qo(4)/e2r4; qo(5)/e2r5; qo(6)/e2r6; 
qo(7)/e2r7; qo(10)/e2d]; % Redwan: Replace this with the one above when wheelchair 
controllers are installed. 
        % Changing the configuration file to qo: 
        fid = fopen('configuration.txt','w'); 
        fprintf(fid,' %10.0f ',qo); 
        fclose(fid); 
        config=1; 
    end 
     
  
    try 
        % Closing the library in case it was open: 
        calllib ('controlMotor', 'close'); 
    catch 
    end     
    try 
        % Loading the DLL library of functions: 
        loadlibrary('controlMotor.dll', 'controlMotor.h'); 
    catch 
    end 
     
    % Establishing the connections, and setting the encoders to the current 
configuration: 
    check=calllib('controlMotor', 'init', com, baud, config); 
    if check == 0 
        fprintf('\nWMRA initialization has failed, Please check your communications.\n'); 
    end 
     
    % Setting the PID controller gains (All motors the same gains in this case. Use 
'setParamsPID' command to set each individual motor to different PID gains: 
    calllib ('controlMotor', 'setParamsPIDAll', Kp, Kd, Ki); 
     
    % Creating a pointer of for the 10 joints to be used to read or set the encoders: 
    dim = 1:8; % Redwan: Change 8 to 10 when wheelchair controllers are installed. 
    ptr = libpointer ('int32Ptr', dim); 
     
    % Reading the current positions and converting them to radians: 
    calllib ('controlMotor', 'getPosAll', ptr); 
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    qc=double(ptr.Value); 
    qc=[qc(1:7), 0, 0, qc(8)]; % Redwan: Remove when wheelchair controllers are 
installed. 
    qn=[qc(1)*e2r1; qc(2)*e2r2; qc(3)*e2r3; qc(4)*e2r4; qc(5)*e2r5; qc(6)*e2r6; 
qc(7)*e2r7; qc(8)*e2r8; qc(9)*e2r9; qc(10)*e2d;]; 
  
% Closing the Arm library: 
elseif ind==3 
    % Reading the current positions to be saved in the configuration file: 
    calllib ('controlMotor', 'getPosAll', ptr); 
    % Closing the library and unloading: 
    calllib ('controlMotor', 'close'); 
    unloadlibrary('controlMotor'); 
    % Reporting the function output to be zero (This value will not be used): 
    qn=0; 
  
% Updating the Arm: 
else 
    % Reading the current positions: 
    calllib ('controlMotor', 'getPosAll', ptr); 
    qc=double(ptr.Value)'; 
     
    % Converting the commanded angles to encoder readings: 
    %qo=[qo(1)/e2r1; qo(2)/e2r2; qo(3)/e2r3; qo(4)/e2r4; qo(5)/e2r5; qo(6)/e2r6; 
qo(7)/e2r7; qo(8)/e2r8; qo(9)/e2r9; qo(10)/e2d]; 
    qo=[qo(1)/e2r1; qo(2)/e2r2; qo(3)/e2r3; qo(4)/e2r4; qo(5)/e2r5; qo(6)/e2r6; 
qo(7)/e2r7; qo(10)/e2d]; % Redwan: Replace this with the one above when wheelchair 
controllers are installed. 
         
    % finding the needed velocities for the arm, note that a factor of 33.8 is needed for 
encoder velocities and position conversion:  
    qdo(1:7)=33.8*abs(qo(1:7)-qc(1:7))/dt; 
    qddo=500*[1; 1; 1; 1; 1; 1; 1; 10]; 
  
    % Calculating the gripper's commanded position and velocity: 
    qo(8)=qo(8)+qc(8); % Redwan: Change 8 to 10 when wheelchair controllers are 
installed.     
    qdo(8)=33.8*abs(qo(8)-qc(8)); % Redwan: Change 8 to 10 when wheelchair controllers 
are installed.  
     
    % Splitting the negative sign to be used in the DLL functions: 
    dir=[0;0;0;0;0;0;0;0]; % Redwan: Add two more zeros when wheelchair controllers are 
installed. 
    for i=1:8 % Redwan: Change 8 to 10 when wheelchair controllers are installed. 
        if sign(qo(i)) == -1 
            qo(i) = -qo(i); 
            dir(i) = 1; 
        end 
    end 
     
    % Sending the commanded angles to the controller boards: 
    calllib ('controlMotor', 'posSelect', [1, 1, 1, 1, 1, 1, 1, 1, -1], qo', qdo', qddo', 
dir); 
     
    % Reading the current positions and converting them to radians: 
    calllib ('controlMotor', 'getPosAll', ptr); 
    qc=double(ptr.Value); 
    qc=[qc(1:7), 0, 0, qc(8)]; % Redwan: Remove when wheelchair controllers are 
installed. 
    qn=[qc(1)*e2r1; qc(2)*e2r2; qc(3)*e2r3; qc(4)*e2r4; qc(5)*e2r5; qc(6)*e2r6; 
qc(7)*e2r7; qc(8)*e2r8; qc(9)*e2r9; qc(10)*e2d;]; 
end 
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% This function uses a 3rd order Polynomial with a Blending factor to find a smooth 
trajectory points of a variable "q" along a streight line, given the initial and final 
variable values and the number of trajectory points. 
% The output is the variable position. 
% See Eq. 7.18 page 210 of Craig Book 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [qt] = WMRA_BPolynomial(qi, qf, n)  
  
% Blending Factor: 
b=5; 
  
% Initializing the time: 
tt=0; 
tf=abs((qf-qi)); 
dt=tf/(n-1); 
  
if tf > 0.001 
    % Blending procedure: 
    % Time, position, velocity, and acceleration of the variable at the first blending 
point: 
    qddb=b*4*(qf-qi)/tf^2; 
    tb=tf/2-sqrt(qddb^2*tf^2-4*qddb*(qf-qi))/abs(2*qddb); 
    qdb=qddb*tb; 
    qb=qi+qddb*tb^2/2; 
    % Calculating the polynomial factors at the first blending point: From Eq.7.18 page 
210 of Craig Book 
    a01=qi; 
    a11=0; 
    a21=0.5*qddb; 
    a31=(20*(qb-qi)-8*qdb*tb-2*qddb*tb^2)/(2*tb^3); 
    %a41=(30*(qi-qb)+14*qdb*tb+qddb*tb^2)/(2*tb^4); % Uncomment for 5th order polynomial. 
    %a51=(12*(qb-qi)-6*qdb*tb)/(2*tb^5); % Uncomment for 5th order polynomial. 
    % Calculating the polynomial factors at the second blending point: From Eq.7.18 page 
210 of Craig Book 
    a02=qb+qdb*(tf-2*tb); 
    a12=qdb; 
    a22=-0.5*qddb; 
    a32=(20*(qf-a02)-12*a12*tb+2*qddb*tb^2)/(2*tb^3); 
    %a42=(30*(a02-qf)+16*a12*tb-qddb*tb^2)/(2*tb^4); % Uncomment for 5th order 
polynomial. 
    %a52=(12*(qf-a02)-6*a12*tb)/(2*tb^5); % Uncomment for 5th order polynomial. 
end 
  
% Calculating the intermediate joint angles along the trajectory from the initial to the 
final position: 
for i=1:n 
    if tf <= 0.001 
        qt(i)=qi; 
    elseif tt<=tb 
        qt(i)=a01+a11*tt+a21*tt^2+a31*tt^3; %+a41*tt^4+a51*tt^5; % Uncomment before 
"+a41" for 5th order polynomial. 
    elseif tt>=(tf-tb) 
        qt(i)=a02+a12*(tt+tb-tf)+a22*(tt+tb-tf)^2+a32*(tt+tb-tf)^3; %+a42*(tt+tb-
tf)^4+a52*(tt+tb-tf)^5; % Uncomment before "+42" for 5th order polynomial. 
    else 
        qt(i)=qb-qdb*(tb-tt); 
    end 
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    tt=tt+dt; 
end     
  
 
 % This function is to stop the arm if it is moving towards a collision with itself, the 
wheelchair, or the human user. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [dq]=WMRA_collide(dqi, T01, T12, T23, T34, T45, T56, T67) 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% Collision Conditions: 
gr=100-L(4)-L(5); % The ground buffer surface. 
dq=dqi; 
  
% 1- Collision of frame 3 using T03: 
T03=T01*T12*T23; 
% Collision with the ground: 
if T03(3,4) <= gr 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's front left side: 
if T03(1,4) >= 450 && T03(2,4) <= -150 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's rear left side: 
if T03(1,4) <= 450 && T03(2,4) <= 100 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's rear left wheel: 
if T03(1,4) <= 0 && T03(2,4) <= 100 && T03(3,4) <= 120 
    dq=-0.01*dqi; 
end 
  
% 2- Collision of frame 4 using T04: 
T04=T03*T34; 
% Collision with the ground: 
if T04(3,4) <= gr 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's front left side: 
if T04(1,4) <= 450 && T04(1,4) >= -100 && T04(2,4) <= 0 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's rear left side: 
if T04(1,4) <= -100 && T04(2,4) <= 100 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's rear left wheel: 
if T04(1,4) <= -100 && T04(2,4) <= 100 && T04(3,4) <= 120 
    dq=-0.01*dqi; 
end 
  
% 3- Collision of frame 5 using T05: 
T05=T04*T45; 
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% Collision with the ground: 
if T05(3,4) <= gr 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair driver's left shoulder: 
if T05(1,4) <= -100 && T05(1,4) >= -550 && T05(2,4) <= 150 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair driver's lap: 
if T05(1,4) <= 400 && T05(1,4) >= -100 && T05(2,4) <= 0 && T05(3,4) <= 470 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's battery pack: 
if T05(1,4) <= -430 && T05(1,4) >= -630 && T05(2,4) <= 100 && T05(3,4) <= 50 
    dq=-0.01*dqi; 
end 
  
% 4- Collision of frame 7 using T07: 
T07=T05*T56*T67; 
% Collision with the ground: 
if T07(3,4) <= gr 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair driver's left shoulder: 
if T07(1,4) <= -50 && T07(1,4) >= -600 && T07(2,4) <= 200 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair driver's lap: 
if T07(1,4) <= 450 && T07(1,4) >= -50 && T07(2,4) <= 50 && T07(3,4) <= 520 
    dq=-0.01*dqi; 
end 
% Collision with the wheelchair's battery pack: 
if T07(1,4) <= -480 && T07(1,4) >= -680 && T07(2,4) <= 50 && T07(3,4) <= 100 
    dq=-0.01*dqi; 
end 
  
% 5- Collision of the arm and itself using T37: 
T37=T34*T45*T56*T67; 
% Collision between the forearm and the upper arm: 
if T37(1,4) <= 170 && T37(1,4) >= -170 && T37(2,4) >= -100 && T37(3,4) <= 0 
    dq=-0.01*dqi; 
end 
  
 
% This function gives the WMRA's errors from the current position to the required 
trajectory position. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [delta]=WMRA_delta(Ti, Td) 
  
ep=Td(1:3,4)-Ti(1:3,4); 
eo=0.5*( cross(Ti(1:3,1),Td(1:3,1)) + cross(Ti(1:3,2),Td(1:3,2)) + 
cross(Ti(1:3,3),Td(1:3,3)) );  % From equation 17 on page 189 of (Robot Motion Planning 
and Control) Book by Micheal Brady et al. Taken from the paper (Resolved-Acceleration 
Control of Mechanical Manipulators) By John Y. S. Luh et al. 
delta=[ep; eo]; 
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% This function gives the DH-Parameters matrix to be used in the program.  
% Modifying the parameters on this file is sufficient to change these dimention in all 
related programs. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [DH]=WMRA_DH(q) 
  
% Inputting the D-H Parameters in a Matrix form, dimensions are in millimeters and 
radians: 
  
% Dimentions based on the actual physical arm: 
DH=[-pi/2 0 110 q(1) ; pi/2 0 146 q(2) ; -pi/2 0 549 q(3) ; pi/2 0 130 q(4) ;  
    -pi/2 0 241 q(5) ; pi/2 0 0 q(6) ; -pi/2 0 179+131 q(7)]; 
  
% Dimentions based on the Virtual Reality arm model: 
% DH=[-pi/2 0 109.72 q(1) ; pi/2 0 118.66 q(2) ; -pi/2 0 499.67 q(3) ; pi/2 0 121.78 q(4) 
;  
%     -pi/2 0 235.67 q(5) ; pi/2 0 0 q(6) ; -pi/2 0 276.68 q(7)]; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thanks to Mayur Palankar %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = WMRA_error_gui(varargin) 
% WMRA_ERROR_GUI M-file for WMRA_error_gui.fig 
%      WMRA_ERROR_GUI, by itself, creates a new WMRA_ERROR_GUI or raises the existing 
%      singleton*. 
% 
%      H = WMRA_ERROR_GUI returns the handle to a new WMRA_ERROR_GUI or the handle to 
%      the existing singleton*. 
% 
%      WMRA_ERROR_GUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in WMRA_ERROR_GUI.M with the given input arguments. 
% 
%      WMRA_ERROR_GUI('Property','Value',...) creates a new WMRA_ERROR_GUI or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before WMRA_error_gui_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to WMRA_error_gui_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help WMRA_error_gui 
  
% Last Modified by GUIDE v2.5 03-Feb-2007 15:47:37 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
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                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @WMRA_error_gui_OpeningFcn, ... 
                   'gui_OutputFcn',  @WMRA_error_gui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
% --- Executes just before WMRA_error_gui is made visible. 
function WMRA_error_gui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to WMRA_error_gui (see VARARGIN) 
  
set (handles.edit1, 'String', varargin{1}); 
  
% Choose default command line output for WMRA_error_gui 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes WMRA_error_gui wait for user response (see UIRESUME) 
uiwait(handles.figure1); 
  
% --- Outputs from this function are returned to the command line. 
function WMRA_error_gui_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
%varargout{1} = handles.output; 
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
close; 
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = WMRA_exit(varargin) 
% WMRA_EXIT M-file for WMRA_exit.fig 
%      WMRA_EXIT, by itself, creates a new WMRA_EXIT or raises the existing 
%      singleton*. 
% 
%      H = WMRA_EXIT returns the handle to a new WMRA_EXIT or the handle to 
%      the existing singleton*. 
% 
%      WMRA_EXIT('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in WMRA_EXIT.M with the given input arguments. 
% 
%      WMRA_EXIT('Property','Value',...) creates a new WMRA_EXIT or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before WMRA_exit_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to WMRA_exit_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help WMRA_exit 
  
% Last Modified by GUIDE v2.5 14-Mar-2007 23:20:09 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @WMRA_exit_OpeningFcn, ... 
                   'gui_OutputFcn',  @WMRA_exit_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before WMRA_exit is made visible. 
function WMRA_exit_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to WMRA_exit (see VARARGIN) 
  
% Choose default command line output for WMRA_exit 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
global VAR_SCREENOPN 
VAR_SCREENOPN = 1; 
  
% UIWAIT makes WMRA_exit wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = WMRA_exit_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_SCREENOPN 
VAR_SCREENOPN = 0; 
close; 
  
 
% This function gives the Jacobian Matrix and its determinant based on frame 0 of the new 
USF WMRA, given the Transformation Matrices of each link. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [J0,detJ0] = WMRA_J07(T1, T2, T3, T4, T5, T6, T7) 
  
T=eye(4); 
  
J0(1,7)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,7)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,7)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,7)=T(3,1); 
J0(5,7)=T(3,2); 
J0(6,7)=T(3,3);  
  
T=T7*T; 
  
J0(1,6)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,6)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,6)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
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J0(4,6)=T(3,1); 
J0(5,6)=T(3,2); 
J0(6,6)=T(3,3);  
  
T=T6*T; 
  
J0(1,5)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,5)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,5)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,5)=T(3,1); 
J0(5,5)=T(3,2); 
J0(6,5)=T(3,3);  
  
T=T5*T; 
  
J0(1,4)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,4)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,4)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,4)=T(3,1); 
J0(5,4)=T(3,2); 
J0(6,4)=T(3,3);  
  
T=T4*T; 
  
J0(1,3)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,3)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,3)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,3)=T(3,1); 
J0(5,3)=T(3,2); 
J0(6,3)=T(3,3);  
  
T=T3*T; 
  
J0(1,2)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,2)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,2)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,2)=T(3,1); 
J0(5,2)=T(3,2); 
J0(6,2)=T(3,3);  
  
T=T2*T; 
  
J0(1,1)=-T(1,1)*T(2,4)+T(2,1)*T(1,4); 
J0(2,1)=-T(1,2)*T(2,4)+T(2,2)*T(1,4); 
J0(3,1)=-T(1,3)*T(2,4)+T(2,3)*T(1,4); 
J0(4,1)=T(3,1); 
J0(5,1)=T(3,2); 
J0(6,1)=T(3,3);  
  
T=T1*T; 
  
J0=[T(1:3,1:3),zeros(3,3);zeros(3,3),T(1:3,1:3)]*J0; 
  
detJ0=sqrt(det(J0*J0')); 
 
 
% This function gives the WMRA's base Jacobian Matrix based on the ground frame, given 
the Wheelchair orientation angle about the z axis. 
% Dimentions are as supplies, angles are in radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [J]=WMRA_Jga(ind, p, XY) 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% Deciding if the motion is in reference to the arm base (1) or the wheel axle center 
(0): 
if ind == 0, L(2:4)=[0;0;0]; end 
  
% Calculating the Jacobian: 
J = [eye(2) , zeros(2,3) , [-(XY(1)*sin(p)+XY(2)*cos(p)) ; XY(1)*cos(p)-XY(2)*sin(p)] ; 
zeros(4,2) , eye(4)] * (L(5)/2)*[cos(p)+2*(L(2)*sin(p)+L(3)*cos(p))/L(1) , cos(p)-
2*(L(2)*sin(p)+L(3)*cos(p))/L(1) ; sin(p)-2*(L(2)*cos(p)-L(3)*sin(p))/L(1) , 
sin(p)+2*(L(2)*cos(p)-L(3)*sin(p))/L(1) ; 0 0;0 0;0 0; -2/L(1) , 2/L(1)] * [1 , -
L(1)/(2*L(5)) ; 1 , L(1)/(2*L(5))]; 
 
 
% This function gives the joint limit vector to be used in the program.  
% Modifying the parameters on this file is sufficient to change these limits in all 
related programs. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [qmin,qmax]=WMRA_Jlimit() 
  
% Inputting the joint limits in a vector form, dimensions are in radians: 
% Dimentions based on the actual physical arm: 
qmin=-[170;170;170;170;170;100;200]*pi/180; 
qmax= [170;170;170;170;170;100;200]*pi/180; 
 
 
% This "new USF WMRA" script SIMULATES the Joint control of the WMRA system with 
ANIMATION and plots for 9 DOF. All angles are in Radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Defining used parameters: 
d2r=pi/180; % Conversions from Degrees to Radians. 
r2d=180/pi; % Conversions from Radians to Degrees. 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% User input prompts: 
choice1 = input('\n Choose animation type or no animation: \n For Virtual Reality 
Animation, press "1", \n For Matlab Graphics Animation, press "2", \n For BOTH 
Animations, press "3", \n For NO Animation, press "4". \n','s'); 
if choice1=='2' 
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    vr = 0; ml = 1; 
elseif choice1=='3' 
    vr = 1; ml = 1; 
elseif choice1=='4' 
    vr = 0; ml = 0; 
else 
    vr = 1; ml = 0; 
end 
choice2 = input('\n Would you like to run the actual arm? \n For no, press "0", \n For 
yes, press "1". \n','s'); 
if choice2=='1' 
    arm=1; 
else 
    arm=0; 
end 
choice3 = input('\n Press "1" if you want to start at the "ready" position, \n or press 
"2" if you want to enter the initial joint angles. \n','s'); 
if choice3=='2' 
    qi = input('\n Please enter the initial angles vector of the arm in radians (e.g. 
[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n'); 
    WCi = input('\n Please enter the initial x,y position and z orientation of the WMRA 
base in millimeters and radians (e.g. [200;500;0.3]) \n'); 
    ini=0; 
else 
    qi=[90;90;0;90;90;90;0]*d2r; 
    WCi=[0;0;0]; 
    ini=0; 
    if vr==1 || ml==1 || arm==1 
        choice4 = input('\n Press "1" if you want to include "park" to "ready" motion, \n 
or press "2" if not. \n','s'); 
        if choice4=='2' 
            ini=0; 
        else 
            ini=1; 
        end 
    end 
end 
  
% Calculating the Transformation Matrix of the initial position of the WMRA's base: 
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3)); 
  
% Calculating the initial Wheelchair Variables: 
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)]; 
  
% Calculating the initial and desired joint positions: 
qi=[qi;qiwc]; 
qd = input('\n Please enter the desired angles and distance vector in radians and mm 
(e.g. [pi/3;-pi/3;pi/3;-pi/3;pi/3;-pi/3;pi/3;500;pi/3]) \n'); 
ts = input('\n Please enter the desired execution  time in seconds (e.g. 2) \n'); 
  
% Calculating the initial and final transformation matrices: 
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi(1:7), qi(8:9), Tiwc); 
[Td, Tda, Tdwc, T01d, T12d, T23d, T34d, T45d, T56d, T67d]=WMRA_Tall(2, qd(1:7), qd(8:9), 
Tiwc); 
% Calculating the number of iteration and the time increment (delta t): 
dt=0.05;    % Time increment in seconds. 
total_time=ts;     % Total time of animation. 
n=round(total_time/dt); % Number of iterations rounded up. 
dt=total_time/n;    % Adjusted time increment in seconds. 
dq=(qd-qi)/n; 
  
% Initializing the joint angles, the Transformation Matrix, and time: 
qo=qi; 
To=Ti; 
Toa=Tia; 
Towc=Tiwc; 
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tt=0; 
i=1; 
  
% Initializing the WMRA: 
if ini==0   % When no "park" to "ready" motion required. 
    % Initializing Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(1, Towc, qo); 
    end 
    % Initializing Robot Animation in Matlab Graphics: 
    if ml==1 
        WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, T56, T67); 
    end 
    % Initializing the Physical Arm: 
    if arm==1 
        WMRA_ARM_Motion(1, 2, [qo;0], 0); 
        ddt=0; 
    end 
elseif ini==1 && (vr==1 || ml==1 || arm==1)  % When "park" to "ready" motion is required. 
    WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9)); 
    if arm==1 
        ddt=0; 
    end 
end 
  
% Re-Drawing the Animation: 
if vr==1 || ml==1 
    drawnow; 
end 
  
% Starting a timer: 
tic 
  
% Starting the Iteration Loop: 
while i<=n 
  
        % Calculating the new Joint Angles: 
        qn=qo+dq; 
         
        % Calculating the new Transformation Matrices: 
        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, dq(8:9), 
Towc); 
         
        % Updating Physical Arm: 
        if arm==1 
            ddt=ddt+dt; 
            if ddt>=0.5 || i>=(n+1) 
                WMRA_ARM_Motion(2, 1, [qn;0], ddt); 
                ddt=0; 
            end 
        end 
         
        % Updating Virtual Reality Animation: 
        if vr==1 
            WMRA_VR_Animation(2, Tnwc, qn); 
        end 
         
        % Updating Matlab Graphics Animation: 
        if ml==1 
            WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, T56, T67); 
        end 
         
        % Re-Drawing the Animation: 
        if vr==1 || ml==1 
            drawnow; 
        end 
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        % Updating the old values with the new values for the next iteration: 
        qo=qn; 
        To=Tn; 
        Toa=Tna; 
        Towc=Tnwc; 
        tt=tt+dt; 
        i=i+1; 
         
        % Delay to comply with the required speed: 
        if toc < tt 
            pause(tt-toc); 
        end 
         
end 
  
% Reading the elapsed time and printing it with the simulation time: 
toc 
  
if vr==1 || ml==1 || arm==1 
     
    % Going back to the ready position: 
    choice6 = input('\n Do you want to go back to the "ready" position? \n Press "1" for 
Yes, or press "2" for No. \n','s'); 
    if choice6=='1' 
        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
        % Going back to the parking position: 
        choice7 = input('\n Do you want to go back to the "parking" position? \n Press 
"1" for Yes, or press "2" for No. \n','s'); 
        if choice7=='1' 
            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
        end 
    end 
  
    % Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation 
and Plots windows: 
    choice8 = input('\n Do you want to close all simulation windows and arm controls? \n 
Press "1" for Yes, or press "2" for No. \n','s'); 
    if choice8=='1' 
        if arm==1 
            WMRA_ARM_Motion(3, 0, 0, 0); 
        end 
        if vr==1 
            WMRA_VR_Animation(3, 0, 0); 
        end 
        if ml==1 
            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
     
end 
  
 
% This function uses a Linear function to find an equally-spaced trajectory points of a 
variable "q" along a streight line, given the initial and final variable values and the 
number of trajectory points. 
% The output is the variable position. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Function Declaration: 
function [qt] = WMRA_Linear(qi, qf, n) 
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dq=(qf-qi)/(n-1); 
  
for i=1:n 
    qt(i)=qi+dq*(i-1); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thanks to Mayur Palankar %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = WMRA_matrix_entry(varargin) 
% WMRA_MATRIX_ENTRY M-file for WMRA_matrix_entry.fig 
%      WMRA_MATRIX_ENTRY, by itself, creates a new WMRA_MATRIX_ENTRY or raises the 
existing 
%      singleton*. 
% 
%      H = WMRA_MATRIX_ENTRY returns the handle to a new WMRA_MATRIX_ENTRY or the handle 
to 
%      the existing singleton*. 
% 
%      WMRA_MATRIX_ENTRY('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in WMRA_MATRIX_ENTRY.M with the given input arguments. 
% 
%      WMRA_MATRIX_ENTRY('Property','Value',...) creates a new WMRA_MATRIX_ENTRY or 
raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before WMRA_matrix_entry_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to WMRA_matrix_entry_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help WMRA_matrix_entry 
% Last Modified by GUIDE v2.5 21-Feb-2007 13:19:38 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @WMRA_matrix_entry_OpeningFcn, ... 
                   'gui_OutputFcn',  @WMRA_matrix_entry_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{2:nargout}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
% --- Executes just before WMRA_matrix_entry is made visible. 
function WMRA_matrix_entry_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to WMRA_matrix_entry (see VARARGIN) 
  
set (handles.edit3, 'String', varargin{1}); 
  
% Choose default command line output for WMRA_matrix_entry 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes WMRA_matrix_entry wait for user response (see UIRESUME) 
uiwait(handles.figure1); 
  
% --- Outputs from this function are returned to the command line. 
function WMRA_matrix_entry_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
%varargout{1} = handles.output; 
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_MATRIX 
  
Input=get(handles.edit1, 'String'); 
VAR_MATRIX = Input; 
close; 
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as a double 
 % --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% This function does the animation of USF WMRA with 9 DOF using Matlab Graphics. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_ML_Animation(i, Ti, Td, Towc, T01, T12, T23, T34, T45, T56, T67) 
  
% Declaring the global variables: 
global L arm wheelchairl wheelchairu wheelchairc initial desired hand  
global arm_base ground initialco desiredco handco arm_baseco 
  
% The initialization of the animation plot: 
if i==1 
     
    % Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
    L=WMRA_WCD; 
     
    % Arm: 
    T1=Towc*T01; 
    T2=T1*T12; 
    T3=T2*T23; 
    T4=T3*T34; 
    T5=T4*T45; 
    T6=T5*T56; 
    T7=T6*T67; 
  
    % Wheelchair: 
    T8=Towc;                                 % Arm Base Position. 
    T9=T8*WMRA_transl(-L(2),-L(3),-L(4));         % Wheelbase Center. 
    T10=T9*WMRA_transl(0,-L(1)/2,0);              % Right Wheel Center. 
    T11=T9*WMRA_transl(0,L(1)/2,0);               % Left Wheel Center. 
    % Lower Platform Corners: 
    T12=T9*WMRA_transl(-200,-L(1)/2,0);           % Rear Right Wheelchair Corner. 
    T13=T9*WMRA_transl(-200,L(1)/2,0);            % Rear Left Wheelchair Corner. 
    T14=T9*WMRA_transl(L(2)+200,L(1)/2,0);        % Front Left Wheelchair Corner. 
    T15=T9*WMRA_transl(L(2)+200,-L(1)/2,0);       % Front Right Wheelchair Corner. 
    % Upper Platform Corners: 
    T16=T9*WMRA_transl(-200,-L(1)/2,L(4));        % Rear Right Wheelchair Corner. 
    T17=T9*WMRA_transl(-200,L(1)/2,L(4));         % Rear Left Wheelchair Corner. 
    T18=T9*WMRA_transl(L(2)+200,L(1)/2,L(4));     % Front Left Wheelchair Corner. 
    T19=T9*WMRA_transl(L(2)+200,-L(1)/2,L(4));    % Front Right Wheelchair Corner. 
  
    % Initial Animation Plot: 
    figure(11); 
  
    % Plots of the Arm and Wheelchair system: 
    arm=plot3([T8(1,4), T1(1,4)],[T8(2,4), T1(2,4)],[T8(3,4),T1(3,4)],'-b',[T1(1,4), 
T2(1,4)],[T1(2,4), T2(2,4)],[T1(3,4),T2(3,4)],'-g',[T2(1,4), T3(1,4)],[T2(2,4), 
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T3(2,4)],[T2(3,4),T3(3,4)],'-b',[T3(1,4), T4(1,4)],[T3(2,4), 
T4(2,4)],[T3(3,4),T4(3,4)],'-g',[T4(1,4), T5(1,4)],[T4(2,4), 
T5(2,4)],[T4(3,4),T5(3,4)],'-b',[T5(1,4), T6(1,4)],[T5(2,4), 
T6(2,4)],[T5(3,4),T6(3,4)],'-g',[T6(1,4), T7(1,4)],[T6(2,4), 
T7(2,4)],[T6(3,4),T7(3,4)],'-g','LineWidth',3); 
    hold on; 
    wheelchairl=plot3([T12(1,4), T13(1,4)],[T12(2,4), T13(2,4)],[T12(3,4),T13(3,4)],'-
g',[T13(1,4), T14(1,4)],[T13(2,4), T14(2,4)],[T13(3,4),T14(3,4)],'-g',[T14(1,4), 
T15(1,4)],[T14(2,4), T15(2,4)],[T14(3,4),T15(3,4)],'-g',[T15(1,4), T12(1,4)],[T15(2,4), 
T12(2,4)],[T15(3,4),T12(3,4)],'-g',[T10(1,4), T11(1,4)],[T10(2,4), 
T11(2,4)],[T10(3,4),T11(3,4)],'-b','LineWidth',3); 
    wheelchairu=plot3([T16(1,4), T17(1,4)],[T16(2,4), T17(2,4)],[T16(3,4),T17(3,4)],'-
g',[T17(1,4), T18(1,4)],[T17(2,4), T18(2,4)],[T17(3,4),T18(3,4)],'-g',[T18(1,4), 
T19(1,4)],[T18(2,4), T19(2,4)],[T18(3,4),T19(3,4)],'-g',[T19(1,4), T16(1,4)],[T19(2,4), 
T16(2,4)],[T19(3,4),T16(3,4)],'-g','LineWidth',3); 
    wheelchairc=plot3([T12(1,4), T16(1,4)],[T12(2,4), T16(2,4)],[T12(3,4),T16(3,4)],'-
g',[T13(1,4), T17(1,4)],[T13(2,4), T17(2,4)],[T13(3,4),T17(3,4)],'-g',[T14(1,4), 
T18(1,4)],[T14(2,4), T18(2,4)],[T14(3,4),T18(3,4)],'-g',[T15(1,4), T19(1,4)],[T15(2,4), 
T19(2,4)],[T15(3,4),T19(3,4)],'-g','LineWidth',3); 
  
    % Plots of points of interest on the system: 
    initial=plot3(Ti(1,4),Ti(2,4),Ti(3,4),'-co','LineWidth',5); 
    desired=plot3(Td(1,4),Td(2,4),Td(3,4),'-ro','LineWidth',5); 
    hand=plot3(T7(1,4),T7(2,4),T7(3,4),'-yo','LineWidth',5); 
    arm_base=plot3(Towc(1,4),Towc(2,4),Towc(3,4),'-mo','LineWidth',5); 
    ground=plot3(0,0,0,'-ko','LineWidth',5); 
  
    % Plots of the x-y-z local coordinate lines of the points of interest on the system: 
    initialco=plot3([Ti(1,4), Ti(1,4)+100*Ti(1,1)],[Ti(2,4), 
Ti(2,4)+100*Ti(2,1)],[Ti(3,4),Ti(3,4)+100*Ti(3,1)],'-r',[Ti(1,4), 
Ti(1,4)+100*Ti(1,2)],[Ti(2,4), Ti(2,4)+100*Ti(2,2)],[Ti(3,4),Ti(3,4)+100*Ti(3,2)],'-
g',[Ti(1,4), Ti(1,4)+100*Ti(1,3)],[Ti(2,4), Ti(2,4)+100*Ti(2,3)],[Ti(3,4), 
Ti(3,4)+100*Ti(3,3)],'-b','LineWidth',1); 
    desiredco=plot3([Td(1,4), Td(1,4)+100*Td(1,1)],[Td(2,4), 
Td(2,4)+100*Td(2,1)],[Td(3,4),Td(3,4)+100*Td(3,1)],'-r',[Td(1,4), 
Td(1,4)+100*Td(1,2)],[Td(2,4), Td(2,4)+100*Td(2,2)],[Td(3,4),Td(3,4)+100*Td(3,2)],'-
g',[Td(1,4), Td(1,4)+100*Td(1,3)],[Td(2,4), Td(2,4)+100*Td(2,3)],[Td(3,4), 
Td(3,4)+100*Td(3,3)],'-b','LineWidth',1); 
    handco=plot3([T7(1,4), T7(1,4)+100*T7(1,1)],[T7(2,4), 
T7(2,4)+100*T7(2,1)],[T7(3,4),T7(3,4)+100*T7(3,1)],'-r',[T7(1,4), 
T7(1,4)+100*T7(1,2)],[T7(2,4), T7(2,4)+100*T7(2,2)],[T7(3,4),T7(3,4)+100*T7(3,2)],'-
g',[T7(1,4), T7(1,4)+100*T7(1,3)],[T7(2,4), T7(2,4)+100*T7(2,3)],[T7(3,4), 
T7(3,4)+100*T7(3,3)],'-b','LineWidth',1); 
    arm_baseco=plot3([Towc(1,4), Towc(1,4)+100*Towc(1,1)],[Towc(2,4), 
Towc(2,4)+100*Towc(2,1)],[Towc(3,4),Towc(3,4)+100*Towc(3,1)],'-r',[Towc(1,4), 
Towc(1,4)+100*Towc(1,2)],[Towc(2,4), 
Towc(2,4)+100*Towc(2,2)],[Towc(3,4),Towc(3,4)+100*Towc(3,2)],'-g',[Towc(1,4), 
Towc(1,4)+100*Towc(1,3)],[Towc(2,4), Towc(2,4)+100*Towc(2,3)],[Towc(3,4), 
Towc(3,4)+100*Towc(3,3)],'-b','LineWidth',1); 
    groundco=plot3([100,0],[0,0],[0,0],'-r',[0,0],[100,0],[0,0],'-
g',[0,0],[0,0],[100,0],'-b','LineWidth',1); 
  
    % Specifying plot properties: 
    view(40,15); 
    axis([-800 500 -500  800 0 1300]); grid on; 
    title('WMRA Animation'); xlabel('x, (mm)'); ylabel('y (mm)'); zlabel('z (mm)'); 
legend([arm(1), arm(2), wheelchairl(5), wheelchairl(1), initial(1), desired(1), hand(1), 
arm_base(1), ground(1), initialco(1), initialco(2), initialco(3)],'ROBOTIC -
','ARM','wheelaxle','wheelchair','initial position','desired position','current 
position','arm base position','ground position','local x-axis','local y-axis','local z-
axis',-1); 
    hold off; 
     
% Closing the animation plot: 
elseif i==3 
    close (figure(11)); 
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% Updating the animation plot: 
else 
  
    % Arm: 
    T1=Towc*T01; 
    T2=T1*T12; 
    T3=T2*T23; 
    T4=T3*T34; 
    T5=T4*T45; 
    T6=T5*T56; 
    T7=T6*T67; 
  
    % Wheelchair: 
    T8=Towc;                                      % Arm Base Position. 
    T9=T8*WMRA_transl(-L(2),-L(3),-L(4));         % Wheelbase Center. 
    T10=T9*WMRA_transl(0,-L(1)/2,0);              % Right Wheel Center. 
    T11=T9*WMRA_transl(0,L(1)/2,0);               % Left Wheel Center. 
    % Lower Platform Corners: 
    T12=T9*WMRA_transl(-200,-L(1)/2,0);           % Rear Right Wheelchair Corner. 
    T13=T9*WMRA_transl(-200,L(1)/2,0);            % Rear Left Wheelchair Corner. 
    T14=T9*WMRA_transl(L(2)+200,L(1)/2,0);        % Front Left Wheelchair Corner. 
    T15=T9*WMRA_transl(L(2)+200,-L(1)/2,0);       % Front Right Wheelchair Corner. 
    % Upper Platform Corners: 
    T16=T9*WMRA_transl(-200,-L(1)/2,L(4));        % Rear Right Wheelchair Corner. 
    T17=T9*WMRA_transl(-200,L(1)/2,L(4));         % Rear Left Wheelchair Corner. 
    T18=T9*WMRA_transl(L(2)+200,L(1)/2,L(4));     % Front Left Wheelchair Corner. 
    T19=T9*WMRA_transl(L(2)+200,-L(1)/2,L(4));    % Front Right Wheelchair Corner. 
  
    % Updating Animation Plot: 
  
    % Plots of the Arm and Wheelchair system: 
    set(arm(1),'XData',[T8(1,4), T1(1,4)],'YData',[T8(2,4), 
T1(2,4)],'ZData',[T8(3,4),T1(3,4)]); 
    set(arm(2),'XData',[T1(1,4), T2(1,4)],'YData',[T1(2,4), 
T2(2,4)],'ZData',[T1(3,4),T2(3,4)]); 
    set(arm(3),'XData',[T2(1,4), T3(1,4)],'YData',[T2(2,4), 
T3(2,4)],'ZData',[T2(3,4),T3(3,4)]); 
    set(arm(4),'XData',[T3(1,4), T4(1,4)],'YData',[T3(2,4), 
T4(2,4)],'ZData',[T3(3,4),T4(3,4)]); 
    set(arm(5),'XData',[T4(1,4), T5(1,4)],'YData',[T4(2,4), 
T5(2,4)],'ZData',[T4(3,4),T5(3,4)]); 
    set(arm(6),'XData',[T5(1,4), T6(1,4)],'YData',[T5(2,4), 
T6(2,4)],'ZData',[T5(3,4),T6(3,4)]); 
    set(arm(7),'XData',[T6(1,4), T7(1,4)],'YData',[T6(2,4), 
T7(2,4)],'ZData',[T6(3,4),T7(3,4)]); 
    set(wheelchairl(1),'XData',[T12(1,4), T13(1,4)],'YData',[T12(2,4), 
T13(2,4)],'ZData',[T12(3,4),T13(3,4)]); 
    set(wheelchairl(2),'XData',[T13(1,4), T14(1,4)],'YData',[T13(2,4), 
T14(2,4)],'ZData',[T13(3,4),T14(3,4)]); 
    set(wheelchairl(3),'XData',[T14(1,4), T15(1,4)],'YData',[T14(2,4), 
T15(2,4)],'ZData',[T14(3,4),T15(3,4)]); 
    set(wheelchairl(4),'XData',[T15(1,4), T12(1,4)],'YData',[T15(2,4), 
T12(2,4)],'ZData',[T15(3,4),T12(3,4)]); 
    set(wheelchairl(5),'XData',[T10(1,4), T11(1,4)],'YData',[T10(2,4), 
T11(2,4)],'ZData',[T10(3,4),T11(3,4)]); 
    set(wheelchairu(1),'XData',[T16(1,4), T17(1,4)],'YData',[T16(2,4), 
T17(2,4)],'ZData',[T16(3,4),T17(3,4)]); 
    set(wheelchairu(2),'XData',[T17(1,4), T18(1,4)],'YData',[T17(2,4), 
T18(2,4)],'ZData',[T17(3,4),T18(3,4)]); 
    set(wheelchairu(3),'XData',[T18(1,4), T19(1,4)],'YData',[T18(2,4), 
T19(2,4)],'ZData',[T18(3,4),T19(3,4)]); 
    set(wheelchairu(4),'XData',[T19(1,4), T16(1,4)],'YData',[T19(2,4), 
T16(2,4)],'ZData',[T19(3,4),T16(3,4)]); 
    set(wheelchairc(1),'XData',[T12(1,4), T16(1,4)],'YData',[T12(2,4), 
T16(2,4)],'ZData',[T12(3,4),T16(3,4)]); 
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    set(wheelchairc(2),'XData',[T13(1,4), T17(1,4)],'YData',[T13(2,4), 
T17(2,4)],'ZData',[T13(3,4),T17(3,4)]); 
    set(wheelchairc(3),'XData',[T14(1,4), T18(1,4)],'YData',[T14(2,4), 
T18(2,4)],'ZData',[T14(3,4),T18(3,4)]); 
    set(wheelchairc(4),'XData',[T15(1,4), T19(1,4)],'YData',[T15(2,4), 
T19(2,4)],'ZData',[T15(3,4),T19(3,4)]); 
  
    % Plots of points of interest on the system: 
    set(initial(1),'XData',Ti(1,4),'YData',Ti(2,4),'ZData',Ti(3,4)); 
    set(desired(1),'XData',Td(1,4),'YData',Td(2,4),'ZData',Td(3,4)); 
    set(hand(1),'XData',T7(1,4),'YData',T7(2,4),'ZData',T7(3,4)); 
    set(arm_base(1),'XData',Towc(1,4),'YData',Towc(2,4),'ZData',Towc(3,4)); 
  
    % Plots of the x-y-z local coordinate lines of the points of interest on the system: 
    set(initialco(1),'XData',[Ti(1,4), Ti(1,4)+100*Ti(1,1)],'YData',[Ti(2,4), 
Ti(2,4)+100*Ti(2,1)],'ZData',[Ti(3,4),Ti(3,4)+100*Ti(3,1)]); 
    set(initialco(2),'XData',[Ti(1,4), Ti(1,4)+100*Ti(1,2)],'YData',[Ti(2,4), 
Ti(2,4)+100*Ti(2,2)],'ZData',[Ti(3,4),Ti(3,4)+100*Ti(3,2)]); 
    set(initialco(3),'XData',[Ti(1,4), Ti(1,4)+100*Ti(1,3)],'YData',[Ti(2,4), 
Ti(2,4)+100*Ti(2,3)],'ZData',[Ti(3,4),Ti(3,4)+100*Ti(3,3)]); 
    set(desiredco(1),'XData',[Td(1,4), Td(1,4)+100*Td(1,1)],'YData',[Td(2,4), 
Td(2,4)+100*Td(2,1)],'ZData',[Td(3,4),Td(3,4)+100*Td(3,1)]); 
    set(desiredco(2),'XData',[Td(1,4), Td(1,4)+100*Td(1,2)],'YData',[Td(2,4), 
Td(2,4)+100*Td(2,2)],'ZData',[Td(3,4),Td(3,4)+100*Td(3,2)]); 
    set(desiredco(3),'XData',[Td(1,4), Td(1,4)+100*Td(1,3)],'YData',[Td(2,4), 
Td(2,4)+100*Td(2,3)],'ZData',[Td(3,4),Td(3,4)+100*Td(3,3)]); 
    set(handco(1),'XData',[T7(1,4), T7(1,4)+100*T7(1,1)],'YData',[T7(2,4), 
T7(2,4)+100*T7(2,1)],'ZData',[T7(3,4),T7(3,4)+100*T7(3,1)]); 
    set(handco(2),'XData',[T7(1,4), T7(1,4)+100*T7(1,2)],'YData',[T7(2,4), 
T7(2,4)+100*T7(2,2)],'ZData',[T7(3,4),T7(3,4)+100*T7(3,2)]); 
    set(handco(3),'XData',[T7(1,4), T7(1,4)+100*T7(1,3)],'YData',[T7(2,4), 
T7(2,4)+100*T7(2,3)],'ZData',[T7(3,4),T7(3,4)+100*T7(3,3)]); 
    set(arm_baseco(1),'XData',[Towc(1,4), Towc(1,4)+100*Towc(1,1)],'YData',[Towc(2,4), 
Towc(2,4)+100*Towc(2,1)],'ZData',[Towc(3,4),Towc(3,4)+100*Towc(3,1)]); 
    set(arm_baseco(2),'XData',[Towc(1,4), Towc(1,4)+100*Towc(1,2)],'YData',[Towc(2,4), 
Towc(2,4)+100*Towc(2,2)],'ZData',[Towc(3,4),Towc(3,4)+100*Towc(3,2)]); 
    set(arm_baseco(3),'XData',[Towc(1,4), Towc(1,4)+100*Towc(1,3)],'YData',[Towc(2,4), 
Towc(2,4)+100*Towc(2,3)],'ZData',[Towc(3,4),Towc(3,4)+100*Towc(3,3)]); 
  
end 
 
 
% This function is for the resolved rate and optimization solution of the USF WMRA with 9 
DOF. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [dq]=WMRA_Opt(i, JLA, JLO, Jo, detJo, dq, dx, dt, q) 
  
% Declaring a global variable: 
global dHo 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% The case when wheelchair-only control is required with no arm motion: 
if i==0 
    WCA=3; 
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    % claculating the Inverse of the Jacobian, which is always non-singular: 
    pinvJo=inv(Jo(1:2,1:2)); 
    % calculating the joint angle change: 
    % Here, dq of the wheels are translated from radians to distances travelled after 
using the Jacobian. 
    dq=pinvJo*dx; 
    dq(1)=dq(1)*L(5); 
else 
    % Reading the physical joint limits of the arm: 
    [qmin,qmax]=WMRA_Jlimit; 
    % Creating the gradient of the optimization function to avoid joint limits: 
    dH=[0;0;0;0;0;0;0]; 
    if JLA==1 
        for j=1:7 
            dH(j)=-0.25*(qmax(j)-qmin(j))^2*(2*q(j)-qmax(j)-qmin(j))/((qmax(j)-
q(j))^2*(q(j)-qmin(j))^2); 
            % Re-defining the weight in case the joint is moving away from it's limit or 
the joint limit was exceeded: 
            if abs(dH(j)) < abs(dHo(j)) && q(j) < qmax(j) && q(j) > qmin(j) 
                dH(j)=0;  
            elseif abs(dH(j)) < abs(dHo(j)) && (q(j) >= qmax(j) || q(j) <= qmin(j)) 
                dH(j)=inf; 
            elseif abs(dH(j)) > abs(dHo(j)) && (q(j) >= qmax(j) || q(j) <= qmin(j)) 
                dH(j)=0; 
            end 
        end 
    end 
    dHo=dH; 
% The case when arm-only control is required with no wheelchair motion: 
    if max(size(dq))==7 
        WCA=2; 
        wo=20000000; 
        ko=350000; 
        % The weight matrix to be used for the Weighted Least Norm Solution with Joint 
Limit Avoidance: 
        W=diag(1*[1;1;1;1;1;1;1]+1*abs(dH)); 
        % The inverse of the diagonal weight matrix: 
        dia=diag(W); 
        Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 1/dia(6); 
1/dia(7)]); 
% The case when wheelchair-and-arm control is required: 
    else 
        WCA=1; 
        wo=34000000; 
        ko=13; 
        % The weight matrix to be used for the Weighted Least Norm Solution: 
        W=diag([1*[1;1;1;1;1;1;1]+1*abs(dH);10*[1;1]]); 
        % The inverse of the diagonal weight matrix: 
        dia=diag(W); 
        Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 1/dia(6); 1/dia(7); 
1/dia(8); 1/dia(9)]); 
    end 
    % Redefining the determinant based on the weight: 
    if i==1 || i==2 
        detJo=sqrt(det(Jo*Winv*Jo')); 
    end 
    dof=max(size(dx)); 
end 
  
% SR-Inverse and Weighted Least Norm Optimization: 
if i==1 
    % Calculating the variable scale factor, sf: 
    if detJo<wo 
        sf=ko*(1-detJo/wo)^2;        % from eq. 9.79 page 268 of Nakamura's book. 
    else 
        sf=0; 
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    end 
    % claculating the SR-Inverse of the Jacobian: 
    pinvJo=Winv*Jo'*inv(Jo*Winv*Jo'+sf*eye(dof)); 
    % calculating the joint angle change optimized based on the Weighted Least Norm 
Solution: 
    % Here, dq of the wheels are translated from radians to distances travelled after 
using the Jacobian. 
    if WCA==2 
        dq=pinvJo*dx; 
    else 
        dq=pinvJo*dx; 
        dq(8)=dq(8)*L(5); 
    end 
     
% Pseudo Inverse and Weighted Least Norm Optimization: 
elseif i==2 
    % claculating the Pseudo Inverse of the Jacobian: 
    pinvJo=Winv*Jo'*inv(Jo*Winv*Jo'); 
    % calculating the joint angle change optimized based on the Weighted Least Norm 
Solution: 
    % Here, dq of the wheels are translated from radians to distances travelled after 
using the Jacobian. 
    if WCA==2 
        dq=pinvJo*dx; 
    else 
        dq=pinvJo*dx; 
        dq(8)=dq(8)*L(5); 
    end 
     
% SR-Inverse and Projection Gradient Optimization based on Euclidean norm of errors: 
elseif i==3 
    % Calculating the variable scale factor, sf: 
    if detJo<wo 
        sf=ko*(1-detJo/wo)^2;        % from eq. 9.79 page 268 of Nakamura's book. 
    else 
        sf=0; 
    end 
    % claculating the SR-Inverse of the Jacobian: 
    pinvJo=Jo'*inv(Jo*Jo'+sf*eye(dof)); 
    % calculating the joint angle change optimized based on minimizing the Euclidean norm 
of errors: 
    % Here, dq of the wheels are translated from distances travelled to radians, and back 
after using the Jacobian. 
    if WCA==2 
        %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH; 
    else 
        %dq(8)=dq(8)/L(5); 
        %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0]; 
        dq(8)=dq(8)*L(5); 
    end 
     
% Pseudo Inverse and Projection Gradient Optimization based on Euclidean norm of errors: 
elseif i==4     
    % claculating the Pseudo Inverse of the Jacobian: 
    pinvJo=Jo'*inv(Jo*Jo'); 
    % calculating the joint angle change optimized based on minimizing the Euclidean norm 
of errors: 
    % Here, dq of the wheels are translated from distances travelled to radians, and back 
after using the Jacobian. 
    if WCA==2 
        %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH; 
    else 
        %dq(8)=dq(8)/L(5); 
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        %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0]; 
        dq(8)=dq(8)*L(5); 
    end 
end 
  
if JLO==1 
    % A safety condition to stop the joint that reaches the joint limits in the arm: 
    if WCA~=3 
        for k=1:7 
            if q(k) >= qmax(k) || q(k) <= qmin(k) 
                dq(k)=0; 
            end 
        end 
    end 
    % A safety condition to slow the joint that exceeds the velocity limits in the WMRA: 
    if WCA==3 
        dqmax=dt*[100;0.15]; % Joiny velocity limits when the time increment is dt 
second. 
    else 
        dqmax=dt*[0.5;0.5;0.5;0.5;0.5;0.5;0.5;100;0.15]; % Joiny velocity limits when the 
time increment is dt second. 
    end 
    for k=1:max(size(dq)) 
        if abs(dq(k)) >= dqmax(k) 
            dq(k)=sign(dq(k))*dqmax(k); 
        end 
    end 
end 
 
 
% This function gives the Transformation Matrix of the WMRA's base on the wheelchair with 
2 DOF, given the desired x,y position and z rotation angle. 
% Dimentions are as supplies, angles are in radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [T]=WMRA_p2T(x, y, a) 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% Defining the Transformation Matrix: 
T=[cos(a) -sin(a) 0 x ; sin(a) cos(a) 0 y ; 0 0 1 L(4)+L(5) ; 0 0 0 1]; 
 
 
% This "new USF WMRA" function SIMULATES the arm going from the parking position to the 
ready position with ANIMATION. All angles are in Radians. 
% The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), 
% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians). 
% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_park2ready(ini, vr, ml, arm, Tiwc, qiwc) 
  
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and 
Plots windows: 
if ini==3 
    if arm==1 
        try 
            WMRA_ARM_Motion(ini, 0, 0, 0); 
        end 
    end 
    if vr==1 
        try 
            WMRA_VR_Animation(ini, 0, 0); 
        end 
    end 
    if ml==1 
        try 
            WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
    return; 
end 
  
% Defining the used conditions: 
qi=[0;pi/2;0;pi;0;0;0];  % Initial joint angles (Parking Position). 
qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0];   % Final joint angles (Ready Position). 
ts=10;       % (5 or 10 or 20) Simulation time to move the arm from the parking position 
to the ready position. 
n=100;      % Number of time steps. 
dt=ts/n;    % The time step to move the arm from the parking position to the ready 
position. 
dq=(qd-qi)/(0.5*n+5);  % Joint angle change at every time step. 
  
% Initializing the physical Arm: 
if arm==1 
    WMRA_ARM_Motion(ini, 2, [qi;qiwc;0], dt); 
    ddt=0; 
end 
  
% Initializing Virtual Reality Animation: 
if vr==1 
    WMRA_VR_Animation(ini, Tiwc, [qi;qiwc]); 
end 
  
% Initializing Robot Animation in Matlab Graphics: 
if ml==1     
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(qi); 
     
    % Calculating the transformation matrices of each link: 
    
T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3
)); 
    
T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3
)); 
    
T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3
)); 
    
T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3
)); 
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T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3
)); 
    
T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3
)); 
    
T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3
)); 
    % Calculating the Transformation Matrix of the initial and desired arm positions: 
    Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
    Td=Tiwc*WMRA_q2T(qd); 
    WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
end 
  
% Initialization: 
qo=qi; 
tt=0; 
  
while tt <= (ts) 
    % Starting a timer: 
    tic; 
                 
    % Calculating the new Joint Angles: 
    if tt==0 
        qn=qo; 
    elseif tt < (dt*(0.5*n-5)) 
        qn(1)=qo(1)+dq(1); 
    elseif tt < (dt*(0.5*n+5)) 
        qn=qo+dq; 
    elseif tt < (dt*(n-1)) 
        qn(2:7)=qo(2:7)+dq(2:7); 
    end 
  
    % Updating the physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || tt>=(ts) 
            WMRA_ARM_Motion(2, 1, [qn;qiwc;0], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tiwc, [qn;qiwc]); 
    end 
     
    % Updating Matlab Animation: 
    if ml==1 
        % Calculating the new Transformation Matrix: 
        
T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_transl(0,0,DH(1,3))
; 
        
T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_transl(0,0,DH(2,3))
; 
        
T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_transl(0,0,DH(3,3))
; 
        
T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_transl(0,0,DH(4,3))
; 
        
T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_transl(0,0,DH(5,3))
; 
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T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_transl(0,0,DH(6,3))
; 
        
T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_transl(0,0,DH(7,3))
; 
        WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
    end 
  
    % Updating the old values with the new values for the next iteration: 
    qo=qn; 
    tt=tt+dt; 
  
    % Pausing for the speed sync: 
    pause(dt-toc); 
     
end 
 
 
% This function plots different animation variables for USF WMRA with 9 DOF. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_Plots(st, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detjoa, detjo) 
  
% Declaring the global variables: 
global time q1 q2 q3 q4 q5 q6 q7 qll qrr 
global qd1 qd2 qd3 qd4 qd5 qd6 qd7 qdl qdr 
global x y z roll pitch yaw xc yc zc rollc pitchc yawc detJoa detJo 
  
% Data collection at every iteration: 
if st==1 
     
    % Generating a time vector for plotting: 
    time(i)=tt; 
    % Joint Angles: 
    q1(i)=qn(1)*r2d; 
    q2(i)=qn(2)*r2d; 
    q3(i)=qn(3)*r2d; 
    q4(i)=qn(4)*r2d; 
    q5(i)=qn(5)*r2d; 
    q6(i)=qn(6)*r2d; 
    q7(i)=qn(7)*r2d; 
    qll(i)=qn(8)-L(1)*qn(9)/2; 
    qrr(i)=qn(8)+L(1)*qn(9)/2; 
    % Joint Velocities: 
    qd1(i)=r2d*dq(1)/dt; 
    qd2(i)=r2d*dq(2)/dt; 
    qd3(i)=r2d*dq(3)/dt; 
    qd4(i)=r2d*dq(4)/dt; 
    qd5(i)=r2d*dq(5)/dt; 
    qd6(i)=r2d*dq(6)/dt; 
    qd7(i)=r2d*dq(7)/dt; 
    qdl(i)=(dq(8)-L(1)*dq(9)/2)/dt; 
    qdr(i)=(dq(8)+L(1)*dq(9)/2)/dt; 
    % Hand Position and Orientation: 
    x(i)=Tn(1,4); 
    y(i)=Tn(2,4); 
    z(i)=Tn(3,4); 
    or=WMRA_T2rpy(Tn); 
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    roll(i)=or(1)*r2d; 
    pitch(i)=or(2)*r2d; 
    yaw(i)=or(3)*r2d; 
    % Arm Base Position and Orientation on the Wheelchair: 
    xc(i)=Tnwc(1,4); 
    yc(i)=Tnwc(2,4); 
    zc(i)=Tnwc(3,4); 
    orc=WMRA_T2rpy(Tnwc); 
    rollc(i)=orc(1)*r2d; 
    pitchc(i)=orc(2)*r2d; 
    yawc(i)=orc(3)*r2d; 
    % Manipulability Measure: 
    detJoa(i)=detjoa; 
    detJo(i)=detjo; 
     
% Plotting the data in graphas: 
else 
     
    figure(2); 
    plot(time,qd1,'-y',time,qd2,'-m',time,qd3,'-c',time,qd4,'-r',time,qd5,'-
g',time,qd6,'-b',time,qd7,'-k'); 
    grid on; title('Joint Angular Velocities vs Time');xlabel('time, 
(sec)');ylabel('joint velocoties, 
(deg/s)');legend('\theta_1d','\theta_2d','\theta_3d','\theta_4d','\theta_5d','\theta_6d',
'\theta_7d',-1);  
  
    figure(3); 
    plot(time,qdl,'-b',time,qdr,'-g'); 
    grid on; title('Wheels Track Velocities vs Time');xlabel('time, 
(sec)');ylabel('wheels track velocoties, (mm/s)');legend('\theta_Ld','\theta_Rd',-1);  
  
    figure(4); 
    plot(time,q1,'-y',time,q2,'-m',time,q3,'-c',time,q4,'-r',time,q5,'-g',time,q6,'-
b',time,q7,'-k'); 
    grid on; title('Joint Angular Displacements vs Time');xlabel('time, 
(sec)');ylabel('joint angles, 
(deg)');legend('\theta_1','\theta_2','\theta_3','\theta_4','\theta_5','\theta_6','\theta_
7',-1);  
  
    figure(5); 
    plot(time,qll,'-b',time,qrr,'-g'); 
    grid on; title('Wheels Track distances vs Time');xlabel('time, (sec)');ylabel('wheels 
track distances, (mm)');legend('\theta_L','\theta_R',-1);  
  
    figure(6); 
    plot(time,x,'-y',time,y,'-m',time,z,'-c'); 
    grid on; title('Hand Position vs Time');xlabel('time, (sec)');ylabel('position, 
(mm)');legend('x','y','z',-1);  
  
    figure(7); 
    plot(time,roll,'-y',time,pitch,'-m',time,yaw,'-c'); 
    grid on; title('Hand Orientation vs Time');xlabel('time, (sec)');ylabel('orientation, 
(deg)');legend('roll','pitch','yaw',-1);  
  
    figure(8); 
    plot(time,xc,'-y',time,yc,'-m',time,zc,'-c'); 
    grid on; title('Arm Base Position vs Time');xlabel('time, (sec)');ylabel('position, 
(mm)');legend('x','y','z',-1);  
  
    figure(9); 
    plot(time,rollc,'-y',time,pitchc,'-m',time,yawc,'-c'); 
    grid on; title('Arm Base Orientation vs Time');xlabel('time, 
(sec)');ylabel('orientation, (deg)');legend('roll','pitch','yaw',-1);  
  
    figure(10); 
    plot(time,detJoa,'-y', time,detJo, '-m'); 
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    grid on; title('Manipulability Measure vs Time');xlabel('time, 
(sec)');ylabel('Manipulability Measure'); legend('W_A_R_M', 'W_W_M_R_A',-1); 
  
end 
 
 
% This function uses a 3rd order Polynomial with no Blending factor to find a smooth 
trajectory points of a variable "q" along a streight line, given the initial and final 
variable values and the number of trajectory points. 
% The output is the variable position. 
% See Eqs. 7.3 and 7.6 page 204,205 of Craig Book 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [qt] = WMRA_Polynomial(qi, qf, n) 
  
tt=0; 
tf=abs((qf-qi)); 
dt=tf/(n-1); 
  
for i=1:n 
    if tf <= 0.001 
        qt(i)=qi; 
    else 
        qt(i)=qi+(qf-qi)*3*tt^2/tf^2-(qf-qi)*2*tt^3/tf^3; % From Eq.7.3 and 7.6 page 
204,205 of Craig Book 
    end 
    tt=tt+dt; 
end 
 
 
% This function reads the BCI 2000 device output through TCP/IP port, 
% extracts the selected row and column of the screen interface out of the sent data from 
the BCI 2000,  
% converts these row and column data to a commanded Cartesian velocities from the BCI 
device 
% and sends it as an output. 
% The optional input to this function is the port number. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% Thanks to Eduardo Veras %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function declaration: 
function dx=WMRA_psy(port1) 
  
% Assigning the port number in case the user did not input it: 
if nargin<1 
    port1=19711; 
end 
  
% Openning the port: 
try 
    udp=pnet('udpsocket',port1); 
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catch 
    pnet(udp,'close'); 
    clear udp; 
end 
  
% Initializing the loop variable: 
i=1; 
  
% Starting the loop: 
while(i<2) 
     
    % Trying to read the data packet from the port: 
    try  
        len=pnet(udp,'readpacket'); 
         
        % Condition to make sure that the data is read: 
        if len>0 
             
            % Reading a data block: 
            data=pnet(udp,'read',36,'uint64','ieee-be','block'); 
             
            % Condition to make sure that the read data is not blank: 
            if (isempty(data)~=1) 
                 
                % Condition to make sure that the read data is not a blank line: 
                if length(data) > 0 
                     
                    % Finding the string 'SelectedRow' out of that data line: 
                    k1 = findstr(data, 'SelectedRow'); 
                     
                    % Condition in case the required string is found: 
                    if (isempty(k1)~=1) 
                        % The length of the string: 
                        num1 = length(k1); 
                        % Condition to ensure that the string length > 0: 
                        if num1 > 0 
                            % Reading the string that comes right after the selected 
string and converting it to a number: 
                            mrow = str2double(data(13)); 
                        end 
                    end 
                     
                    % Finding the string 'SelectedColumn' out of that data line: 
                    k2 = findstr(data, 'SelectedColumn');   
                     
                    % Condition in case the required string is found: 
                    if (isempty(k2)~=1) 
                        % The length of the string: 
                        num2 = length(k2); 
                        % Condition to ensure that the string length > 0: 
                        if num2 > 0 
                            % Reading the string that comes right after the selected 
string and converting it to a number: 
                            mcol = str2double(data(16)); 
                        end 
                    end 
                     
                    %Modifying the output to the proper format: 
                    rc=[mrow mcol]; 
                     
                    % Assigning the directional velocity vector based on the selected row 
and column from the interface screen: 
                    dx=[0;0;0;0;0;0;0]; 
                    if rc == [1 1] 
                    dx=[0;0;1;0;0;0;0]; 
                    elseif rc == [1 2] 
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                    dx=[1;0;0;0;0;0;0]; 
                    elseif rc == [1 3] 
                    dx=[0;0;0;0;0;0.003;0]; 
                    elseif rc == [1 4] 
                    dx=[0;0;0;0;0.003;0;0]; 
                    elseif rc == [1 5] 
                    dx=[0;0;0;0;0;-0.003;0]; 
                    elseif rc == [2 1] 
                    dx=[0;1;0;0;0;0;0]; 
                    elseif rc == [2 2] 
                    dx=[0;-1;0;0;0;0;0]; 
                    elseif rc == [2 3] 
                    dx=[0;0;0;-0.003;0;0;0]; 
                    elseif rc == [2 4] 
                    dx=[0;0;0;0;-0.003;0;0]; 
                    elseif rc == [2 5] 
                    dx=[0;0;0;0.003;0;0;0]; 
                    elseif rc == [3 1] 
                    dx=[0;0;-1;0;0;0;0]; 
                    elseif rc == [3 2] 
                    dx=[-1;0;0;0;0;0;0]; 
                    elseif rc == [3 3] 
                    dx=[0;0;0;0;0;0;0]; 
                    elseif rc == [3 4] 
                    dx=[0;0;0;0;0;0;1]; 
                    elseif rc == [3 5] 
                    dx=[0;0;0;0;0;0;-1]; 
                    else 
                    fprintf('ERROR'); 
                    end 
                    % dx=dx(1:6); 
                    % Once we get the reading, we can get out of the loop: 
                    i=2; 
  
                end 
            end 
        end 
    catch 
    end 
end 
% Be a good citizen and cleanup your mess: 
pnet(udp,'close'); 
clear udp; 
 
 
% This function gives the Transformation Matrix of the new USF WMRA with 7 DOF, given the 
joint angles in Radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [T]=WMRA_q2T(q) 
  
% Inputting the D-H Parameters in a Matrix form: 
DH=WMRA_DH(q); 
  
% Calculating the transformation matrices of each link: 
T1=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3)
); 
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T2=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3)
); 
T3=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3)
); 
T4=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3)
); 
T5=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3)
); 
T6=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3)
); 
T7=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3)
); 
  
% Calculating the total Transformation Matrix of the given arm position: 
T=T1*T2*T3*T4*T5*T6*T7; 
 
 
% This "new USF WMRA" function SIMULATES the arm going from the ready position to any 
position with ANIMATION. All angles are in Radians. 
% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians). 
% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_ready2any(ini, vr, ml, arm, Tiwc, qd) 
  
% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and 
Plots windows: 
if ini==3 
    if arm==1 
        try 
            WMRA_ARM_Motion(ini, 0, 0, 0); 
        end 
    end 
    if vr==1 
        try 
            WMRA_VR_Animation(ini, 0, 0); 
        end 
    end 
    if ml==1 
        try 
            WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
    return; 
end 
  
% Defining the used conditions: 
qi=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0];   % Initial joint angles (Ready Position). 
ts=10;       % (5 or 10 or 20) Simulation time to move the arm from the ready position to 
any position. 
n=100;      % Number of time steps. 
dt=ts/n;    % The time step to move the arm from the ready position to any position. 
  
% Initializing the physical Arm: 
if arm==1 
    WMRA_ARM_Motion(ini, 2, [qi;0;0;0], dt); 
    ddt=0; 
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end 
  
% Initializing Virtual Reality Animation: 
if vr==1 
    WMRA_VR_Animation(ini, Tiwc, [qi;0;0]); 
end 
  
% Initializing Robot Animation in Matlab Graphics: 
if ml==1     
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(qi); 
     
    % Calculating the transformation matrices of each link: 
    
T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3
)); 
    
T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3
)); 
    
T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3
)); 
    
T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3
)); 
    
T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3
)); 
    
T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3
)); 
    
T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3
)); 
    % Calculating the Transformation Matrix of the initial and desired arm positions: 
    Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
    Td=Tiwc*WMRA_q2T(qd); 
    WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
end 
  
% Check for the shortest route: 
diff=qd-qi; 
for i=1:7 
    if diff(i) > pi 
        diff(i)=diff(i)-2*pi; 
    elseif diff(i) < (-pi) 
        diff(i)=diff(i)+2*pi; 
    end 
end 
  
% Joint angle change at every time step. 
dq=diff/n;    
  
% Initialization: 
qo=qi; 
tt=0; 
  
while tt <= (ts-dt) 
    % Starting a timer: 
    tic; 
                 
    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Updating the physical Arm: 
    if arm==1 
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        ddt=ddt+dt; 
        if ddt>=0.5 || tt>=(ts-dt) 
            WMRA_ARM_Motion(2, 1, [qn;0;0;0], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tiwc, [qn;0;0]); 
    end 
     
    % Updating Matlab Animation: 
    if ml==1 
        % Calculating the new Transformation Matrix: 
        
T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_transl(0,0,DH(1,3))
; 
        
T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_transl(0,0,DH(2,3))
; 
        
T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_transl(0,0,DH(3,3))
; 
        
T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_transl(0,0,DH(4,3))
; 
        
T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_transl(0,0,DH(5,3))
; 
        
T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_transl(0,0,DH(6,3))
; 
        
T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_transl(0,0,DH(7,3))
; 
        WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
    end 
  
    % Updating the old values with the new values for the next iteration: 
    qo=qn; 
    tt=tt+dt; 
  
    % Pausing for the speed sync: 
    pause(dt-toc); 
     
end 
 
 
% This "new USF WMRA" function SIMULATES the arm going from the ready position to the 
parking position with ANIMATION. All angles are in Radians. 
% The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), 
% the ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians). 
% ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_ready2park(ini, vr, ml, arm, Tiwc, qiwc) 
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% Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation and 
Plots windows: 
if ini==3 
    if arm==1 
        try 
            WMRA_ARM_Motion(ini, 0, 0, 0); 
        end 
    end 
    if vr==1 
        try 
            WMRA_VR_Animation(ini, 0, 0); 
        end 
    end 
    if ml==1 
        try 
            WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
    return; 
end 
  
% Defining the used conditions: 
qi=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0];  % Initial joint angles (Ready Position). 
qd=[0;pi/2;0;pi;0;0;0];   % Final joint angles (Parking Position). 
ts=10;       % (5 or 10 or 20) Simulation time to move the arm from the ready position to 
the parking position. 
n=100;      % Number of time steps. 
dt=ts/n;    % The time step to move the arm from the parking position to the ready 
position. 
dq=(qd-qi)/(0.5*n+5);  % Joint angle change at every time step. 
  
% Initializing the physical Arm: 
if arm==1 
    WMRA_ARM_Motion(ini, 2, [qi;qiwc;0], dt); 
    ddt=0; 
end 
  
% Initializing Virtual Reality Animation: 
if vr==1 
    WMRA_VR_Animation(ini, Tiwc, [qi;qiwc]); 
end 
  
% Initializing Robot Animation in Matlab Graphics: 
if ml==1     
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(qi); 
     
    % Calculating the transformation matrices of each link: 
    
T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3
)); 
    
T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3
)); 
    
T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3
)); 
    
T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3
)); 
    
T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3
)); 
    
T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3
)); 
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T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3
)); 
    % Calculating the Transformation Matrix of the initial and desired arm positions: 
    Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
    Td=Tiwc*WMRA_q2T(qd); 
    WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
end 
  
% Initialization: 
qo=qi; 
tt=0; 
  
while tt <= (ts) 
    % Starting a timer: 
    tic; 
     
    % Calculating the new Joint Angles: 
    if tt==0 
        qn=qo; 
    elseif tt < (dt*(0.5*n-5)) 
        qn(2:7)=qo(2:7)+dq(2:7); 
    elseif tt < (dt*(0.5*n+5)) 
        qn=qo+dq; 
    elseif tt < (dt*(n-1)) 
        qn(1)=qo(1)+dq(1); 
    end 
     
    % Updating the physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || tt>=(ts) 
            WMRA_ARM_Motion(2, 1, [qn;qiwc;0], ddt); 
            ddt=0; 
        end 
    end 
     
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tiwc, [qn;qiwc]); 
    end 
     
    % Updating Matlab Animation: 
    if ml==1 
        % Calculating the new Transformation Matrix: 
        
T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_transl(0,0,DH(1,3))
; 
        
T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_transl(0,0,DH(2,3))
; 
        
T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_transl(0,0,DH(3,3))
; 
        
T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_transl(0,0,DH(4,3))
; 
        
T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_transl(0,0,DH(5,3))
; 
        
T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_transl(0,0,DH(6,3))
; 
        
T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_transl(0,0,DH(7,3))
; 
        WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
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    end 
     
    % Updating the old values with the new values for the next iteration: 
    qo=qn; 
    tt=tt+dt; 
  
    % Pausing for the speed sync: 
    pause(dt-toc); 
     
end 
 
 
% This function gives the homogeneous transformation matrix, given the rotation angle 
about the X axis. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [T]=WMRA_rotx(t) 
  
c=cos(t); 
s=sin(t); 
T=[1 0 0 0 ; 0 c -s 0 ; 0 s c 0 ; 0 0 0 1]; 
 
 
% This function gives the homogeneous transformation matrix, given the rotation angle 
about the Z axis. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [T]=WMRA_roty(t) 
  
c=cos(t); 
s=sin(t); 
T=[c 0 s 0 ; 0 1 0 0 ; -s 0 c 0 ; 0 0 0 1]; 
 
 
% This function gives the homogeneous transformation matrix, given the rotation angle 
about the Z axis. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [T]=WMRA_rotz(t) 
  
c=cos(t); 
s=sin(t); 
T=[c -s 0 0 ; s c 0 0 ; 0 0 1 0 ; 0 0 0 1]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thanks to Mayur Palankar %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = WMRA_screen(varargin) 
% WMRA_SCREEN M-file for WMRA_screen.fig 
%      WMRA_SCREEN, by itself, creates a new WMRA_SCREEN or raises the existing 
%      singleton*. 
% 
%      H = WMRA_SCREEN returns the handle to a new WMRA_SCREEN or the 
%      handle to 
%      the existing singleton*. 
% 
%      WMRA_SCREEN('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in WMRA_SCREEN.M with the given input arguments. 
% 
%      WMRA_SCREEN('Property','Value',...) creates a new WMRA_SCREEN or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before WMRA_screen_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to WMRA_screen_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help WMRA_screen 
  
% Last Modified by GUIDE v2.5 04-Mar-2007 20:56:51 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @WMRA_screen_OpeningFcn, ... 
                   'gui_OutputFcn',  @WMRA_screen_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
% --- Executes just before WMRA_screen is made visible. 
function WMRA_screen_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to WMRA_screen (see VARARGIN) 
  
% Choose default command line output for WMRA_screen 
handles.output = hObject; 
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% Update handles structure 
guidata(hObject, handles); 
  
global VAR_DX 
global VAR_SCREENOPN 
  
VAR_DX=[0;0;0;0;0;0;0]; 
VAR_SCREENOPN = 1; 
  
if (varargin{1} == '1') 
    set(handles.pushbutton1,'Enable','on'); 
else 
    set(handles.pushbutton1,'Enable','off'); 
end 
  
set(handles.togglebutton2,'cdata',button11); 
set(handles.togglebutton3,'cdata',button12); 
set(handles.togglebutton8,'cdata',button13); 
set(handles.togglebutton9,'cdata',button14); 
set(handles.togglebutton15,'cdata',button15); 
set(handles.togglebutton4,'cdata',button21); 
set(handles.togglebutton5,'cdata',button22); 
set(handles.togglebutton10,'cdata',button23); 
set(handles.togglebutton11,'cdata',button24); 
set(handles.togglebutton16,'cdata',button25); 
set(handles.togglebutton6,'cdata',button31); 
set(handles.togglebutton7,'cdata',button32); 
set(handles.pushbutton37,'cdata',button33); 
set(handles.togglebutton13,'cdata',button34); 
set(handles.togglebutton14,'cdata',button35); 
  
% UIWAIT makes WMRA_screen wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
function play = button11 
play = iconize(imread('11.jpg')); 
function play = button12 
play = iconize(imread('12.jpg')); 
function play = button13 
play = iconize(imread('13.jpg')); 
function play = button14 
play = iconize(imread('14.jpg')); 
function play = button15 
play = iconize(imread('15.jpg')); 
function play = button21 
play = iconize(imread('21.jpg')); 
function play = button22 
play = iconize(imread('22.jpg')); 
function play = button23 
play = iconize(imread('23.jpg')); 
function play = button24 
play = iconize(imread('24.jpg')); 
function play = button25 
play = iconize(imread('25.jpg')); 
function play = button31 
play = iconize(imread('31.jpg')); 
function play = button32 
play = iconize(imread('32.jpg')); 
function play = button33 
play = iconize(imread('33.jpg')); 
function play = button34 
play = iconize(imread('34.jpg')); 
function play = button35 
play = iconize(imread('35.jpg')); 
  
function out = iconize(a) 



www.manaraa.com

Appendix B. (Continued) 
 

 338

[r,c,d] = size(a); 
r_skip = ceil(r/70); 
c_skip = ceil(c/70); 
out = a(1:r_skip:end,1:c_skip:end,:); 
  
% --- Outputs from this function are returned to the command line. 
function varargout = WMRA_screen_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
WMRA_Main_GUI; 
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_SCREENOPN 
VAR_SCREENOPN = 0; 
close; 
  
% --- Executes on button press in togglebutton2. 
function togglebutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 1 1 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton6,'Enable','off'); 
    VAR_DX(3) = 1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton6,'Enable','on'); 
    VAR_DX(3) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton2 
  
% --- Executes on button press in togglebutton3. 
function togglebutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 1 2 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton7,'Enable','off'); 
    VAR_DX(1) = 1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton7,'Enable','on'); 
    VAR_DX(1) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton3 
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% --- Executes on button press in togglebutton8. 
function togglebutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 1 3 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton15,'Enable','off'); 
    VAR_DX(6) = 0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton15,'Enable','on'); 
    VAR_DX(6) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton8 
  
% --- Executes on button press in togglebutton9. 
function togglebutton9_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 1 4 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton11,'Enable','off'); 
    VAR_DX(5) = 0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton11,'Enable','on'); 
    VAR_DX(5) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton9 
  
% --- Executes on button press in togglebutton15. 
function togglebutton15_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 1 5 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton8,'Enable','off'); 
    VAR_DX(6) = -0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton8,'Enable','on'); 
    VAR_DX(6) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton15 
  
% --- Executes on button press in togglebutton4. 
function togglebutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 2 1 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton5,'Enable','off'); 
    VAR_DX(2) = 1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
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    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton5,'Enable','on'); 
    VAR_DX(2) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton4 
  
% --- Executes on button press in togglebutton5. 
function togglebutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 2 2 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton4,'Enable','off'); 
    VAR_DX(2) = -1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton4,'Enable','on'); 
    VAR_DX(2) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton5 
  
% --- Executes on button press in togglebutton10. 
function togglebutton10_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 2 3 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton16,'Enable','off'); 
    VAR_DX(4) = -0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton16,'Enable','on'); 
    VAR_DX(4) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton10 
  
% --- Executes on button press in togglebutton11. 
function togglebutton11_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 2 4 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton9,'Enable','off'); 
    VAR_DX(5) = -0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton9,'Enable','on'); 
    VAR_DX(5) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton11 
  
% --- Executes on button press in togglebutton16. 
function togglebutton16_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
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% 2 5 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton10,'Enable','off'); 
    VAR_DX(4) = 0.003; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton10,'Enable','on'); 
    VAR_DX(4) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton16 
  
% --- Executes on button press in togglebutton6. 
function togglebutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 3 1 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton2,'Enable','off'); 
    VAR_DX(3) = -1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton2,'Enable','on'); 
    VAR_DX(3) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton6 
  
% --- Executes on button press in togglebutton7. 
function togglebutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 3 2 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton3,'Enable','off'); 
    VAR_DX(1) = -1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton3,'Enable','on'); 
    VAR_DX(1) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton7 
  
% --- Executes on button press in pushbutton37. 
function pushbutton37_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton37 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 3 3 
dx = [0;0;0;0;0;0;0]; 
% dx=dx(1:6);Redwan. 
VAR_DX = dx; 
  
set(handles.togglebutton2, 'BackgroundColor', 'white'); 
set(handles.togglebutton3, 'BackgroundColor', 'white'); 
set(handles.togglebutton8, 'BackgroundColor', 'white'); 
set(handles.togglebutton9, 'BackgroundColor', 'white'); 
set(handles.togglebutton15, 'BackgroundColor', 'white'); 
  
set(handles.togglebutton4, 'BackgroundColor', 'white'); 
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set(handles.togglebutton5, 'BackgroundColor', 'white'); 
set(handles.togglebutton10, 'BackgroundColor', 'white'); 
set(handles.togglebutton11, 'BackgroundColor', 'white'); 
set(handles.togglebutton16, 'BackgroundColor', 'white'); 
  
set(handles.togglebutton6, 'BackgroundColor', 'white'); 
set(handles.togglebutton7, 'BackgroundColor', 'white'); 
set(handles.togglebutton13, 'BackgroundColor', 'white'); 
set(handles.togglebutton14, 'BackgroundColor', 'white'); 
  
set(handles.togglebutton2, 'Value', 0); 
set(handles.togglebutton3, 'Value', 0); 
set(handles.togglebutton8, 'Value', 0); 
set(handles.togglebutton9, 'Value', 0); 
set(handles.togglebutton15, 'Value', 0); 
  
set(handles.togglebutton4, 'Value', 0); 
set(handles.togglebutton5, 'Value', 0); 
set(handles.togglebutton10, 'Value', 0); 
set(handles.togglebutton11, 'Value', 0); 
set(handles.togglebutton16, 'Value', 0); 
  
set(handles.togglebutton6, 'Value', 0); 
set(handles.togglebutton7, 'Value', 0); 
set(handles.togglebutton13, 'Value', 0); 
set(handles.togglebutton14, 'Value', 0); 
  
set(handles.togglebutton2,'Enable','on'); 
set(handles.togglebutton3,'Enable','on'); 
set(handles.togglebutton8,'Enable','on'); 
set(handles.togglebutton9,'Enable','on'); 
set(handles.togglebutton15,'Enable','on'); 
  
set(handles.togglebutton4,'Enable','on'); 
set(handles.togglebutton5,'Enable','on'); 
set(handles.togglebutton10,'Enable','on'); 
set(handles.togglebutton11,'Enable','on'); 
set(handles.togglebutton16,'Enable','on'); 
  
set(handles.togglebutton6,'Enable','on'); 
set(handles.togglebutton7,'Enable','on'); 
set(handles.togglebutton13,'Enable','on'); 
set(handles.togglebutton14,'Enable','on'); 
  
% --- Executes on button press in togglebutton13. 
function togglebutton13_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 3 4 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton14,'Enable','off'); 
    VAR_DX(7) = 1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton14,'Enable','on'); 
    VAR_DX(7) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton13 
  
% --- Executes on button press in togglebutton14. 
function togglebutton14_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



www.manaraa.com

Appendix B. (Continued) 
 

 343

% handles    structure with handles and user data (see GUIDATA) 
global VAR_DX 
% 3 5 
if (get(hObject,'Value') == get(hObject,'Max')) 
    set(hObject, 'BackgroundColor', 'red'); 
    set(handles.togglebutton13,'Enable','off'); 
    VAR_DX(7) = -1; 
elseif (get(hObject,'Value') == get(hObject,'Min')) 
    set(hObject, 'BackgroundColor', 'white'); 
    set(handles.togglebutton13,'Enable','on'); 
    VAR_DX(7) = 0; 
end 
% Hint: get(hObject,'Value') returns toggle state of togglebutton14 
 
 
% This function gives the Roll, Pitch, Taw angles, given the transformation matrix. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [rpy]=WMRA_T2rpy(T) 
  
rpy = zeros(1,3); 
  
% Making sure there is no singularity: 
if abs(T(1,1))<eps && abs(T(2,1))<eps 
    rpy(1)=0; 
    rpy(2)=atan2(-T(3,1), T(1,1)); 
    rpy(3)=atan2(-T(2,3), T(2,2)); 
else 
    rpy(1)=atan2(T(2,1), T(1,1)); 
    s=sin(rpy(1)); 
    c=cos(rpy(1)); 
    rpy(2)=atan2(-T(3,1), c*T(1,1)+s*T(2,1)); 
    rpy(3)=atan2(s*T(1,3)-c*T(2,3), c*T(2,2)-s*T(1,2)); 
end 
 
 
% This function is for getting the transformations of the USF WMRA with 9 DOF. 
% q is for the 7 joints in radians, and dq is for the wheelchair only in millimeters and 
radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [T, Ta, Twc, T1, T2, T3, T4, T5, T6, T7]=WMRA_Tall(i, q, dq, Twc) 
  
% Declaring the global variables: 
global DH 
  
if i==1 
  
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(q); 
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    % Calculating the transformation matrices of each link: 
    
T1=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA_transl(0,0,DH(1,3)
); 
    
T2=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA_transl(0,0,DH(2,3)
); 
    
T3=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA_transl(0,0,DH(3,3)
); 
    
T4=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA_transl(0,0,DH(4,3)
); 
    
T5=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA_transl(0,0,DH(5,3)
); 
    
T6=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA_transl(0,0,DH(6,3)
); 
    
T7=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA_transl(0,0,DH(7,3)
); 
  
    % Calculating the Transformation Matrix of the initial arm position: 
    Ta=T1*T2*T3*T4*T5*T6*T7; 
  
    % Calculating the Transformation Matrix of the initial WMRA system position: 
    T=Twc*Ta; 
else 
    
T1=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(q(1))*WMRA_transl(0,0,DH(1,3)); 
    
T2=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(q(2))*WMRA_transl(0,0,DH(2,3)); 
    
T3=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(q(3))*WMRA_transl(0,0,DH(3,3)); 
    
T4=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(q(4))*WMRA_transl(0,0,DH(4,3)); 
    
T5=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(q(5))*WMRA_transl(0,0,DH(5,3)); 
    
T6=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(q(6))*WMRA_transl(0,0,DH(6,3)); 
    
T7=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(q(7))*WMRA_transl(0,0,DH(7,3)); 
    Ta=T1*T2*T3*T4*T5*T6*T7; 
    Twc=WMRA_w2T(1, Twc, dq); 
    T=Twc*Ta; 
end 
 
 
% This function finds the trajectory points along a streight line, given the initial and 
final transformations. Single-angle rotation about a single axis is used 
% See Eqs. 1.73-1.103 pages 30-32 of Richard Paul's book " Robot Manipulators" 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function [Tt] = WMRA_traj(ind, Ti, Td, n) 
  
% Finding the rotation of the desired point based on the initial point: 
R=Ti(1:3,1:3)'*Td(1:3,1:3); 
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% Initial single-angle representation of the rotation: 
a=atan2(sqrt((R(3,2)-R(2,3))^2+(R(1,3)-R(3,1))^2+(R(2,1)-R(1,2))^2) , 
(R(1,1)+R(2,2)+R(3,3)-1)); 
s=sin(a); 
c=cos(a); 
v=1-c; 
% Finding the single-vector components for the rotation: 
if a<0.001 
    kx=1; 
    ky=0; 
    kz=0; 
elseif a<pi/2+0.001 
    kx=(R(3,2)-R(2,3))/(2*s); 
    ky=(R(1,3)-R(3,1))/(2*s); 
    kz=(R(2,1)-R(1,2))/(2*s); 
else 
    kx=sign(R(3,2)-R(2,3))*sqrt((R(1,1)-c)/v); 
    ky=sign(R(1,3)-R(3,1))*sqrt((R(2,2)-c)/v); 
    kz=sign(R(2,1)-R(1,2))*sqrt((R(3,3)-c)/v); 
    if kx>ky && kx>kz 
        ky=(R(2,1)+R(1,2))/(2*kx*v); 
        kz=(R(1,3)+R(3,1))/(2*kx*v); 
    elseif ky>kx && ky>kz 
        kx=(R(2,1)+R(1,2))/(2*ky*v); 
        kz=(R(3,2)+R(2,3))/(2*ky*v); 
    else 
        kx=(R(1,3)+R(3,1))/(2*kz*v); 
        ky=(R(3,2)+R(2,3))/(2*kz*v); 
    end 
end 
  
% Running the desired trajectory method:  
% 1 == Polynomial with Blending function, 
% 2 == Polynomial without Blending function, 
% 3 == Linear function. 
if ind == 2 
    at=WMRA_Polynomial(0,a,n); 
    xt=WMRA_Polynomial(Ti(1,4), Td(1,4), n); 
    yt=WMRA_Polynomial(Ti(2,4), Td(2,4), n); 
    zt=WMRA_Polynomial(Ti(3,4), Td(3,4), n); 
elseif ind == 3 
    at=WMRA_Linear(0,a,n); 
    xt=WMRA_Linear(Ti(1,4), Td(1,4), n); 
    yt=WMRA_Linear(Ti(2,4), Td(2,4), n); 
    zt=WMRA_Linear(Ti(3,4), Td(3,4), n); 
else 
    at=WMRA_BPolynomial(0,a,n); 
    xt=WMRA_BPolynomial(Ti(1,4), Td(1,4), n); 
    yt=WMRA_BPolynomial(Ti(2,4), Td(2,4), n); 
    zt=WMRA_BPolynomial(Ti(3,4), Td(3,4), n); 
end 
  
Tt(:,:,1)=Ti; 
  
for i=2:n 
% Single-angle Change: 
da=at(i)-at(1); 
  
s=sin(da); 
c=cos(da); 
v=1-c; 
  
% Rotation and Position Change: 
dR=[kx^2*v+c kx*ky*v-kz*s kx*kz*v+ky*s; 
    kx*ky*v+kz*s ky^2*v+c ky*kz*v-kx*s; 
    kx*kz*v-ky*s ky*kz*v+kx*s kz^2*v+c]; 
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% Finding the trajectory points along the trajectory line: 
    Tt(:,:,i)=[Ti(1:3,1:3)*dR [xt(i);yt(i);zt(i)] ; 0 0 0 1]; 
end 
  
  
%  
% % Rotational Trajectory: 
% % Single-angle Change: 
% da=2*pi/(n-1); 
% kx=1; ky=0; kz=0; 
% s=sin(da); 
% c=cos(da); 
% v=1-c; 
%  
% % Rotation and Position Change: 
% dR=[kx^2*v+c kx*ky*v-kz*s kx*kz*v+ky*s; 
%     kx*ky*v+kz*s ky^2*v+c ky*kz*v-kx*s; 
%     kx*kz*v-ky*s ky*kz*v+kx*s kz^2*v+c]; 
%  
% % Finding the trajectory points along the trajectory line: 
% Tt(:,:,1)=Ti; 
% for i=2:n 
%     x=Ti(1,4)+2000*cos((i-1)*da); 
%     y=Ti(2,4)+2000*sin((i-1)*da); 
%     Tt(:,:,i)=[Ti(1:3,1:3)*(dR)^(i-1) [x;y;Ti(3,4)] ; 0 0 0 1]; 
% end 
 
 
% This function gives the homogeneous transformation matrix, given the X, Y, Z cartesian 
translation values. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [T]=WMRA_transl(x, y, z) 
  
T=[eye(3) [x;y;z]; 0 0 0 1]; 
 
 
% This function does the animation of USF WMRA with 9 DOF using Virtual Reality Toolbox. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function WMRA_VR_Animation(i, Twc, q) 
  
% Declaring the global variables: 
global L WMRA 
  
% The initialization of the animation plot: 
if i==1     
    % Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
    L=WMRA_WCD; 
    % Opening the WMRA file: 
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    WMRA = vrworld('\9_wmra.wrl'); 
    open(WMRA); 
    % Changing the View Point of the simulation: 
    WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)]; 
    % Calculating the wheelaxle transform instead of the arm base transform: 
    Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1]; 
    % The orientation about Z of the wheelchair: 
    phi=q(9); 
    % Calculating wheelchair's wheels' angles: 
    ql=q(8)/L(5)-L(1)*q(9)/(2*L(5)); 
    qr=q(8)/L(5)+L(1)*q(9)/(2*L(5)); 
    % Updating the VRML file for the new angles and distances:   
    WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)]; 
    WMRA.Chair.rotation=[0 0 1 phi]; 
    WMRA.LWheel.rotation=[0 1 0 ql]; 
    WMRA.RWheel.rotation=[0 1 0 qr]; 
    WMRA.ARM2.rotation=[0 0 -1 q(1)]; 
    WMRA.ARM3.rotation=[0 1 0 q(2)]; 
    WMRA.ARM4.rotation=[0 0 -1 q(3)]; 
    WMRA.ARM5.rotation=[0 1 0 q(4)]; 
    WMRA.ARM6.rotation=[0 0 -1 q(5)]; 
    WMRA.ARM7.rotation=[0 1 0 q(6)]; 
    WMRA.ARM8.rotation=[0 0 -1 q(7)]; 
    % Viewing the simulation: 
    view(WMRA); 
     
% Closing the animation plot: 
elseif i==3 
    close(WMRA); 
    delete(WMRA); 
  
% Updating the animation plot: 
else 
    WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)]; 
    Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1]; 
    phi=q(9); 
    ql=q(8)/L(5)-L(1)*q(9)/(2*L(5)); 
    qr=q(8)/L(5)+L(1)*q(9)/(2*L(5));   
    WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)]; 
    WMRA.Chair.rotation=[0 0 1 phi]; 
    WMRA.LWheel.rotation=[0 1 0 ql]; 
    WMRA.RWheel.rotation=[0 1 0 qr]; 
    WMRA.ARM2.rotation=[0 0 -1 q(1)]; 
    WMRA.ARM3.rotation=[0 1 0 q(2)]; 
    WMRA.ARM4.rotation=[0 0 -1 q(3)]; 
    WMRA.ARM5.rotation=[0 1 0 q(4)]; 
    WMRA.ARM6.rotation=[0 0 -1 q(5)]; 
    WMRA.ARM7.rotation=[0 1 0 q(6)]; 
    WMRA.ARM8.rotation=[0 0 -1 q(7)]; 
  
end 
 
 
% This function gives the Transformation Matrix of the wheelchair with 2 DOF (Ground to 
WMRA base), given the previous transformation matrix and the required wheelchair's travel 
distance and angle. 
% Dimentions are as supplies, angles are in radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Function Declaration: 
function [T]=WMRA_w2T(ind, Tp, q) 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% Deciding if the motion is in reference to the arm base (1) or the wheel axle center 
(0): 
if ind == 0, L(2:4)=[0;0;0]; end 
  
% Defining the inverse of Transformation Matrix between the wheelchair center and the 
WMRA's base: 
Twa=[eye(3) L(2:4) ; 0 0 0 1]; 
  
% The previous transformation matrix from the ground to the wheelchair center: 
Tp=Tp*inv(Twa); 
  
% Defining the Transformation Matrix between the ground and the wheelchair center and 
WMRA's base: 
if abs(q(2))<=eps           % Streight line motion. 
    Tp(1:2,4)=Tp(1:2,4)+q(1)*Tp(1:2,1); 
    T=Tp*Twa; 
else 
    po=atan2(Tp(2,1),Tp(1,1)); 
    p=q(2); 
    r=q(1)/p-L(1)/2; 
    Tgw=[cos(po+p) -sin(po+p) 0 Tp(1,4)+sin(pi/2+po+p/2)*(r+L(1)/2)*sin(p)/cos(p/2) ; 
sin(po+p) cos(po+p) 0 Tp(2,4)-cos(pi/2+po+p/2)*(r+L(1)/2)*sin(p)/cos(p/2) ; 0 0 1 Tp(3,4) 
; 0 0 0 1]; 
    T=Tgw*Twa; 
end 
 
 
% This function gives the wheelchair dimentions matrix to be used in the program.  
% Modifying the dimentons on this file is sufficient to change these dimention in all 
related programs. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Function Declaration: 
function L=WMRA_WCD() 
  
L=[0;0;0;0;0]; 
  
% All dimentions are in millimeters. 
L(1)=560;  % Distance between the two driving wheels. 
L(2)=440;  % Horizontal distance between the wheels axix of rotation and the arm mounting 
position (along x). 
L(3)=230;  % Horizontal distance between the middle point between the two driving wheels 
and the arm mounting position (along y). 
L(4)=182; % Vertical distance between the wheels axix of rotation and the arm mounting 
position (along z). 
L(5)=168; % Radius of the driving wheels. 
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B.3. Matlab Main Script and GUI Main File 

% This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots for 9 
DOF. All angles are in Radians. 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Declaring the global variables to be used for the touch screen control: 
global VAR_DX 
global VAR_SCREENOPN 
global dHo 
  
% Defining used parameters: 
d2r=pi/180; % Conversions from Degrees to Radians. 
r2d=180/pi; % Conversions from Radians to Degrees. 
  
% Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
L=WMRA_WCD; 
  
% User input prompts: 
  
choice000 = input('\n Choose what to control: \n For combined Wheelchair and Arm control, 
press "1", \n For Arm only control, press "2", \n For Wheelchair only control, press "3". 
\n','s'); 
if choice000=='2' 
    WCA=2; 
    choice00000 = input('\n Choose whose frame to base the control on: \n For Ground 
Frame, press "1", \n For Wheelchair Frame, press "2", \n For Gripper Frame, press "3". 
\n','s'); 
    if choice00000=='2' 
        coord=2; 
    elseif choice00000=='3' 
        coord=3; 
    else 
        coord=1; 
    end 
    choice0000 = input('\n Choose the cartesian coordinates to be controlled: \n For 
Position and Orientation, press "1", \n For Position only, press "2". \n','s'); 
    if choice0000=='2' 
        cart=2; 
    else 
        cart=1; 
    end 
    choice5 = input('\n Please enter the desired optimization method: (1= SR-I & WLN, 2= 
P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'); 
    if choice5=='2' 
        optim=2; 
    elseif choice5=='3' 
        optim=3; 
    elseif choice5=='4' 
        optim=4; 
    else 
        optim=1; 
    end 
    choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No) 
\n','s'); 
    if choice50=='2' 
        JLA=0; 
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    else 
        JLA=1; 
    end 
    choice500 = input('\n Do you want to include Joint Limit/Velocity and Obstacle Safety 
Stop? (1= Yes, 2= No) \n','s'); 
    if choice500=='2' 
        JLO=0; 
    else 
        JLO=1; 
    end 
elseif choice000=='3' 
    WCA=3; 
    choice00000 = input('\n Choose whose frame to base the control on: \n For Ground 
Frame, press "1", \n For Wheelchair Frame, press "2". \n','s'); 
    if choice00000=='2' 
        coord=2; 
    else 
        coord=1; 
    end 
    choice500 = input('\n Do you want to include Joint Velocity Safety Stop? (1= Yes, 2= 
No) \n','s'); 
    if choice500=='2' 
        JLO=0; 
    else 
        JLO=1; 
    end 
    cart=2; 
    optim=0; 
    JLA=0; 
else 
    WCA=1; 
    choice00000 = input('\n Choose whose frame to base the control on: \n For Ground 
Frame, press "1", \n For Wheelchair Frame, press "2", \n For Gripper Frame, press "3". 
\n','s'); 
    if choice00000=='2' 
        coord=2; 
    elseif choice00000=='3' 
        coord=3; 
    else 
        coord=1; 
    end 
    choice0000 = input('\n Choose the cartesian coordinates to be controlled: \n For 
Position and Orientation, press "1", \n For Position only, press "2". \n','s'); 
    if choice0000=='2' 
        cart=2; 
    else 
        cart=1; 
    end 
    choice5 = input('\n Please enter the desired optimization method: (1= SR-I & WLN, 2= 
P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'); 
    if choice5=='2' 
        optim=2; 
    elseif choice5=='3' 
        optim=3; 
    elseif choice5=='4' 
        optim=4; 
    else 
        optim=1; 
    end 
    choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No) 
\n','s'); 
    if choice50=='2' 
        JLA=0; 
    else 
        JLA=1; 
    end 
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    choice500 = input('\n Do you want to include Joint Limit/Velocity and Obstacle Safety 
Stop? (1= Yes, 2= No) \n','s'); 
    if choice500=='2' 
        JLO=0; 
    else 
        JLO=1; 
    end 
end 
  
choice0 = input('\n Choose the control mode: \n For position control, press "1", \n For 
velocity control, press "2", \n For SpaceBall control, press "3", \n For Psychology Mask 
control, press "4", \n For Touch Screen control, press "5". \n','s'); 
if choice0=='1' 
    cont=1; 
    Td = input('\n Please enter the transformation matrix of the desired position and 
orientation from the control-based frame \n (e.g. [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 
0 1]) \n'); 
    v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g. 
50) \n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n Press "1" for a 
Polynomial function with Blending, or \n press "2" for a Polynomial function without 
Blending, or \n press "3" for a Linear function. \n','s'); 
    if choice00=='2' 
        trajf=2; 
    elseif choice00=='3' 
        trajf=3; 
    else 
        trajf=1; 
    end 
elseif choice0=='2' 
    cont=2; 
    ts = input('\n Please enter the desired simulation time in seconds (e.g. 2) \n'); 
    if cart==2 
        Vd = input('\n Please enter the desired 3x1 cartesian velocity vector of the 
gripper (in mm/s) (e.g. [70;70;-70]) \n'); 
    else 
        Vd = input('\n Please enter the desired 6x1 cartesian velocity vector of the 
gripper (in mm/s, radians/s) (e.g. [70;70;-70;0.001;0.001;0.001]) \n'); 
    end 
elseif choice0=='3' 
    cont=3; 
    % Space Ball will be used for control. 
    v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g. 
50) \n'); 
elseif choice0=='4' 
    cont=4; 
    % BCI 2000 Psychology Mask will be used for control. 
    v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g. 
50) \n'); 
    port1 = input('\n Please enter the desired port number (e.g. 19711) \n'); 
else 
    cont=5; 
    % Touch Screen will be used for control. 
    v = input('\n Please enter the desired linear velocity of the gripper in mm/s (e.g. 
50) \n'); 
end 
  
choice1 = input('\n Choose animation type or no animation: \n For Virtual Reality 
Animation, press "1", \n For Matlab Graphics Animation, press "2", \n For BOTH 
Animations, press "3", \n For NO Animation, press "4". \n','s'); 
if choice1=='2' 
    vr = 0; ml = 1; 
elseif choice1=='3' 
    vr = 1; ml = 1; 
elseif choice1=='4' 
    vr = 0; ml = 0; 
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else 
    vr = 1; ml = 0; 
end 
  
choice10 = input('\n Would you like to run the actual WMRA? \n For yes, press "1", \n For 
no, press "2". \n','s'); 
if choice10=='1' 
    arm=1; 
else 
    arm=0; 
end 
choice2 = input('\n Press "1" if you want to start at the "ready" position, \n or press 
"2" if you want to enter the initial joint angles. \n','s'); 
if choice2=='2' 
    qi = input('\n Please enter the arms initial angles vector in radians (e.g. 
[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n'); 
    WCi = input('\n Please enter the initial x,y position and z orientation of the WMRA 
base from the ground base in millimeters and radians (e.g. [200;500;0.3]) \n'); 
    ini=0; 
else 
    qi=[90;90;0;90;90;90;0]*d2r; 
    WCi=[0;0;0]; 
    ini=0; 
    if vr==1 || ml==1 || arm==1 
        choice3 = input('\n Press "1" if you want to include "park" to "ready" motion, \n 
or press "2" if not. \n','s'); 
        if choice3=='2' 
            ini=0; 
        else 
            ini=1; 
        end 
    end 
end 
choice4 = input('\n Press "1" if you do NOT want to plot the simulation results, \n or 
press "2" if do. \n','s'); 
if choice4=='2' 
    plt=2; 
else 
    plt=1; 
end 
  
% Calculating the Transformation Matrix of the initial position of the WMRA's base: 
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3)); 
  
% Calculating the initial Wheelchair Variables: 
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)]; 
  
% Calculating the initial transformation matrices: 
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi, [0;0], Tiwc); 
  
if cont==1 
    % Calculating the linear distance from the initial position to the desired position 
and the linear velocity: 
    if coord==2 
        D=sqrt( (Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-Tia(3,4))^2); 
    elseif coord==3 
        D=sqrt( (Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2); 
    else 
        D=sqrt( (Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-Ti(3,4))^2); 
    end 
    % Calculating the number of iteration and the time increment (delta t) if the linear 
step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
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    % Calculating the Trajectory of the end effector, and once the trajectory is 
calculated, we should redefine "Td" based on the ground frame: 
    if coord==2 
        Tt=WMRA_traj(trajf, Tia, Td, n+1); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(trajf, eye(4), Td, n+1); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(trajf, Ti, Td, n+1); 
    end 
elseif cont==2 
    % Calculating the number of iterations and the time increment (delta t) if the linear 
step increment of the gripper is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=ts;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    dx=Vd*dt; 
    Td=Ti; 
elseif cont==3 
    WMRA_exit(); % This is to stop the simulation in SpaceBall control when the user 
presses the exit key. 
    dt=0.05; 
    dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; spdata1(6)/1500 ; -
spdata1(4)/900 ; spdata1(5)/1300]; 
    dg=spdata1(7); 
    Td=Ti; 
    n=1; 
elseif cont==4 
    WMRA_exit(); % This is to stop the simulation in Psychology Mask control when the 
user presses the exit key. 
    dt=0.05; 
    dx=v*dt*WMRA_psy(port1); 
    dg=dx(7); 
    dx=dx(1:6); 
    Td=Ti; 
    n=1; 
else 
    WMRA_screen('0');   % This is to start the screen controls. Argument: '0'=BACK button 
disabled, '1'=BACK button enabled. 
    dt=0.05; 
    dx=v*dt*VAR_DX(1:6); 
    dg=VAR_DX(7); 
    Td=Ti; 
    n=1; 
end 
  
% Initializing the joint angles, the Transformation Matrix, and time: 
dq=zeros(9,1); 
dg=0; 
qo=[qi;qiwc]; 
To=Ti; 
Toa=Tia; 
Towc=Tiwc; 
tt=0; 
i=1; 
dHo=[0;0;0;0;0;0;0]; 
  
% Initializing the WMRA: 
if ini==0   % When no "park" to "ready" motion required. 
    % Initializing Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(1, Towc, qo); 
    end 
    % Initializing Robot Animation in Matlab Graphics: 
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    if ml==1 
        WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, T56, T67); 
    end 
    % Initializing the Physical Arm: 
    if arm==1 
        WMRA_ARM_Motion(1, 2, [qo;dg], 0); 
        ddt=0; 
    end 
elseif ini==1 && (vr==1 || ml==1 || arm==1)  % When "park" to "ready" motion is required. 
    WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9)); 
    if arm==1 
        ddt=0; 
    end 
end 
  
% Re-Drawing the Animation: 
if vr==1 || ml==1 
    drawnow; 
end 
  
% Starting a timer: 
tic 
  
% Starting the Iteration Loop: 
while i<=(n+1) 
    % Calculating the 6X7 Jacobian of the arm in frame 0: 
    [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67); 
     
    % Calculating the 6X2 Jacobian based on the WMRA's base in the ground frame: 
    phi=atan2(Towc(2,1),Towc(1,1)); 
    Jowc=WMRA_Jga(1, phi, Toa(1:2,4)); 
     
    % Changing the Jacobian reference frame based on the choice of which coordinates 
frame are referenced in the Cartesian control: 
    % coord=1 for Ground Coordinates Control. 
    % coord=2 for Wheelchair Coordinates Control. 
    % coord=3 for Gripper Coordinates Control. 
    if coord==2 
        Joa=Joa; 
        Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc; 
    elseif coord==3 
        Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa; 
        Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc; 
    elseif coord==1 
        Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa; 
        Jowc=Jowc; 
    end 
     
    % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system based on the 
ground frame: 
    if cart==2 
        Joa=Joa(1:3,1:7); 
        detJoa=sqrt(det(Joa*Joa')); 
        Jowc=Jowc(1:3,1:2); 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    else 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    end 
         
    % Finding the Cartesian errors of the end effector: 
    if cont==1 
        % Calculating the Position and Orientation errors of the end effector, and the 
rates of motion of the end effector:             
        if coord==2 
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            invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0 1]; 
            Ttnew=invTowc*Tiwc*Tt(:,:,i); 
            dx=WMRA_delta(Toa, Ttnew); 
        elseif coord==3 
            invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1]; 
            Ttnew=invTo*Ti*Tt(:,:,i); 
            dx=WMRA_delta(eye(4), Ttnew); 
        else 
            dx=WMRA_delta(To, Tt(:,:,i)); 
        end             
    elseif cont==2 
  
    elseif cont==3 
        dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; spdata1(6)/1500 ; -
spdata1(4)/900 ; spdata1(5)/1300]; 
        dg=spdata1(7); 
    elseif cont==4 
        dx=v*dt*WMRA_psy(port1); 
        dg=dx(7); 
        dx=dx(1:6); 
    else 
        dx=v*dt*VAR_DX(1:6); 
        dg=VAR_DX(7); 
    end 
  
    % Changing the order of Cartesian motion in the case when gripper reference frame is 
selected for control with the screen or psy or SpaceBall interfaces:  
    if coord==3 && cont>=3 
        dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)]; 
    end 
  
    if cart==2 
        dx=dx(1:3); 
    end 
  
    % Calculating the resolved rate with optimization: 
    % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I 
& ENE: 
    if WCA==2 
        dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt, qo); 
        dq=[dq;0;0]; 
    elseif WCA==3 
        dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 1); 
        dq=[0;0;0;0;0;0;0;dq]; 
    else 
        dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, qo); 
    end 
     
    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Calculating the new Transformation Matrices: 
    [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, dq(8:9), Towc); 
  
    % A safety condition function to stop the joints that may cause colision of the arm 
with itself, the wheelchair, or the human user: 
    if JLO==1 && WCA~=3 
        dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56, T67); 
        % Re-calculating the new Joint Angles: 
        qn=qo+dq; 
        % Re-calculating the new Transformation Matrices: 
        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, dq(8:9), 
Towc); 
    end 
     
    % Saving the plot data in case plots are required: 
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    if plt==2 
        WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
    end 
  
    % Updating Physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || i>=(n+1)                 
            WMRA_ARM_Motion(2, 1, [qn;dg], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tnwc, qn); 
    end 
  
    % Updating Matlab Graphics Animation: 
    if ml==1 
        WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, T56, T67); 
    end 
  
    % Re-Drawing the Animation: 
    if vr==1 || ml==1 
        drawnow; 
    end 
  
    % Updating the old values with the new values for the next iteration: 
    qo=qn; 
    To=Tn; 
    Toa=Tna; 
    Towc=Tnwc; 
    tt=tt+dt; 
    i=i+1; 
  
    % Stopping the simulation when the exit button is pressed: 
    if cont==3 || cont==4 || cont==5 
        if (VAR_SCREENOPN == 1) 
            n=n+1; 
        else 
            break 
        end 
    end 
  
    % Delay to comply with the required speed: 
    if toc < tt 
        pause(tt-toc); 
    end 
end 
  
% Reading the elapsed time and printing it with the simulation time: 
if cont==1 || cont==2, fprintf('\nSimula. time is %6.6f seconds.\n' , total_time); end 
toc 
  
% Plotting: 
if plt==2 
    WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
end 
  
if vr==1 || ml==1 || arm==1 
     
    % Going back to the ready position: 
    choice6 = input('\n Do you want to go back to the "ready" position? \n Press "1" for 
Yes, or press "2" for No. \n','s'); 
    if choice6=='1' 
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        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
        % Going back to the parking position: 
        choice7 = input('\n Do you want to go back to the "parking" position? \n Press 
"1" for Yes, or press "2" for No. \n','s'); 
        if choice7=='1' 
            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
        end 
    end 
  
    % Closing the Arm library and Matlab Graphics Animation and Virtual Reality Animation 
and Plots windows: 
    choice8 = input('\n Do you want to close all simulation windows and arm controls? \n 
Press "1" for Yes, or press "2" for No. \n','s'); 
    if choice8=='1' 
        if arm==1 
            WMRA_ARM_Motion(3, 0, 0, 0); 
        end 
        if vr==1 
            WMRA_VR_Animation(3, 0, 0); 
        end 
        if ml==1 
            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
        if plt==2 
            close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),figure(9),figure(1
0)); 
        end 
    end 
     
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thanks to Mayur Palankar %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = WMRA_Main_GUI(varargin) 
% WMRA_Main_GUI M-file for WMRA_Main_GUI.fig 
%      WMRA_Main_GUI, by itself, creates a new WMRA_Main_GUI or raises the existing 
%      singleton*. 
% 
%      H = WMRA_Main_GUI returns the handle to a new WMRA_Main_GUI or the handle to 
%      the existing singleton*. 
% 
%      WMRA_Main_GUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in WMRA_Main_GUI.M with the given input arguments. 
% 
%      WMRA_Main_GUI('Property','Value',...) creates a new WMRA_Main_GUI or raises the 
%      existing singleton*.  Starting from the left, property value pairs 
%      are 
%      applied to the GUI before WMRA_Main_GUI_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to WMRA_Main_GUI_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help WMRA_Main_GUI 
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 % Last Modified by GUIDE v2.5 31-Mar-2007 16:02:05 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @WMRA_Main_GUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @WMRA_Main_GUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
% --- Executes just before WMRA_Main_GUI is made visible. 
function WMRA_Main_GUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to WMRA_Main_GUI (see VARARGIN) 
  
% Choose default command line output for WMRA_Main_GUI 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
global VAR_SCREENOPN 
global VAR_LOOP 
global VAR_WCI 
global VAR_QI 
  
VAR_WCI = [0; 0; 0]; 
VAR_QI = [1.5708; 1.5708; 0; 1.5708; 1.5708; 1.5708; 0]; 
VAR_SCREENOPN = 0; 
VAR_LOOP = 0; 
  
% UIWAIT makes WMRA_Main_GUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
% --- Outputs from this function are returned to the command line. 
function varargout = WMRA_Main_GUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
% -------------------------------------------------------------------- 
function file_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to file_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% -------------------------------------------------------------------- 
function open_menu_Callback(hObject, eventdata, handles) 
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% hObject    handle to open_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% -------------------------------------------------------------------- 
function save_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to save_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% -------------------------------------------------------------------- 
function saveas_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to saveas_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% -------------------------------------------------------------------- 
function exit_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to exit_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
close; 
  
% -------------------------------------------------------------------- 
function help_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to help_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
val = get(hObject,'Value'); 
switch val 
case 1 
    if (get(handles.popupmenu17, 'Value') == 2) 
        set(handles.edit65,'Enable','on'); 
        set(handles.edit66,'Enable','on'); 
        set(handles.edit67,'Enable','on'); 
        set(handles.text22,'Enable','on'); 
    end 
    if (get(handles.popupmenu17, 'Value') == 1) 
        if (strcmp(get(handles.edit36,'Enable'), 'off')) 
            set (handles.edit36, 'String', 0); 
            set (handles.edit37, 'String', 0); 
            set (handles.edit38, 'String', 1); 
            set (handles.edit39, 'String', -1); 
            set (handles.edit40, 'String', 0); 
            set (handles.edit41, 'String', 0); 
            set (handles.edit42, 'String', 0); 
            set (handles.edit43, 'String', -1); 
            set (handles.edit44, 'String', 0); 
  
            set(handles.edit36,'Enable','on'); 
            set(handles.edit37,'Enable','on'); 
            set(handles.edit38,'Enable','on'); 
            set(handles.edit39,'Enable','on'); 
            set(handles.edit40,'Enable','on'); 
            set(handles.edit41,'Enable','on'); 
            set(handles.edit42,'Enable','on'); 
            set(handles.edit43,'Enable','on'); 
            set(handles.edit44,'Enable','on'); 
        end 
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    end 
case 2 
    if (get(handles.popupmenu17, 'Value') == 2) 
        set(handles.edit65,'Enable','off'); 
        set(handles.edit66,'Enable','off'); 
        set(handles.edit67,'Enable','off'); 
        set(handles.text22,'Enable','off'); 
    end 
    if (get(handles.popupmenu17, 'Value') == 1) 
        set (handles.edit36, 'String', 1); 
        set (handles.edit37, 'String', 0); 
        set (handles.edit38, 'String', 0); 
        set (handles.edit39, 'String', 0); 
        set (handles.edit40, 'String', 1); 
        set (handles.edit41, 'String', 0); 
        set (handles.edit42, 'String', 0); 
        set (handles.edit43, 'String', 0); 
        set (handles.edit44, 'String', 1); 
  
        set(handles.edit36,'Enable','off'); 
        set(handles.edit37,'Enable','off'); 
        set(handles.edit38,'Enable','off'); 
        set(handles.edit39,'Enable','off'); 
        set(handles.edit40,'Enable','off'); 
        set(handles.edit41,'Enable','off'); 
        set(handles.edit42,'Enable','off'); 
        set(handles.edit43,'Enable','off'); 
        set(handles.edit44,'Enable','off'); 
    end 
end 
  
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu3. 
function popupmenu3_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
val = get(hObject,'Value'); 
switch val 
case 1 
    if (strcmp(get(handles.popupmenu1,'Enable'), 'off')) 
        set(handles.popupmenu8,'Enable','on'); 
        set (handles.checkbox1, 'Value', 1); 
        set(handles.checkbox1,'Enable','on'); 
  
        set(handles.popupmenu1,'Enable','on'); 
        string_list = {'Ground'; 'Wheelchair'; 'Gripper';}; 
        set(handles.popupmenu21, 'String', string_list); 
    end 
case 2 
    if (strcmp(get(handles.popupmenu1,'Enable'), 'off')) 
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        set(handles.popupmenu8,'Enable','on'); 
        set (handles.checkbox1, 'Value', 1); 
        set(handles.checkbox1,'Enable','on'); 
  
        set(handles.popupmenu1,'Enable','on'); 
        string_list = {'Ground'; 'Wheelchair'; 'Gripper';}; 
        set(handles.popupmenu21, 'String', string_list); 
    end 
case 3 
    if (get(handles.popupmenu21, 'Value') == 3) 
        set(handles.popupmenu21,'Value',2); 
    end 
  
    string_list = get(handles.popupmenu21, 'String'); 
    set(handles.popupmenu21, 'String', string_list(1:2)); 
  
    set(handles.popupmenu8,'Enable','off'); 
    set (handles.checkbox1, 'Value', 0); 
    set(handles.checkbox1,'Enable','off'); 
  
    set(handles.popupmenu1,'Value',2); 
    set(handles.popupmenu1,'Enable','off'); 
    if (get(handles.popupmenu17, 'Value') == 2) 
        set(handles.edit65,'Enable','off'); 
        set(handles.edit66,'Enable','off'); 
        set(handles.edit67,'Enable','off'); 
        set(handles.text22,'Enable','off'); 
    end 
    if (get(handles.popupmenu17, 'Value') == 1) 
        set (handles.edit36, 'String', 1); 
        set (handles.edit37, 'String', 0); 
        set (handles.edit38, 'String', 0); 
        set (handles.edit39, 'String', 0); 
        set (handles.edit40, 'String', 1); 
        set (handles.edit41, 'String', 0); 
        set (handles.edit42, 'String', 0); 
        set (handles.edit43, 'String', 0); 
        set (handles.edit44, 'String', 1); 
  
        set(handles.edit36,'Enable','off'); 
        set(handles.edit37,'Enable','off'); 
        set(handles.edit38,'Enable','off'); 
        set(handles.edit39,'Enable','off'); 
        set(handles.edit40,'Enable','off'); 
        set(handles.edit41,'Enable','off'); 
        set(handles.edit42,'Enable','off'); 
        set(handles.edit43,'Enable','off'); 
        set(handles.edit44,'Enable','off'); 
    end 
end 
% Hints: contents = get(hObject,'String') returns popupmenu3 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu3 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes on selection change in popupmenu4. 
function popupmenu4_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
val = get(hObject,'Value'); 
switch val 
case 1 
    if (get(handles.popupmenu15, 'Value') == 1) 
        set(handles.popupmenu16,'Enable','on'); 
    end 
  
    set(handles.popupmenu11,'Enable','on'); 
    if (get(handles.popupmenu11, 'Value') == 1) 
        set(handles.popupmenu14,'Enable','on'); 
    end 
  
    set(handles.popupmenu10,'Enable','on'); 
case 2 
    if (get(handles.popupmenu15, 'Value') == 1) 
        set(handles.popupmenu16,'Enable','on'); 
    end 
  
    set(handles.popupmenu11,'Enable','on'); 
    if (get(handles.popupmenu11, 'Value') == 1) 
        set(handles.popupmenu14,'Enable','on'); 
    end 
  
    set(handles.popupmenu10,'Enable','on'); 
case 3 
    if (get(handles.popupmenu15, 'Value') == 1) 
        set(handles.popupmenu16,'Enable','on'); 
    end 
  
    set(handles.popupmenu11,'Enable','on'); 
    if (get(handles.popupmenu11, 'Value') == 1) 
        set(handles.popupmenu14,'Enable','on'); 
    end 
  
    set(handles.popupmenu10,'Enable','on'); 
case 4 
    if (get(handles.popupmenu6, 'Value') == 1) 
        if (get(handles.popupmenu15, 'Value') == 1) 
            set(handles.popupmenu16,'Enable','off'); 
        end 
  
        set(handles.popupmenu11,'Enable','off'); 
        if (get(handles.popupmenu11, 'Value') == 1) 
            set(handles.popupmenu14,'Enable','off'); 
        end 
  
        if (get(handles.popupmenu7, 'Value') == 1) 
            set(handles.popupmenu10,'Enable','off'); 
        end 
    end 
end 
  
% Hints: contents = get(hObject,'String') returns popupmenu4 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu4 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
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% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu6. 
function popupmenu6_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
val = get(hObject,'Value'); 
switch val 
case 1 
    if (get(handles.popupmenu4, 'Value') == 4) 
        if (get(handles.popupmenu15, 'Value') == 1) 
            set(handles.popupmenu16,'Enable','off'); 
        end 
  
        set(handles.popupmenu11,'Enable','off'); 
        if (get(handles.popupmenu11, 'Value') == 1) 
            set(handles.popupmenu14,'Enable','off'); 
        end 
  
        if (get(handles.popupmenu7, 'Value') == 1) 
            set(handles.popupmenu10,'Enable','off'); 
        end 
    end 
case 2 
    if (get(handles.popupmenu15, 'Value') == 1) 
        set(handles.popupmenu16,'Enable','on'); 
    end 
  
    set(handles.popupmenu11,'Enable','on'); 
    if (get(handles.popupmenu11, 'Value') == 1) 
        set(handles.popupmenu14,'Enable','on'); 
    end 
  
    set(handles.popupmenu10,'Enable','on'); 
end 
  
% Hints: contents = get(hObject,'String') returns popupmenu6 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu6 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu7. 
function popupmenu7_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu7 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu7 
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val = get(hObject,'Value'); 
switch val 
case 1 
    if ((get(handles.popupmenu4, 'Value') == 4) && (get(handles.popupmenu6, 'Value') == 
1)) 
        set(handles.popupmenu10,'Enable','off'); 
    end 
case 2 
    set(handles.popupmenu10,'Enable','on'); 
end 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu7_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu8. 
function popupmenu8_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu8 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu8 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu8_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu10. 
function popupmenu10_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu10 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu10 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu10_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 
  
% --- Executes on selection change in popupmenu14. 
function popupmenu14_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu14 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu14 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu14_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu11. 
function popupmenu11_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
val = get(hObject,'Value'); 
switch val 
case 1 
    set(handles.popupmenu14,'Enable','on'); 
case 2 
    set(handles.popupmenu14,'Enable','off'); 
end 
  
% Hints: contents = get(hObject,'String') returns popupmenu11 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu11 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu11_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu16. 
function popupmenu16_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu16 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu16 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu16_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu16 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu15. 
function popupmenu15_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_WCI 
global VAR_QI 
  
val = get(hObject,'Value'); 
switch val 
case 1 
    if ((get(handles.popupmenu4, 'Value') ~= 4) || (get(handles.popupmenu6, 'Value') == 
2)) 
        set(handles.popupmenu16,'Enable','on'); 
    end 
    set (handles.edit49, 'String', 1.5708); 
    set (handles.edit50, 'String', 1.5708); 
    set (handles.edit51, 'String', 0); 
    set (handles.edit52, 'String', 1.5708); 
    set (handles.edit53, 'String', 1.5708); 
    set (handles.edit54, 'String', 1.5708); 
    set (handles.edit55, 'String', 0); 
  
    set(handles.edit49,'Enable','off'); 
    set(handles.edit50,'Enable','off'); 
    set(handles.edit51,'Enable','off'); 
    set(handles.edit52,'Enable','off'); 
    set(handles.edit53,'Enable','off'); 
    set(handles.edit54,'Enable','off'); 
    set(handles.edit55,'Enable','off'); 
  
    set(handles.pushbutton5,'Enable','off'); 
    set(handles.pushbutton6,'Enable','off'); 
  
    set (handles.edit56, 'String', 0); 
    set (handles.edit57, 'String', 0); 
    set (handles.edit58, 'String', 0); 
  
    set(handles.edit56,'Enable','off'); 
    set(handles.edit57,'Enable','off'); 
    set(handles.edit58,'Enable','off'); 
case 2 
    set(handles.popupmenu16,'Enable','off'); 
  
    set (handles.edit49, 'String', VAR_QI(1,1)); 
    set (handles.edit50, 'String', VAR_QI(2,1)); 
    set (handles.edit51, 'String', VAR_QI(3,1)); 
    set (handles.edit52, 'String', VAR_QI(4,1)); 
    set (handles.edit53, 'String', VAR_QI(5,1)); 
    set (handles.edit54, 'String', VAR_QI(6,1)); 
    set (handles.edit55, 'String', VAR_QI(7,1)); 
  
    set(handles.edit49,'Enable','off'); 
    set(handles.edit50,'Enable','off'); 
    set(handles.edit51,'Enable','off'); 
    set(handles.edit52,'Enable','off'); 
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    set(handles.edit53,'Enable','off'); 
    set(handles.edit54,'Enable','off'); 
    set(handles.edit55,'Enable','off'); 
  
    set(handles.pushbutton5,'Enable','off'); 
    set(handles.pushbutton6,'Enable','off'); 
  
    set (handles.edit56, 'String', VAR_WCI(1,1)); 
    set (handles.edit57, 'String', VAR_WCI(2,1)); 
    set (handles.edit58, 'String', VAR_WCI(3,1)); 
  
    set(handles.edit56,'Enable','off'); 
    set(handles.edit57,'Enable','off'); 
    set(handles.edit58,'Enable','off'); 
case 3 
    set(handles.popupmenu16,'Enable','off'); 
  
    set(handles.edit49,'Enable','on'); 
    set(handles.edit50,'Enable','on'); 
    set(handles.edit51,'Enable','on'); 
    set(handles.edit52,'Enable','on'); 
    set(handles.edit53,'Enable','on'); 
    set(handles.edit54,'Enable','on'); 
    set(handles.edit55,'Enable','on'); 
  
    set(handles.pushbutton5,'Enable','on'); 
    set(handles.pushbutton6,'Enable','on'); 
  
    set(handles.edit56,'Enable','on'); 
    set(handles.edit57,'Enable','on'); 
    set(handles.edit58,'Enable','on'); 
end 
% Hints: contents = get(hObject,'String') returns popupmenu15 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu15 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu15_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu19. 
function popupmenu19_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu19 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu19 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu19 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu19_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu19 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu17. 
function popupmenu17_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_SCREENOPN 
  
val = get(hObject,'Value'); 
switch val 
case 1 
    if (get(handles.popupmenu1, 'Value') == 1) 
        set(handles.edit36,'Enable','on'); 
        set(handles.edit37,'Enable','on'); 
        set(handles.edit38,'Enable','on'); 
        set(handles.edit39,'Enable','on'); 
        set(handles.edit40,'Enable','on'); 
        set(handles.edit41,'Enable','on'); 
        set(handles.edit42,'Enable','on'); 
        set(handles.edit43,'Enable','on'); 
        set(handles.edit44,'Enable','on'); 
    else 
        set (handles.edit36, 'String', 1); 
        set (handles.edit37, 'String', 0); 
        set (handles.edit38, 'String', 0); 
        set (handles.edit39, 'String', 0); 
        set (handles.edit40, 'String', 1); 
        set (handles.edit41, 'String', 0); 
        set (handles.edit42, 'String', 0); 
        set (handles.edit43, 'String', 0); 
        set (handles.edit44, 'String', 1); 
  
        set(handles.edit36,'Enable','off'); 
        set(handles.edit37,'Enable','off'); 
        set(handles.edit38,'Enable','off'); 
        set(handles.edit39,'Enable','off'); 
        set(handles.edit40,'Enable','off'); 
        set(handles.edit41,'Enable','off'); 
        set(handles.edit42,'Enable','off'); 
        set(handles.edit43,'Enable','off'); 
        set(handles.edit44,'Enable','off'); 
    end 
  
    set(handles.edit15,'Enable','on'); 
    set(handles.edit16,'Enable','on'); 
    set(handles.edit17,'Enable','on'); 
  
    set(handles.text15,'Enable','on'); 
    set(handles.text16,'Enable','on'); 
    set(handles.text17,'Enable','on'); 
    set(handles.text18,'Enable','on'); 
  
    set(handles.edit45,'Enable','on'); 
    set(handles.text14,'Enable','on'); 
    set(handles.text13,'Enable','on'); 
  
    set(handles.pushbutton3,'Enable','on'); 
    set(handles.popupmenu20,'Enable','on'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit62,'Enable','off'); 
    set(handles.edit63,'Enable','off'); 
    set(handles.edit64,'Enable','off'); 
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    set(handles.text21,'Enable','off'); 
  
    set(handles.edit65,'Enable','off'); 
    set(handles.edit66,'Enable','off'); 
    set(handles.edit67,'Enable','off'); 
    set(handles.text22,'Enable','off'); 
  
    set(handles.edit4,'Enable','off'); 
    set(handles.text6,'Enable','off'); 
    set(handles.text5,'Enable','off'); 
  
    set(handles.pushbutton4,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit1,'Enable','off'); 
    set(handles.text1,'Enable','off'); 
    set(handles.text2,'Enable','off'); 
  
    set(handles.edit69,'Enable','off'); 
    set(handles.text23,'Enable','off'); 
case 2 
    set(handles.edit36,'Enable','off'); 
    set(handles.edit37,'Enable','off'); 
    set(handles.edit38,'Enable','off'); 
    set(handles.edit39,'Enable','off'); 
    set(handles.edit40,'Enable','off'); 
    set(handles.edit41,'Enable','off'); 
    set(handles.edit42,'Enable','off'); 
    set(handles.edit43,'Enable','off'); 
    set(handles.edit44,'Enable','off'); 
  
    set(handles.edit15,'Enable','off'); 
    set(handles.edit16,'Enable','off'); 
    set(handles.edit17,'Enable','off'); 
  
    set(handles.text15,'Enable','off'); 
    set(handles.text16,'Enable','off'); 
    set(handles.text17,'Enable','off'); 
    set(handles.text18,'Enable','off'); 
  
    set(handles.edit45,'Enable','off'); 
    set(handles.text14,'Enable','off'); 
    set(handles.text13,'Enable','off'); 
  
    set(handles.pushbutton3,'Enable','off'); 
    set(handles.popupmenu20,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit62,'Enable','on'); 
    set(handles.edit63,'Enable','on'); 
    set(handles.edit64,'Enable','on'); 
    set(handles.text21,'Enable','on'); 
  
    if (get(handles.popupmenu1, 'Value') == 1) 
        set(handles.edit65,'Enable','on'); 
        set(handles.edit66,'Enable','on'); 
        set(handles.edit67,'Enable','on'); 
        set(handles.text22,'Enable','on'); 
    end 
  
    set(handles.edit4,'Enable','on'); 
    set(handles.text6,'Enable','on'); 
    set(handles.text5,'Enable','on'); 
  
    set(handles.pushbutton4,'Enable','on'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit1,'Enable','off'); 
    set(handles.text1,'Enable','off'); 
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    set(handles.text2,'Enable','off'); 
  
    set(handles.edit69,'Enable','off'); 
    set(handles.text23,'Enable','off'); 
case 3 
    set(handles.edit36,'Enable','off'); 
    set(handles.edit37,'Enable','off'); 
    set(handles.edit38,'Enable','off'); 
    set(handles.edit39,'Enable','off'); 
    set(handles.edit40,'Enable','off'); 
    set(handles.edit41,'Enable','off'); 
    set(handles.edit42,'Enable','off'); 
    set(handles.edit43,'Enable','off'); 
    set(handles.edit44,'Enable','off'); 
  
    set(handles.edit15,'Enable','off'); 
    set(handles.edit16,'Enable','off'); 
    set(handles.edit17,'Enable','off'); 
  
    set(handles.text15,'Enable','off'); 
    set(handles.text16,'Enable','off'); 
    set(handles.text17,'Enable','off'); 
    set(handles.text18,'Enable','off'); 
  
    set(handles.edit45,'Enable','off'); 
    set(handles.text14,'Enable','off'); 
    set(handles.text13,'Enable','off'); 
  
    set(handles.pushbutton3,'Enable','off'); 
    set(handles.popupmenu20,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit62,'Enable','off'); 
    set(handles.edit63,'Enable','off'); 
    set(handles.edit64,'Enable','off'); 
    set(handles.text21,'Enable','off'); 
  
    set(handles.edit65,'Enable','off'); 
    set(handles.edit66,'Enable','off'); 
    set(handles.edit67,'Enable','off'); 
    set(handles.text22,'Enable','off'); 
  
    set(handles.edit4,'Enable','off'); 
    set(handles.text6,'Enable','off'); 
    set(handles.text5,'Enable','off'); 
  
    set(handles.pushbutton4,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit1,'Enable','on'); 
    set(handles.text1,'Enable','on'); 
    set(handles.text2,'Enable','on'); 
  
    set(handles.edit69,'Enable','off'); 
    set(handles.text23,'Enable','off'); 
case 4 
    set(handles.edit36,'Enable','off'); 
    set(handles.edit37,'Enable','off'); 
    set(handles.edit38,'Enable','off'); 
    set(handles.edit39,'Enable','off'); 
    set(handles.edit40,'Enable','off'); 
    set(handles.edit41,'Enable','off'); 
    set(handles.edit42,'Enable','off'); 
    set(handles.edit43,'Enable','off'); 
    set(handles.edit44,'Enable','off'); 
  
    set(handles.edit15,'Enable','off'); 
    set(handles.edit16,'Enable','off'); 
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    set(handles.edit17,'Enable','off'); 
  
    set(handles.text15,'Enable','off'); 
    set(handles.text16,'Enable','off'); 
    set(handles.text17,'Enable','off'); 
    set(handles.text18,'Enable','off'); 
  
    set(handles.edit45,'Enable','off'); 
    set(handles.text14,'Enable','off'); 
    set(handles.text13,'Enable','off'); 
  
    set(handles.pushbutton3,'Enable','off'); 
    set(handles.popupmenu20,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit62,'Enable','off'); 
    set(handles.edit63,'Enable','off'); 
    set(handles.edit64,'Enable','off'); 
    set(handles.text21,'Enable','off'); 
  
    set(handles.edit65,'Enable','off'); 
    set(handles.edit66,'Enable','off'); 
    set(handles.edit67,'Enable','off'); 
    set(handles.text22,'Enable','off'); 
  
    set(handles.edit4,'Enable','off'); 
    set(handles.text6,'Enable','off'); 
    set(handles.text5,'Enable','off'); 
  
    set(handles.pushbutton4,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit1,'Enable','on'); 
    set(handles.text1,'Enable','on'); 
    set(handles.text2,'Enable','on'); 
  
    set(handles.edit69,'Enable','on'); 
    set(handles.text23,'Enable','on'); 
case 5 
    set(handles.edit36,'Enable','off'); 
    set(handles.edit37,'Enable','off'); 
    set(handles.edit38,'Enable','off'); 
    set(handles.edit39,'Enable','off'); 
    set(handles.edit40,'Enable','off'); 
    set(handles.edit41,'Enable','off'); 
    set(handles.edit42,'Enable','off'); 
    set(handles.edit43,'Enable','off'); 
    set(handles.edit44,'Enable','off'); 
  
    set(handles.edit15,'Enable','off'); 
    set(handles.edit16,'Enable','off'); 
    set(handles.edit17,'Enable','off'); 
  
    set(handles.text15,'Enable','off'); 
    set(handles.text16,'Enable','off'); 
    set(handles.text17,'Enable','off'); 
    set(handles.text18,'Enable','off'); 
  
    set(handles.edit45,'Enable','off'); 
    set(handles.text14,'Enable','off'); 
    set(handles.text13,'Enable','off'); 
  
    set(handles.pushbutton3,'Enable','off'); 
    set(handles.popupmenu20,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit62,'Enable','off'); 
    set(handles.edit63,'Enable','off'); 
    set(handles.edit64,'Enable','off'); 
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    set(handles.text21,'Enable','off'); 
  
    set(handles.edit65,'Enable','off'); 
    set(handles.edit66,'Enable','off'); 
    set(handles.edit67,'Enable','off'); 
    set(handles.text22,'Enable','off'); 
  
    set(handles.edit4,'Enable','off'); 
    set(handles.text6,'Enable','off'); 
    set(handles.text5,'Enable','off'); 
  
    set(handles.pushbutton4,'Enable','off'); 
%%%%%%%%%%%%%%%%%%%%%%% 
    set(handles.edit1,'Enable','on'); 
    set(handles.text1,'Enable','on'); 
    set(handles.text2,'Enable','on'); 
  
    set(handles.edit69,'Enable','off'); 
    set(handles.text23,'Enable','off'); 
  
    if (VAR_SCREENOPN ~= 1) 
        WMRA_screen ('1'); 
        drawnow; 
    end 
end 
  
% Hints: contents = get(hObject,'String') returns popupmenu17 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu17 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu17_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit36_Callback(hObject, eventdata, handles) 
% hObject    handle to edit36 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit36 as text 
%        str2double(get(hObject,'String')) returns contents of edit36 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit36_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit36 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit37_Callback(hObject, eventdata, handles) 
% hObject    handle to edit37 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit37 as text 
%        str2double(get(hObject,'String')) returns contents of edit37 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit37_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit37 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit38_Callback(hObject, eventdata, handles) 
% hObject    handle to edit38 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit38 as text 
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%        str2double(get(hObject,'String')) returns contents of edit38 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit38_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit38 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit39_Callback(hObject, eventdata, handles) 
% hObject    handle to edit39 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit39 as text 
%        str2double(get(hObject,'String')) returns contents of edit39 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit39_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit39 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit40_Callback(hObject, eventdata, handles) 
% hObject    handle to edit40 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit40 as text 
%        str2double(get(hObject,'String')) returns contents of edit40 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit40_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit40 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit41_Callback(hObject, eventdata, handles) 
% hObject    handle to edit41 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit41 as text 
%        str2double(get(hObject,'String')) returns contents of edit41 as a double 
  
% --- Executes during object creation, after setting all properties. 
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function edit41_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit41 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit42_Callback(hObject, eventdata, handles) 
% hObject    handle to edit42 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit42 as text 
%        str2double(get(hObject,'String')) returns contents of edit42 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit42_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit42 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit43_Callback(hObject, eventdata, handles) 
% hObject    handle to edit43 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit43 as text 
%        str2double(get(hObject,'String')) returns contents of edit43 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit43_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit43 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit44_Callback(hObject, eventdata, handles) 
% hObject    handle to edit44 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit44 as text 
%        str2double(get(hObject,'String')) returns contents of edit44 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit44_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit44 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit16_Callback(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit16 as text 
%        str2double(get(hObject,'String')) returns contents of edit16 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit16_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit15_Callback(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit15 as text 
%        str2double(get(hObject,'String')) returns contents of edit15 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit15_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit17_Callback(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit17 as text 
%        str2double(get(hObject,'String')) returns contents of edit17 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit17_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit49_Callback(hObject, eventdata, handles) 
% hObject    handle to edit49 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit49 as text 
%        str2double(get(hObject,'String')) returns contents of edit49 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit49_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit49 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit50_Callback(hObject, eventdata, handles) 
% hObject    handle to edit50 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit50 as text 
%        str2double(get(hObject,'String')) returns contents of edit50 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit50_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit50 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit51_Callback(hObject, eventdata, handles) 
% hObject    handle to edit51 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit51 as text 
%        str2double(get(hObject,'String')) returns contents of edit51 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit51_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit51 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
  
function edit52_Callback(hObject, eventdata, handles) 
% hObject    handle to edit52 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit52 as text 
%        str2double(get(hObject,'String')) returns contents of edit52 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit52_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit52 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit53_Callback(hObject, eventdata, handles) 
% hObject    handle to edit53 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit53 as text 
%        str2double(get(hObject,'String')) returns contents of edit53 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit53_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit53 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit54_Callback(hObject, eventdata, handles) 
% hObject    handle to edit54 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit54 as text 
%        str2double(get(hObject,'String')) returns contents of edit54 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit54_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit54 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit55_Callback(hObject, eventdata, handles) 
% hObject    handle to edit55 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit55 as text 
%        str2double(get(hObject,'String')) returns contents of edit55 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit55_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit55 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit56_Callback(hObject, eventdata, handles) 
% hObject    handle to edit56 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit56 as text 
%        str2double(get(hObject,'String')) returns contents of edit56 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit56_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit56 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit57_Callback(hObject, eventdata, handles) 
% hObject    handle to edit57 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit57 as text 
%        str2double(get(hObject,'String')) returns contents of edit57 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit57_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit57 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit58_Callback(hObject, eventdata, handles) 
% hObject    handle to edit58 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit58 as text 
%        str2double(get(hObject,'String')) returns contents of edit58 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit58_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit58 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit45_Callback(hObject, eventdata, handles) 
% hObject    handle to edit45 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit45 as text 
%        str2double(get(hObject,'String')) returns contents of edit45 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit45_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit45 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu20. 
function popupmenu20_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu20 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu20 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu20 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu20_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu20 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit62_Callback(hObject, eventdata, handles) 
% hObject    handle to edit62 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of edit62 as text 
%        str2double(get(hObject,'String')) returns contents of edit62 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit62_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit62 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit63_Callback(hObject, eventdata, handles) 
% hObject    handle to edit63 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit63 as text 
%        str2double(get(hObject,'String')) returns contents of edit63 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit63_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit63 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit64_Callback(hObject, eventdata, handles) 
% hObject    handle to edit64 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit64 as text 
%        str2double(get(hObject,'String')) returns contents of edit64 as a double 
% --- Executes during object creation, after setting all properties. 
function edit64_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit64 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit65_Callback(hObject, eventdata, handles) 
% hObject    handle to edit65 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit65 as text 
%        str2double(get(hObject,'String')) returns contents of edit65 as a double 
  
% --- Executes during object creation, after setting all properties. 
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function edit65_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit65 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit66_Callback(hObject, eventdata, handles) 
% hObject    handle to edit66 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit66 as text 
%        str2double(get(hObject,'String')) returns contents of edit66 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit66_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit66 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit67_Callback(hObject, eventdata, handles) 
% hObject    handle to edit67 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit67 as text 
%        str2double(get(hObject,'String')) returns contents of edit67 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit67_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit67 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu21. 
function popupmenu21_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu21 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu21 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu21 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu21_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu21 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit69_Callback(hObject, eventdata, handles) 
% hObject    handle to edit69 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit69 as text 
%        str2double(get(hObject,'String')) returns contents of edit69 as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit69_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit69 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_MATRIX 
  
if (get(handles.popupmenu1, 'Value') == 1) 
    WMRA_matrix_entry('(3 x 4)'); 
    TS = str2num(VAR_MATRIX); 
    [row col] = size(TS); 
  
    if ((row == 3) && (col == 4)) 
        set (handles.edit36, 'String', TS(1,1)); 
        set (handles.edit37, 'String', TS(1,2)); 
        set (handles.edit38, 'String', TS(1,3)); 
        set (handles.edit16, 'String', TS(1,4)); 
        set (handles.edit39, 'String', TS(2,1)); 
        set (handles.edit40, 'String', TS(2,2)); 
        set (handles.edit41, 'String', TS(2,3)); 
        set (handles.edit15, 'String', TS(2,4)); 
        set (handles.edit42, 'String', TS(3,1)); 
        set (handles.edit43, 'String', TS(3,2)); 
        set (handles.edit44, 'String', TS(3,3)); 
        set (handles.edit17, 'String', TS(3,4)); 
    else 
        WMRA_error_gui ('Matrix size wrong. Size (3 x 4) expected'); 
    end 
else 
    WMRA_matrix_entry('(3 x 1)'); 
    TS = str2num(VAR_MATRIX); 
    [row col] = size(TS); 
  
    if ((row == 3) && (col == 1)) 
        set (handles.edit16, 'String', TS(1,1)); 
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        set (handles.edit15, 'String', TS(2,1)); 
        set (handles.edit17, 'String', TS(3,1)); 
    else 
        WMRA_error_gui ('Matrix size wrong. Size (3 x 1) expected'); 
    end 
end 
  
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_MATRIX 
  
if (get(handles.popupmenu1, 'Value') == 1) 
    WMRA_matrix_entry('(2 x 3)'); 
    TS = str2num(VAR_MATRIX); 
    [row col] = size(TS); 
  
    if ((row == 2) && (col == 3)) 
        set (handles.edit62, 'String', TS(1,1)); 
        set (handles.edit63, 'String', TS(1,2)); 
        set (handles.edit64, 'String', TS(1,3)); 
        set (handles.edit65, 'String', TS(2,1)); 
        set (handles.edit66, 'String', TS(2,2)); 
        set (handles.edit67, 'String', TS(2,3)); 
    else 
        WMRA_error_gui ('Matrix size wrong. Size (2 x 3) expected'); 
    end 
else 
    WMRA_matrix_entry('(1 x 3)'); 
    TS = str2num(VAR_MATRIX); 
    [row col] = size(TS); 
  
    if ((row == 1) && (col == 3)) 
        set (handles.edit62, 'String', TS(1,1)); 
        set (handles.edit63, 'String', TS(1,2)); 
        set (handles.edit64, 'String', TS(1,3)); 
    else 
        WMRA_error_gui ('Matrix size wrong. Size (1 x 3) expected'); 
    end 
end 
  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles, varargin) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_MATRIX 
  
WMRA_matrix_entry('(3 x 1)'); 
TS = str2num(VAR_MATRIX); 
[row col] = size(TS); 
  
if ((row == 3) && (col == 1)) 
    set (handles.edit56, 'String', TS(1,1)); 
    set (handles.edit57, 'String', TS(2,1)); 
    set (handles.edit58, 'String', TS(3,1)); 
else 
    WMRA_error_gui ('Matrix size wrong. Size (3 x 1) expected'); 
end 
  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
global VAR_MATRIX 
  
WMRA_matrix_entry('(7 x 1)'); 
TS = str2num(VAR_MATRIX); 
[row col] = size(TS); 
  
if ((row == 7) && (col == 1)) 
    set (handles.edit49, 'String', TS(1,1)); 
    set (handles.edit50, 'String', TS(2,1)); 
    set (handles.edit51, 'String', TS(3,1)); 
    set (handles.edit52, 'String', TS(4,1)); 
    set (handles.edit53, 'String', TS(5,1)); 
    set (handles.edit54, 'String', TS(6,1)); 
    set (handles.edit55, 'String', TS(7,1)); 
else 
    WMRA_error_gui ('Matrix size wrong. Size (7 x 1) expected'); 
end 
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_STOP 
  
VAR_STOP = 1; 
drawnow; 
  
set(handles.pushbutton1,'Enable','off'); 
set(handles.pushbutton7,'Enable','off'); 
set(handles.pushbutton8,'Enable','on'); 
set(handles.pushbutton2,'Enable','on'); 
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_STOP 
global VAR_DX 
global VAR_SCREENOPN 
global VAR_WCI 
global VAR_QI 
global spdata1 
global VAR_LOOP 
  
VAR_DX = [0;0;0;0;0;0;0]; 
VAR_STOP = 0; 
  
error = 0; 
notfilled = 0; 
td_err = 0; 
ts_err = 0; 
  
set(handles.pushbutton1,'Enable','on'); 
set(handles.pushbutton2,'Enable','off'); 
set(handles.pushbutton8,'Enable','off'); 
  
if (get(handles.popupmenu17, 'Value') == 3) || (get(handles.popupmenu17, 'Value') == 4) 
|| (get(handles.popupmenu17, 'Value') == 5) 
    set(handles.pushbutton7,'Enable','on'); 
    VAR_LOOP = 1; 
end 
  
cart = get(handles.popupmenu1, 'Value'); 
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WCA = get(handles.popupmenu3, 'Value'); 
if WCA == 3 
    optim = 0; 
    JLA = 0; 
    JLO = get(handles.checkbox2, 'Value'); 
else 
    optim = get(handles.popupmenu8, 'Value'); 
    JLA = get(handles.checkbox1, 'Value'); 
    JLO = get(handles.checkbox2, 'Value'); 
end 
  
coord = get(handles.popupmenu21, 'Value'); 
  
t1 = get(handles.popupmenu4, 'Value'); 
if t1 == 1 
    vr = 1; 
    ml = 0; 
elseif t1 == 2 
    vr = 0; 
    ml = 1; 
elseif t1 == 3 
    vr = 1; 
    ml = 1; 
else 
    vr = 0; 
    ml = 0; 
end 
  
arm = get(handles.popupmenu6, 'Value'); 
arm = arm - 1; 
plt = get(handles.popupmenu7, 'Value'); 
choice8 = get(handles.popupmenu10, 'Value'); 
  
drawnow; 
if VAR_STOP == 1 
    stop = 1; 
else 
    stop = 0; 
end 
  
if stop == 0 
    cont = get(handles.popupmenu17, 'Value'); 
    if cont == 1 
        if cart == 1 
                v_str = get(handles.edit36, 'String'); 
                v_1 =  str2double(v_str); 
                if isnan (v_1) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_1 > 1) || (v_1 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit37, 'String'); 
                v_2 =  str2double(v_str); 
                if isnan (v_2) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_2 > 1) || (v_2 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit38, 'String'); 
                v_3 =  str2double(v_str); 
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                if isnan (v_3) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_3 > 1) || (v_3 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit39, 'String'); 
                v_5 =  str2double(v_str); 
                if isnan (v_5) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_5 > 1) || (v_5 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit40, 'String'); 
                v_6 =  str2double(v_str); 
                if isnan (v_6) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_6 > 1) || (v_6 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit41, 'String'); 
                v_7 =  str2double(v_str); 
                if isnan (v_7) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_7 > 1) || (v_7 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit42, 'String'); 
                v_9 =  str2double(v_str); 
                if isnan (v_9) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_9 > 1) || (v_9 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit43, 'String'); 
                v_10 =  str2double(v_str); 
                if isnan (v_10) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_10 > 1) || (v_10 < -1) 
                    error = 1; 
                    td_err = 1; 
                end 
                v_str = get(handles.edit44, 'String'); 
                v_11 =  str2double(v_str); 
                if isnan (v_11) 
                    error = 1; 
                    notfilled = 1; 
                end 
                if (v_11 > 1) || (v_11 < -1) 
                    error = 1; 
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                    td_err = 1; 
                end 
        else 
            v_1 = 1; 
            v_2 = 0; 
            v_3 = 0; 
            v_5 = 0; 
            v_6 = 1; 
            v_7 = 0; 
            v_9 = 0; 
            v_10 = 0; 
            v_11 = 1; 
        end 
        v_str = get(handles.edit16, 'String'); 
        v_4 =  str2double(v_str); 
        if isnan (v_4) 
            error = 1; 
            notfilled = 1; 
        end 
        v_str = get(handles.edit15, 'String'); 
        v_8 =  str2double(v_str); 
        if isnan (v_8) 
            error = 1; 
            notfilled = 1; 
        end 
        v_str = get(handles.edit17, 'String'); 
        v_12 =  str2double(v_str); 
        if isnan (v_12) 
            error = 1; 
            notfilled = 1; 
        end 
        Td = [v_1 v_2 v_3 v_4; v_5 v_6 v_7 v_8; v_9 v_10 v_11 v_12; 0 0 0 1]; 
  
        temp_str = get(handles.edit45, 'String'); 
        v = str2double(temp_str); 
        if isnan (v) 
            error = 1; 
            notfilled = 1; 
        end 
        trajf = get(handles.popupmenu20, 'Value'); 
    elseif cont == 2 
        v_str = get(handles.edit62, 'String'); 
        v_1 =  str2double(v_str); 
        if isnan (v_1) 
            error = 1; 
            notfilled = 1; 
        end 
        v_str = get(handles.edit63, 'String'); 
        v_2 =  str2double(v_str); 
        if isnan (v_2) 
            error = 1; 
            notfilled = 1; 
        end 
        v_str = get(handles.edit64, 'String'); 
        v_3 =  str2double(v_str); 
        if isnan (v_3) 
            error = 1; 
            notfilled = 1; 
        end 
        if (cart == 1) 
            v_str = get(handles.edit65, 'String'); 
            v_4 =  str2double(v_str); 
            if isnan (v_4) 
                error = 1; 
                notfilled = 1; 
            end 
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            v_str = get(handles.edit66, 'String'); 
            v_5 =  str2double(v_str); 
            if isnan (v_5) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit67, 'String'); 
            v_6 =  str2double(v_str); 
            if isnan (v_6) 
                error = 1; 
                notfilled = 1; 
            end 
        end 
        if (cart == 1) 
            Vd = [v_1; v_2; v_3; v_4; v_5; v_6]; 
        else 
            Vd = [v_1; v_2; v_3]; 
        end 
  
        temp_str = get(handles.edit4, 'String'); 
        ts = str2double(temp_str); 
        if isnan (ts) 
            error = 1; 
            notfilled = 1; 
        end 
        if ts < 0 
            error = 1; 
            ts_err = 1; 
        end 
    else 
        temp_str = get(handles.edit1, 'String'); 
        v = str2double(temp_str); 
        if isnan (v) 
            error = 1; 
            notfilled = 1; 
        end 
        if cont == 4 
            temp_str = get(handles.edit69, 'String'); 
            port1 = str2double(temp_str); 
            if isnan (port1) 
                error = 1; 
                notfilled = 1; 
            end 
        end 
    end 
end 
  
if stop == 0 
    drawnow; 
    if VAR_STOP == 1 
        stop = 1; 
    else 
        stop = 0; 
    end 
  
    if stop == 0 
        start = get(handles.popupmenu15, 'Value'); 
        if start == 1 
            if vr == 1 || ml == 1 || arm == 1 
                if (get(handles.popupmenu16, 'Value') == 1) 
                    ini = 1; 
                else 
                    ini = 0; 
                end 
            else 
                ini = 0; 
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            end 
            qi = [90;90;0;90;90;90;0] * pi/180; 
            VAR_QI = qi; 
            WCi = [0;0;0]; 
            VAR_WCI = WCi; 
        else 
            v_str = get(handles.edit49, 'String'); 
            v_1 =  str2double(v_str); 
            if isnan (v_1) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit50, 'String'); 
            v_2 =  str2double(v_str); 
            if isnan (v_2) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit51, 'String'); 
            v_3 =  str2double(v_str); 
            if isnan (v_3) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit52, 'String'); 
            v_4 =  str2double(v_str); 
            if isnan (v_4) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit53, 'String'); 
            v_5 =  str2double(v_str); 
            if isnan (v_5) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit54, 'String'); 
            v_6 =  str2double(v_str); 
            if isnan (v_6) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit55, 'String'); 
            v_7 =  str2double(v_str); 
            if isnan (v_7) 
                error = 1; 
                notfilled = 1; 
            end 
            qi = [v_1; v_2; v_3; v_4; v_5; v_6; v_7]; 
            VAR_QI = qi; 
  
            v_str = get(handles.edit56, 'String'); 
            v_1 =  str2double(v_str); 
            if isnan (v_1) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit57, 'String'); 
            v_2 =  str2double(v_str); 
            if isnan (v_2) 
                error = 1; 
                notfilled = 1; 
            end 
            v_str = get(handles.edit58, 'String'); 
            v_3 =  str2double(v_str); 
            if isnan (v_3) 
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                error = 1; 
                notfilled = 1; 
            end 
            WCi = [v_1; v_2; v_3]; 
            VAR_WCI = WCi; 
  
            ini = 0; 
        end 
  
        choice6 = get(handles.popupmenu11, 'Value'); 
        if (choice6 == 1) 
            choice7 = get(handles.popupmenu14, 'Value'); 
        end 
    end 
end 
  
if (error == 1) 
    if notfilled == 1 
        WMRA_error_gui ('One or more required inputs are not filled or filled wrongly'); 
    end 
    if td_err == 1 
        WMRA_error_gui ('Elements of Rd (Rotation Matrix) should be in between -1 to 
+1'); 
    end 
    if ts_err == 1 
        WMRA_error_gui ('Ts should be greater than zero'); 
    end 
end 
  
if cont == 5 
    if (VAR_SCREENOPN ~= 1) 
        WMRA_screen ('1'); 
        drawnow; 
    end 
end 
  
% Declaring a global variable for Optimization in WMRA_Opt(): 
global dHo 
  
if (stop == 0) && (error == 0)   %Redwan's Code Entry 
    drawnow; 
    if VAR_STOP == 1 
        stop = 1; 
    else 
        stop = 0; 
    end 
  
    if stop == 0    % 1st point 
        % This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots 
for 9 DOF. All angles are in Radians. 
        % Defining used parameters: 
        d2r=pi/180; % Conversions from Degrees to Radians. 
        r2d=180/pi; % Conversions from Radians to Degrees. 
  
        % Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
        L=WMRA_WCD; 
  
        % Calculating the Transformation Matrix of the initial position of the WMRA's 
base: 
        Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3)); 
         
        % Calculating the initial Wheelchair Variables: 
        qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)]; 
  
        % Calculating the initial transformation matrices: 
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        [Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi, [0;0], Tiwc); 
  
        if cont==1 
            % Calculating the linear distance from the initial position to the desired 
position and the linear velocity: 
            if coord==2 
                D=sqrt( (Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2); 
            elseif coord==3 
                D=sqrt( (Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2); 
            else 
                D=sqrt( (Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-Ti(3,4))^2); 
            end 
            % Calculating the number of iteration and the time increment (delta t) if the 
linear step increment of the tip is 1 mm: 
            dt=0.05;    % Time increment in seconds. 
            total_time=D/v;     % Total time of animation. 
            n=round(total_time/dt); % Number of iterations rounded up. 
            dt=total_time/n;    % Adjusted time increment in seconds. 
            % Calculating the Trajectory of the end effector, and once the trajectory is 
calculated, we should redefine "Td" based on the ground frame: 
            if coord==2 
                Tt=WMRA_traj(trajf, Tia, Td, n+1); 
                Td=Tiwc*Td; 
            elseif coord==3 
                Tt=WMRA_traj(trajf, eye(4), Td, n+1); 
                Td=Ti*Td; 
            else 
                Tt=WMRA_traj(trajf, Ti, Td, n+1); 
            end 
        elseif cont==2 
            % Calculating the number of iteration and the time increment (delta t) if the 
linear step increment of the gripper is 1 mm: 
            dt=0.05;    % Time increment in seconds. 
            total_time=ts;     % Total time of animation. 
            n=round(total_time/dt); % Number of iterations rounded up. 
            dt=total_time/n;    % Adjusted time increment in seconds. 
            dx=Vd*dt; 
            Td=Ti; 
        elseif cont==3 
            dt=0.05; 
            dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; spdata1(6)/1500 ; -
spdata1(4)/900 ; spdata1(5)/1300]; 
            dg=spdata1(7); 
            Td=Ti; 
            n=1; 
        elseif cont==4 
            dt=0.05; 
            dx=v*dt*WMRA_psy(port1); 
            dg=dx(7); 
            dx=dx(1:6); 
            Td=Ti; 
            n=1; 
        else 
            dt=0.05; 
            dx=v*dt*VAR_DX(1:6); 
            dg=VAR_DX(7); 
            Td=Ti; 
            n=1; 
        end 
  
        drawnow; 
        if VAR_STOP == 1 
            stop = 1; 
        else 
            stop = 0; 
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        end 
  
        if stop == 0    % 2nd point 
  
            % Initializing the joint angles, the Transformation Matrix, and time: 
            dq=zeros(9,1); 
            dg=0; 
            qo=[qi;qiwc]; 
            To=Ti; 
            Toa=Tia; 
            Towc=Tiwc; 
            tt=0; 
            i=1; 
            dHo=[0;0;0;0;0;0;0]; 
  
            % Initializing the WMRA: 
            if ini==0   % When no "park" to "ready" motion required. 
                % Initializing Virtual Reality Animation: 
                if vr==1 
                    WMRA_VR_Animation(1, Towc, qo); 
                end 
                % Initializing Robot Animation in Matlab Graphics: 
                if ml==1 
                    WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, T56, 
T67); 
                end 
                % Initializing the Physical Arm: 
                if arm==1 
                    WMRA_ARM_Motion(1, 2, [qo;dg], 0); 
                    ddt=0; 
                end 
            elseif ini==1 && (vr==1 || ml==1 || arm==1)  % When "park" to "ready" motion 
is required. 
                WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9)); 
                if arm==1 
                    ddt=0; 
                end 
            end 
  
            % Re-Drawing the Animation: 
            if vr==1 || ml==1 
                drawnow; 
            end 
  
            % Starting a timer: 
            tic 
  
            drawnow; 
            if VAR_STOP == 1 
                stop = 1; 
            else 
                stop = 0; 
            end 
  
            % Starting the Iteration Loop: 
            while (i<=(n+1)) && (stop == 0) % 3rd point 
                % Calculating the 6X7 Jacobian of the arm in frame 0: 
                [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67); 
  
                % Calculating the 6X2 Jacobian based on the WMRA's base in the ground 
frame: 
                phi=atan2(Towc(2,1),Towc(1,1)); 
                Jowc=WMRA_Jga(1, phi, Toa(1:2,4)); 
  
                % Changing the Jacobian reference frame based on the choice of which 
coordinates frame are referenced in the Cartesian control: 
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                % coord=1 for Ground Coordinates Control. 
                % coord=2 for Wheelchair Coordinates Control. 
                % coord=3 for Gripper Coordinates Control. 
                if coord==2 
                    Joa=Joa; 
                    Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc; 
                elseif coord==3 
                    Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa; 
                    Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc; 
                elseif coord==1 
                    Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa; 
                    Jowc=Jowc; 
                end 
  
                % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system based 
on the ground frame: 
                if cart==2 
                    Joa=Joa(1:3,1:7); 
                    detJoa=sqrt(det(Joa*Joa')); 
                    Jowc=Jowc(1:3,1:2); 
                    Jo=[Joa Jowc]; 
                    detJo=sqrt(det(Jo*Jo')); 
                else 
                    Jo=[Joa Jowc]; 
                    detJo=sqrt(det(Jo*Jo')); 
                end 
  
                % Finding the Cartesian errors of the end effector: 
                if cont==1 
                    % Calculating the Position and Orientation errors of the end 
effector, and the rates of motion of the end effector:             
                    if coord==2 
                        invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0 1]; 
                        Ttnew=invTowc*Tiwc*Tt(:,:,i); 
                        dx=WMRA_delta(Toa, Ttnew); 
                    elseif coord==3 
                        invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1]; 
                        Ttnew=invTo*Ti*Tt(:,:,i); 
                        dx=WMRA_delta(eye(4), Ttnew); 
                    else 
                        dx=WMRA_delta(To, Tt(:,:,i)); 
                    end    
                elseif cont==2 
  
                elseif cont==3 
                    dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
                    dg=spdata1(7); 
                elseif cont==4 
                    dx=v*dt*WMRA_psy(port1); 
                    dg=dx(7); 
                    dx=dx(1:6); 
                else 
                    dx=v*dt*VAR_DX(1:6); 
                    dg=VAR_DX(7); 
                end 
  
                % Changing the order of Cartesian motion in the case when gripper 
reference frame is selected for control with the screen or psy or SpaceBall interfaces:  
                if coord==3 && cont>=3 
                    dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)]; 
                end 
  
                if cart==2 
                    dx=dx(1:3); 
                end 
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                % Calculating the resolved rate with optimization: 
                % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= SR-I & 
ENE, 4= P-I & ENE: 
                if WCA==2 
                    dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt, qo); 
                    dq=[dq;0;0]; 
                elseif WCA==3 
                    dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 1); 
                    dq=[0;0;0;0;0;0;0;dq];    
                else 
                    dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, qo); 
                end 
  
                drawnow; 
                if VAR_STOP == 1 
                    stop = 1; 
                else 
                    stop = 0; 
                end 
  
                if stop == 0    % 4nd point 
  
                    % Calculating the new Joint Angles: 
                    qn=qo+dq; 
  
                    % Calculating the new Transformation Matrices: 
                    [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, 
dq(8:9), Towc); 
  
                    % A safety condition function to stop the joints that may cause 
colision of the arm with itself, the wheelchair, or the human user: 
                    if JLO==1 && WCA~=3 
                        dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56, T67); 
                        % Re-calculating the new Joint Angles: 
                        qn=qo+dq; 
                        % Re-calculating the new Transformation Matrices: 
                        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, 
qn, dq(8:9), Towc); 
                    end 
  
                    % Saving the plot data in case plots are required: 
                    if plt==2 
                        WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, 
detJo); 
                    end 
  
                    % Updating Physical Arm: 
                    if arm==1 
                        ddt=ddt+dt; 
                        if ddt>=0.5 || i>=(n+1) 
                            WMRA_ARM_Motion(2, 1, [qn;dg], ddt); 
                            ddt=0; 
                        end 
                    end 
  
                    % Updating Virtual Reality Animation: 
                    if vr==1 
                        WMRA_VR_Animation(2, Tnwc, qn); 
                    end 
  
                    % Updating Matlab Graphics Animation: 
                    if ml==1 
                        WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, T56, 
T67); 
                    end 
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                    % Re-Drawing the Animation: 
                    if vr==1 || ml==1 
                        drawnow; 
                    end 
  
                    % Updating the old values with the new values for the next iteration: 
                    qo=qn; 
                    To=Tn; 
                    Toa=Tna; 
                    Towc=Tnwc; 
                    tt=tt+dt; 
                    i=i+1; 
  
                    % Stopping the simulation when the exit button is pressed: 
                    if cont==3 || cont==4 
                        if (VAR_LOOP == 1) 
                            n=n+1; 
                        else 
                            break 
                        end 
                    end 
                    if cont==5 
                        if (VAR_SCREENOPN == 1) && (VAR_LOOP == 1) 
                            n=n+1; 
                        else 
                            break 
                        end 
                    end 
  
                    % Delay to comply with the required speed: 
                    if toc < tt 
                        pause(tt-toc); 
                    end 
                end 
  
                drawnow;    % 5th point 
                if VAR_STOP == 1 
                    stop = 1; 
                else 
                    stop = 0; 
                end 
            end 
  
            drawnow;    % 6th point 
            if VAR_STOP == 1 
                stop = 1; 
            else 
                stop = 0; 
            end 
  
            if stop == 0    % 7th point 
                % Reading the elapsed time and printing it with the simulation time: 
                if cont==1 || cont==2, fprintf('\nSimulation time is %6.6f seconds.\n' , 
total_time); end 
                toc 
  
                % Plotting: 
                if plt==2 
                    WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
                end 
  
                if vr==1 || ml==1 || arm==1 
  
                    % Going back to the ready position: 
                    if choice6==1 
                        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
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                        % Going back to the parking position: 
                        if choice7==1 
                            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
                        end 
                    end 
  
                    % Closing the Arm library and Matlab Graphics Animation and Virtual 
Reality Animation and Plots windows:or press "2" for No. \n','s'); 
                    if choice8==1 
                        if arm==1 
                            WMRA_ARM_Motion(3, 0, 0, 0); 
                        end 
                        if vr==1 
                            WMRA_VR_Animation(3, 0, 0); 
                        end 
                        if ml==1 
                            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
                        end 
                        if plt==2 
                            close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),figure(9),figure(1
0)); 
                        end 
                    end 
  
                end 
            end 
  
        end 
    end 
end 
  
VAR_QI = qn(1:7); 
VAR_WCI = [Tnwc(1,4); Tnwc(2,4); phi]; 
  
if (get(handles.popupmenu15, 'Value') == 2) 
    set (handles.edit49, 'String', VAR_QI(1,1)); 
    set (handles.edit50, 'String', VAR_QI(2,1)); 
    set (handles.edit51, 'String', VAR_QI(3,1)); 
    set (handles.edit52, 'String', VAR_QI(4,1)); 
    set (handles.edit53, 'String', VAR_QI(5,1)); 
    set (handles.edit54, 'String', VAR_QI(6,1)); 
    set (handles.edit55, 'String', VAR_QI(7,1)); 
  
    set (handles.edit56, 'String', VAR_WCI(1,1)); 
    set (handles.edit57, 'String', VAR_WCI(2,1)); 
    set (handles.edit58, 'String', VAR_WCI(3,1)); 
end 
  
set(handles.pushbutton1,'Enable','off'); 
set(handles.pushbutton7,'Enable','off'); 
set(handles.pushbutton2,'Enable','on'); 
set(handles.pushbutton8,'Enable','on'); 
  
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global VAR_LOOP 
  
VAR_LOOP = 0; 
drawnow; 
  
set(handles.pushbutton1,'Enable','off'); 
set(handles.pushbutton7,'Enable','off'); 
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set(handles.pushbutton2,'Enable','on'); 
set(handles.pushbutton8,'Enable','on'); 
  
% --- Executes on button press in checkbox1. 
function checkbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of checkbox1 
  
% --- Executes on button press in checkbox2. 
function checkbox2_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of checkbox2 
  
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
%%%%%%%%%%%%%%%%%%1st coll 
  
set(handles.popupmenu1,'Enable','on'); 
set(handles.popupmenu1,'Value',1); 
  
set(handles.popupmenu3,'Enable','on'); 
set(handles.popupmenu3,'Value',1); 
  
set(handles.popupmenu21,'Enable','on'); 
set(handles.popupmenu21,'Value',1); 
  
set(handles.popupmenu4,'Enable','on'); 
set(handles.popupmenu4,'Value',1); 
  
set(handles.popupmenu6,'Enable','on'); 
set(handles.popupmenu6,'Value',1); 
  
set(handles.popupmenu7,'Enable','on'); 
set(handles.popupmenu7,'Value',1); 
  
set(handles.popupmenu8,'Enable','on'); 
set(handles.popupmenu8,'Value',1); 
  
set(handles.checkbox1,'Enable','on'); 
set (handles.checkbox1, 'Value', 1); 
set(handles.checkbox2,'Enable','on'); 
set (handles.checkbox2, 'Value', 1); 
  
set(handles.popupmenu10,'Enable','on'); 
set(handles.popupmenu10,'Value',1); 
  
%%%%%%%%%%%%%%%%%%2nd coll 
  
set(handles.popupmenu17,'Enable','on'); 
set(handles.popupmenu17,'Value',1); 
  
set (handles.edit36, 'String', 0); 
set (handles.edit37, 'String', 0); 
set (handles.edit38, 'String', 1); 
set (handles.edit39, 'String', -1); 
set (handles.edit40, 'String', 0); 
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set (handles.edit41, 'String', 0); 
set (handles.edit42, 'String', 0); 
set (handles.edit43, 'String', -1); 
set (handles.edit44, 'String', 0); 
  
set(handles.edit36,'Enable','on'); 
set(handles.edit37,'Enable','on'); 
set(handles.edit38,'Enable','on'); 
set(handles.edit39,'Enable','on'); 
set(handles.edit40,'Enable','on'); 
set(handles.edit41,'Enable','on'); 
set(handles.edit42,'Enable','on'); 
set(handles.edit43,'Enable','on'); 
set(handles.edit44,'Enable','on'); 
  
set (handles.edit15, 'String', 369); 
set (handles.edit16, 'String', 1455); 
set (handles.edit17, 'String', 999); 
  
set(handles.edit15,'Enable','on'); 
set(handles.edit16,'Enable','on'); 
set(handles.edit17,'Enable','on'); 
  
set(handles.text15,'Enable','on'); 
set(handles.text16,'Enable','on'); 
set(handles.text17,'Enable','on'); 
set(handles.text18,'Enable','on'); 
  
set(handles.edit45, 'String', 100); 
set(handles.edit45,'Enable','on'); 
set(handles.text14,'Enable','on'); 
set(handles.text13,'Enable','on'); 
  
set(handles.pushbutton3,'Enable','on'); 
set(handles.popupmenu20,'Enable','on'); 
set(handles.popupmenu20,'Value',1); 
  
%%%%%%%%%%%%%%%%%%%%%%% 
  
set (handles.edit62, 'String', 70); 
set (handles.edit63, 'String', 70); 
set (handles.edit64, 'String', -70); 
set(handles.edit62,'Enable','off'); 
set(handles.edit63,'Enable','off'); 
set(handles.edit64,'Enable','off'); 
set(handles.text21,'Enable','off'); 
  
set (handles.edit65, 'String', 0.001); 
set (handles.edit66, 'String', 0.001); 
set (handles.edit67, 'String', 0.001); 
set(handles.edit65,'Enable','off'); 
set(handles.edit66,'Enable','off'); 
set(handles.edit67,'Enable','off'); 
set(handles.text22,'Enable','off'); 
  
set (handles.edit4, 'String', 2); 
set(handles.edit4,'Enable','off'); 
set(handles.text6,'Enable','off'); 
set(handles.text5,'Enable','off'); 
  
set(handles.pushbutton4,'Enable','off'); 
  
%%%%%%%%%%%%%%%%%%%%%%% 
  
set (handles.edit1, 'String', 50); 
set(handles.edit1,'Enable','off'); 
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set(handles.text1,'Enable','off'); 
set(handles.text2,'Enable','off'); 
  
set (handles.edit69, 'String', 19711); 
set(handles.edit69,'Enable','off'); 
set(handles.text23,'Enable','off'); 
  
set(handles.pushbutton7,'Enable','off'); 
  
%%%%%%%%%%%%%%%%%%3rd coll 
  
set(handles.popupmenu15,'Enable','on'); 
set(handles.popupmenu15,'Value',1); 
  
set(handles.popupmenu16,'Enable','on'); 
set(handles.popupmenu16,'Value',1); 
  
set (handles.edit49, 'String', 1.5708); 
set (handles.edit50, 'String', 1.5708); 
set (handles.edit51, 'String', 0); 
set (handles.edit52, 'String', 1.5708); 
set (handles.edit53, 'String', 1.5708); 
set (handles.edit54, 'String', 1.5708); 
set (handles.edit55, 'String', 0); 
  
set(handles.edit49,'Enable','off'); 
set(handles.edit50,'Enable','off'); 
set(handles.edit51,'Enable','off'); 
set(handles.edit52,'Enable','off'); 
set(handles.edit53,'Enable','off'); 
set(handles.edit54,'Enable','off'); 
set(handles.edit55,'Enable','off'); 
  
set(handles.pushbutton5,'Enable','off'); 
set(handles.pushbutton6,'Enable','off'); 
  
set (handles.edit56, 'String', 0); 
set (handles.edit57, 'String', 0); 
set (handles.edit58, 'String', 0); 
  
set(handles.edit56,'Enable','off'); 
set(handles.edit57,'Enable','off'); 
set(handles.edit58,'Enable','off'); 
  
set(handles.popupmenu11,'Enable','on'); 
set(handles.popupmenu11,'Value',1); 
  
set(handles.popupmenu14,'Enable','on'); 
set(handles.popupmenu14,'Value',1); 
  
set(handles.pushbutton2,'Enable','on'); 
set(handles.pushbutton1,'Enable','off'); 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix C. C++ Programs and DLL Library 
 

C.1. DLL Library Functions 
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C.2. DLL Library Documentation 

controlMotor.dll is a Windows DLL that includes functions for communicating with PIC-
SERVO (v.4, v.5 and v.10) modules. It can be used with almost all Windows 
programming languages. This DLL was created using Microsoft Visual Studio 2003, and 
the source code is included with the DLL. This portion is being developed by Mayur 
Palankar. 
 
Initialization/Closing 
 
1) Initialize PIC-SERVO Modules 
Opens the COM port and initializes the PIC-SERVO modules. 
 
Command: 
init 
 
Syntax: 
int init (int CommPort, long BaudRate, int fileOpen); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) or zero 
if no modules found 
Positive number: Success. Number corresponds to the number of modules found in the 
system. 
 
Arguments: 
CommPort: COM port number (1 to 8) 
BaudRate: Communication rate (19200, 57600, 115200 or 230400) 
fileOpen: Set PIC-SERVO modules based on the last stored configuration.(0 or 1) 
 
Description: 
Opens the COM port specified by CommPort at the specified BaudRate, and initializes 
the network of motor controllers. Controller addresses are dynamically assigned, starting 
with the furthest controller with address 1. All group addresses are set to 0xFF. Returns 
the number of controllers found on in the network. The PIC-SERVO modules are 
initialized to the last saved configuration if the fileOpen argument is passed a positive 
number else they are initialized to zero. Please note that this doesn’t mean the arm will 
move; this means the modules is assumed to be at the initial configuration that was saved 
previously. 
 
CommPort and BaudRate: These arguments tell which communication port and the rate 
at which it should communicate to it. 
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fileOpen: If a positive number is passed, the old configuration last stored (when close() is 
executed) will be restored. This is done using a file ‘configuration.txt’ which is local to 
this dll. If the file is not found, initial position are used. Any changes manually made to 
the file will also be reflected if the option is chosen. 
 
Examples: 
init(4, 19200, 0) 
This command will try to initialize the PIC-SERVO modules at COMM port 4 with a 
baud rate 19200 and they will be initialized at their start position (fileOpen = 0). 
 
2) Close communication 
Saves the current configuration, resets all the buffers and gracefully closes the COMM 
port. 
 
Command: 
close 
 
Syntax: 
int close (); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success. 
  
Description: 
This command saves the current configuration in the ‘configuration.txt’ file which is 
local to the dll. This file is used to open the PIC-SERVO modules in the previous 
configuration. It resets all the PIC-SERVO modules and shuts it down. 
 
NOTE: Any functions of this dll can’t be executed unless the init function is executed. 
After that, all functions (except init) can be executed. A new init function can only be 
executed unless the old connection is closed first. 
 
CAUTION: The init command creates threads for internal usage for each of the PIC-
SERVO modules found. For graceful shutdown, the close() should be executed. If the 
parent process using the dll doesn’t execute the close() before exiting, the lock on the 
PIC-SERVO modules still exist causing the system to behave unpredictably. This 
responsibility rests solely on the programmer using this dll. 
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Reset/Clear Motor 
 
1) Reset 
Resets a particular PIC-SERVO module or group of modules. 
 
Commands included: 
reset 
resetAll 
resetSelect 
 
Syntax: 
int reset (int module); 
int resetAll (); 
int resetSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command resets a PIC-SERVO motor module to its start up status. 
 
module: This argument describes the PIC-SERVO module address which has to be 
reseted. The number sent should be less than or equal to the number of modules present 
else it will result in an error (error code: -1). When an array of module number is passed, 
the index is used to address the module and its value decides if the motor module will be 
reseted or not. For ex. [1 0 1 1] when passed, will reset the motor module numbers 1, 3 
and 4; while the motor module number 2 wont be affected. The length of the array (in this 
case 4) should be less than or equal to the modules present in the circuit. 
  
Types: 
reset: This command is used to reset one PIC-SERVO module. 
resetAll: This command resets all the PIC-SERVO modules. 
resetSelect: Using this command, individual PIC-SERVO modules can be reseted. This 
command has the highest flexibility and the others are a special case of this command. 
 
Examples: 
reset(1) 
Resets the PIC-SERVO module 1 to its start up state. 
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2) Clears 
Clears a particular PIC-SERVO module or group of modules. 
 
Commands included: 
clear 
clearAll 
clearSelect 
 
Syntax: 
int clear (int module); 
int clearAll (); 
int clearSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command clears a PIC-SERVO motor module’s status bits. 
 
module: This argument describes the PIC-SERVO module address whose status bits have 
to be cleared. The number sent should be less than or equal to the number of modules 
present else it will result in an error (error code: -1). When an array of module number is 
passed, the index is used to address the module and its value decides if the motor module 
will be cleared or not. For ex. [1 0 1 1] when passed, will clear the motor module 
numbers 1, 3 and 4; while the motor module number 2 wont be affected. The length of 
the array (in this case 4) should be less than or equal to the modules present in the circuit. 
  
Types: 
clear: This command is used to clear one PIC-SERVO module. 
clearAll: This command clears all the PIC-SERVO modules. 
clearSelect: Using this command, individual PIC-SERVO modules can be cleared. This 
command has the highest flexibility and the others are a special case of this command. 
 
Examples: 
clear(1) 
Clears the PIC-SERVO module 1’s status bits. 
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Enable/Disable Motors 
 
1) Enable 
Enables a particular PIC-SERVO module or group of modules. 
 
Commands included: 
enable 
enableAll 
enableSelect 
Syntax: 
int enable (int module); 
int enableAll (); 
int enableSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command enables a PIC-SERVO motor module. Any move command can’t be 
executed if the motor modules are disabled. 
 
module: This argument describes the PIC-SERVO module address which has to be 
enabled. The number sent should be less than or equal to the number of modules present 
else it will result in an error (error code: -1). When an array of module numbers is passed, 
the index is used to address the module and its value decides if the motor module will be 
enabled or not. For ex. [1 0 1 1] when passed, will enable the motor module numbers 1, 3 
and 4; while the motor module number 2 wont be affected. The length of the array (in this 
case 4) should be less than or equal to the modules present in the circuit. 
  
Types: 
enable: This command is used to enable one PIC-SERVO module. 
enableAll: This command enables all the PIC-SERVO modules. 
enableSelect: Using this command, individual PIC-SERVO modules can be enabled. This 
command has the highest flexibility and the others are a special case of this command. 
 
Examples: 
enable(1) 
Enables the PIC-SERVO module 1. 
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2) Off 
Disables a particular PIC-SERVO module or group of modules. 
Commands included: 
off 
offAll 
offSelect 
 
Syntax: 
int off (int module); 
int offAll (); 
int offSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command disables a PIC-SERVO motor module. Any move command can now be 
executed. 
 
module: This argument describes the PIC-SERVO module address which has to be 
disabled. The number sent should be less than or equal to the number of modules present 
else it will result in an error (error code: -1). When an array of module number is passed, 
the index is used to address the module and its value decides if the motor module will be 
disabled or not. For ex. [1 0 1 1] when passed, will disable the motor module numbers 1, 
3 and 4; while the motor module number 2 wont be affected. The length of the array (in 
this case 4) should be less than or equal to the modules present in the circuit. 
  
Types: 
off: This command is used to disable one PIC-SERVO module. 
offAll: This command disables all the PIC-SERVO modules. 
offSelect: Using this command, individual PIC-SERVO modules can be disabled. This 
command has the highest flexibility and the others are a special case of this command. 
 
Examples: 
off(1) 
Disables the PIC-SERVO module 1. 
 
 
 



www.manaraa.com

Appendix C. (Continued) 
 

 409

Move Commands 
 
1)Position Control 
Loads a motion trajectory to move to a certain position. 
 
Commands included: 
pos 
posAll 
posSelect 
posSelectAll 
 
Syntax: 
int pos (int module, unsigned long pos, unsigned long vel, unsigned long acc, int rev); 
int posAll (unsigned long pos, unsigned long vel, unsigned long acc, int rev); 
int posSelect (int module[], unsigned long pos[], unsigned long vel[], unsigned long 
acc[], int rev[]); 
int posSelectAll (int module[], unsigned long pos, unsigned long vel, unsigned long acc, 
int rev); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]:  module address (1 to 32) 
pos / pos[]    :  positive 32 bit position data 
     (0 to +2,147,483,647) 
vel / vel[]    :  positive 32 bit velocity data 
     (0 to +83,886,080) 
acc / acc[]    :  positive 32 bit acceleration data 
     (0 to +2,147,483,647) 
rev / rev[]    :  reverse motion (0 or 1) 
 
Description: 
This command sends the position, velocity and acceleration data needed for a particular 
motion to the appropriate PIC-SERVO motor module. 
 
module: This argument describes the PIC-SERVO module address where the 
corresponding trajectory information has to be sent. The number sent should be less than 
or equal to the number of modules present else it will result in an error (error code: -1). 
When an array of module number is passed, the index is used to address the module and 
its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when 
passed, will load the corresponding trajectory information to the module numbers 1, 3 
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and 4; while the module number 2 wont be affected. The length of the array (in this case 
4) should be less than or equal to the modules present in the circuit. Array elements 
greater then the number of modules present will be discarded. Care should be taken so 
that the corresponding entries of module array matches with the pos, vel and acc 
arguments and is left solely on the user. 
 
pos, vel and acc: Data for the motion trajectory. 
 
rev: This argument determines the direction in which the motor moves. When its value is 
1 or a positive number, the direction will taken as reverse and the sign of the position 
field will be reversed. When 0 the direction will be taken as forward. 
 
Types: 
pos: This command is used to control one PIC-SERVO module. 
posAll: This command controls all the PIC-SERVO modules and moves all of them to 
the same position with the same velocity and acceleration in the same direction. 
posSelect: Using this command, individual PIC-SERVO modules can be controlled to 
move to their corresponding positions with their own corresponding velocity, 
acceleration and direction. This command has the highest flexibility and the others are a 
special case of this command. 
posSelectAll: Similar to the above one but the trajectory for all selected modules will the 
same. 
 
Examples: 
pos(1, 100000, 10000, 100, 1) 
Moves the PIC-SERVO module 1 to the position 100000 with velocity 10000 and 
acceleration 100. The direction is reverse. 
 
posSelect([1 0 0 1], [200000 100 100000 100000], [10000 0 0 300000], [100 0 100 300], 
[0 1 1 1]) 
Moves the PIC-SERVO module 1 to the position 200000 in the forward direction 
(velocity 100000 and acceleration 100) and moves the PIC-SERVO module 4 to the 
position 100000 in the reverse direction (velocity 300000 and acceleration 300). The 
PIC-SERVO module 2 and 3 won’t have any effect and its entries will be discarded. 
 
2)Velocity Control 
Loads a motion trajectory to move with a certain velocity. 
 
Commands included: 
vel 
velAll 
velSelect 
velSelectAll 
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Syntax: 
int vel (int module, unsigned long vel, unsigned long acc, int rev); 
int velAll (unsigned long vel, unsigned long acc, int rev); 
int velSelect (int module[], unsigned long vel[], unsigned long acc[], int rev[]); 
int velSelectAll (int module[], unsigned long vel, unsigned long acc, int rev); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]:  module address (1 to 32) 
vel / vel[]    :  positive 32 bit velocity data 
     (0 to +83,886,080) 
acc / acc[]    :  positive 32 bit acceleration data 
     (0 to +2,147,483,647) 
rev / rev[]    :  reverse motion (0 or 1) 
 
Description: 
This command sends the velocity and acceleration data needed for a particular motion to 
the appropriate PIC-SERVO motor module. 
 
module: This argument describes the PIC-SERVO module address where the 
corresponding trajectory information has to be sent. The number sent should be less than 
or equal to the number of modules present else it will result in an error (error code: -1). 
When an array of module number is passed, the index is used to address the module and 
its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when 
passed, will load the corresponding trajectory information to the module numbers 1, 3 
and 4; while the module number 2 wont be affected. The length of the array (in this case 
4) should be less than or equal to the modules present in the circuit. Array elements 
greater then the number of modules present will be discarded. Care should be taken so 
that the corresponding entries of module array matches with the vel and acc arguments 
and is left solely on the user. 
 
vel and acc: Data for the motion trajectory. 
 
rev: This argument determines the direction in which the motor moves. When its value is 
1 or a positive number, the direction will taken as reverse. When 0 the direction will be 
taken as forward. 
 
Types: 
vel: This command is used to control one PIC-SERVO module. 
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velAll: This command controls all the PIC-SERVO modules and moves all of them with 
the same velocity and acceleration in the same direction. 
velSelect: Using this command, individual PIC-SERVO modules can be controlled to 
move with their own corresponding velocity, acceleration and direction. This command 
has the highest flexibility and the others are a special case of this command. 
velSelectAll: Similar to the above one but the trajectory for all selected modules will the 
same. 
 
Examples: 
vel(1, 10000, 100, 1) 
Moves the PIC-SERVO module 1 with velocity 10000 and acceleration 100. The 
direction is reverse. 
 
velSelect([1 0 0 1], [10000 1000 30 300000], [100 1 100 300], [0 1 1 1]) 
Moves the PIC-SERVO module 1 in the forward direction with velocity 100000 and 
acceleration 100 and moves the PIC-SERVO module 4 in the reverse direction with 
velocity 300000 and acceleration 300. The PIC-SERVO module 2 and 3 won’t have any 
effect and its corresponding entries will be discarded. 
 
3)PWM Control 
Loads a motion trajectory to move with certain PWM information. 
 
Commands included: 
pwm 
pwmAll 
pwmSelect 
pwmSelectAll 
 
Syntax: 
int pwm (int module, unsigned char pwm, int rev); 
int pwmAll (unsigned char pwm, int rev); 
int pwmSelect (int module[], unsigned char pwm[], int rev[]); 
int pwmSelectAll (int module[], unsigned char pwm, int rev); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]:  module address (1 to 32) 
pwm / pwm[]     :  positive 8 bit PWM data  (0 to +255) 
rev / rev[]     :  reverse motion (0 or 1) 
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Description: 
This command sends the PWM data needed for a particular motion to the appropriate 
PIC-SERVO motor module. 
 
module: This argument describes the PIC-SERVO module address where the 
corresponding PWM information has to be sent. The number sent should be less than or 
equal to the number of modules present else it will result in an error (error code: -1). 
When an array of module number is passed, the index is used to address the module and 
its value decides if the motor module will be enabled or disabled. For ex. [1 0 1 1] when 
passed, will load the corresponding trajectory information to the module numbers 1, 3 
and 4; while the module number 2 wont be affected. The length of the array (in this case 
4) should be less than or equal to the modules present in the circuit. Array elements 
greater then the number of modules present will be discarded. Care should be taken so 
that the corresponding entries of module array matches with the vel and acc arguments 
and is left solely on the user. 
 
pwm: Data for the motion trajectory. 
 
rev: This argument determines the direction in which the motor moves. When its value is 
1 or a positive number, the direction will taken as reverse. When 0 the direction will be 
taken as forward. 
 
Types: 
pwm: This command is used to control one PIC-SERVO module. 
pwmAll: This command controls all the PIC-SERVO modules and moves all of them 
with the same PWM information. 
pwmSelect: Using this command, individual PIC-SERVO modules can be controlled to 
move with their own PWM information. This command has the highest flexibility and the 
others are a special case of this command. 
pwmSelectAll: Similar to the above one but the trajectory for all selected modules will 
the same. 
 
Examples: 
pwm(1, 100, 1) 
Moves the PIC-SERVO module 1 with PWM 100. The direction is reverse. 
 
pwmSelect([1 0 0 1], [100 1 100 200], [0 1 1 1]) 
Moves the PIC-SERVO module 1 in the forward direction with PWM 100 and moves the 
PIC-SERVO module 4 in the reverse direction with PWM 200. The PIC-SERVO module 
2 and 3 won’t have any effect and its corresponding entries will be discarded. 
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Stop Commands 
 
1)Stop 
De-accelerates a PIC-SERVO module to a complete stop. 
 
Commands included: 
stop 
stopAll 
stopSelect 
 
Syntax: 
int stop (int module); 
int stopAll (); 
int stopSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command de-accelerates a moving PIC-SERVO motor module to a complete stop. 
The de-acceleration will be the same amount with which the motor was moving at the 
time of execution. If the motor is already stopped, the command will have no effect. 
module: This argument describes the PIC-SERVO module address which has to be 
stopped. The number sent should be less than or equal to the number of modules present 
else it will result in an error (error code: -1). When an array of module number is passed, 
the index is used to address the module and its value decides if the motor module will be 
stopped or left to run. For ex. [1 0 1 1] when passed, will stop the motor module numbers 
1, 3 and 4; while the motor module number 2 wont be affected. The length of the array 
(in this case 4) should be less than or equal to the modules present in the circuit. 
  
Types: 
stop: This command is used to stop one PIC-SERVO module. 
stopAll: This command stops all the PIC-SERVO modules. 
stopSelect: Using this command, individual PIC-SERVO modules can be stopped. This 
command has the highest flexibility and the others are a special case of this command. 
 
Examples: 
stop(1) 
De-accelerates the PIC-SERVO module 1 to a complete stop. 
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stopAll() 
De-accelerates all the PIC-SERVO modules to a complete stop. 
stopSelect([1 0 1 0]) 
De-accelerates the PIC-SERVO modules 1 and 3 to a complete stop. PIC-SERVO 
modules 2 and 4 won’t be affected. 
 
2)Break 
Immediately stops a PIC-SERVO module. 
 
Commands included: 
brk 
brkAll 
brkSelect 
 
Syntax: 
int brk (int module); 
int brkAll (); 
int brkSelect (int module[]); 
 
Return Value: 
Negative number or zero: Error or Failure (Corresponds to a unique error number) 
Positive number: Success 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command Immediately stops a moving PIC-SERVO motor module. If the motor is 
already stopped, the command will have no effect. 
 
module: This argument describes the PIC-SERVO module address which has to be 
stopped. The number sent should be less than or equal to the number of modules present 
else it will result in an error (error code: -1). When an array of module number is passed, 
the index is used to address the module and its value decides if the motor module will be 
stopped or left to run. For ex. [1 0 1 1] when passed, will stop the motor module numbers 
1, 3 and 4; while the motor module number 2 wont be affected. The length of the array 
(in this case 4) should be less than or equal to the modules present in the circuit. 
 
Types: 
brk: This command is used to stop one PIC-SERVO module. 
brkAll: This command stops all the PIC-SERVO modules. 
brkSelect: Using this command, individual PIC-SERVO modules can be stopped. This 
command has the highest flexibility and the others are a special case of this command. 
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Examples: 
brk(1) 
Immediately stops the PIC-SERVO module 1. 
brkAll() 
Immediately stops all the PIC-SERVO modules. 
 
brkSelect([1 0 1 0]) 
Immediately stops the PIC-SERVO modules 1 and 3. PIC-SERVO modules 2 and 4 
won’t be affected. 
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Status Commands 
 
1)Individual Parameters per PIC-SERVO 
Returns the status of the individual parameter for a particular PIC-SERVO module. 
 
Commands included: 
getPos 
getVel 
getAd 
getHm 
 
Syntax: 
long getPos (int module); 
long getVel (int module); 
unsigned char getAd (int module); 
long getHm (int module); 
 
Return Value: 
Negative number: Error or Failure (Corresponds to a unique error number) 
Positive number or zero: Corresponding status. 
 
Arguments: 
module/module[]: module address (1 to 32) 
 
Description: 
This command returns the specific status parameter that was asked for the particular PIC-
SERVO module. 
  
module: This argument describes the PIC-SERVO module address whose status has to be 
read. The number sent should be less than or equal to the number of modules present else 
it will result in an error (error code: -1). 
 
Types: 
getPos: This command returns the current position of the PIC-SERVO module. 
getVel: This command returns the current velocity of the PIC-SERVO module. 
getAd: This command returns the current A/D value of the PIC-SERVO module. 
getHm: This command returns the current motor home position of the PIC-SERVO 
module. 
 
Examples: 
getPos(1) 
Returns the current position of PIC-SERVO module 1. 
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2)Individual Parameters 
Returns the status of the individual parameter for all PIC-SERVO modules. 
Commands included: 
getPosAll 
getVelAll 
getAdAll 
getHmAll 
 
Syntax: 
int getPosAll (long * x); 
int getVelAll (long * x); 
int getAdAll (long * x); 
int getHmAll (long * x); 
 
Return Value: 
Negative number: Error or Failure (Corresponds to a unique error number) 
Positive number or zero: Success. 
 
Arguments: 
(*) x: A pointer to the array which has the status values. 
 
Description: 
This command returns the specific status parameter for all PIC-SERVO modules. 
 
x: A pointer to the array which has the status values for all the PIC-SERVO modules. The 
size of the array will be equal to the modules present in the system. 
 
Types: 
getPosAll: This command returns the current position of all the PIC-SERVO modules. 
getVelAll: This command returns the current velocity of all the PIC-SERVO modules. 
getAdAll: This command returns the current A/D value of all the PIC-SERVO modules. 
getHmAll: This command returns the current motor home position of all the PIC-SERVO 
modules. 
 
Examples: 
getPosAll(1) 
Returns the current position of all PIC-SERVO modules. 
getVelAll(1) 
Returns the current velocities of all PIC-SERVO modules. 
 
3)Complete Status 
Returns the status of all parameters for all or one PIC-SERVO modules. 
 



www.manaraa.com

Appendix C. (Continued) 
 

 419

Commands included: 
status 
statusAll 
 
Syntax: 
int status (int module, long * x); 
int statusAll (long * x); 
 
Return Value: 
Negative number: Error or Failure (Corresponds to a unique error number) 
Positive number or zero: Success. 
 
Arguments: 
module: module address (1 to 32) 
(*) x: A pointer to the array which has the status values. 
 
Description: 
This command returns the all status parameters for all or one PIC-SERVO modules. 
 
x: A pointer to the array which has the status values for all the PIC-SERVO modules. The 
size of the array will be either 4 or 4 * (modules present in the system). 
 
Types: 
status: This command returns all the parameters for a particular PIC-SERVO module. 
statusAll: This command returns all the parameters for all PIC-SERVO modules. 
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Set Motor 
 
Changes the position value of the PIC-SERVO modules. 
 
Commands included: 
setPos 
setPosAll 
setPosSelect 
setPosSelectAll 
 
Syntax: 
int setPos (int module, unsigned long pos, int rev); 
int setPosAll (unsigned long pos, int rev); 
int setPosSelect (int module[], unsigned long pos[], int rev[]); 
int setPosSelectAll (int module[], unsigned long pos, int rev); 
 
Return Value: 
Negative number: Error or Failure (Corresponds to a unique error number) 
Positive number or zero: Success. 
 
Arguments: 
module/module[]:  module address (1 to 32) 
pos / pos[]    :  positive 32 bit position data 
     (0 to +2,147,483,647) 
rev / rev[]    :  reverse motion (0 or 1) 
 
Description: 
This command sets the position variable for a specific PIC-SERVO module or a set of 
modules. 
 
module: This argument describes the PIC-SERVO module address whose position 
variable has to be changed. The number sent should be less than or equal to the number 
of modules present else it will result in an error (error code: -1). When an array of module 
number is passed, the index is used to address the module and its value decides if the 
motor module’s position will be changed or not. For ex. [1 0 1 1] when passed, the 
position variable for the module numbers 1, 3 and 4 will be changed; while of the module 
number 2 wont be affected. The length of the array (in this case 4) should be less than or 
equal to the modules present in the circuit. Array elements greater then the number of 
modules present will be discarded. Care should be taken so that the corresponding entries 
of module array matches with the pos argument and is left solely on the user. 
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pos: New data. 
rev: This argument determines the direction in which the motor is present. When its value 
is 1 or a positive number, the direction will taken as reverse and the sign of the position 
field will be reversed. When 0 the direction will be taken as forward. 
Types: 
setPos: This command sets the position variable of one PIC-SERVO module. 
setPosAll: This command sets the position variable of all PIC-SERVO modules with the 
same position and direction. 
setPosSelect: Using this command, individual PIC-SERVO modules can be controlled to 
change to their corresponding positions and direction. This command has the highest 
flexibility and the others are a special case of this command. 
setPosSelectAll: Similar to the above one but the position variable changed for the 
selected modules is the same. 
 
Examples: 
setPos(1, 100000, 1) 
Sets the position of the PIC-SERVO module 1 to 100000. 
 
setPosSelect([1 0 0 1], [200000 100 100000 100000], [0 1 1 1]) 
Sets the position variable of PIC-SERVO module 1 to position 200000 in the forward 
direction and sets the position of PIC-SERVO module 4 to position 100000 in the reverse 
direction. The PIC-SERVO module 2 and 3 won’t have any effect and its corresponding 
entries will be discarded. 
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